Home Efficiency assessment of hydrothermally synthesized Mn2+/3+ modified LaCoO3 nanoparticles for advanced wastewater remediation
Article
Licensed
Unlicensed Requires Authentication

Efficiency assessment of hydrothermally synthesized Mn2+/3+ modified LaCoO3 nanoparticles for advanced wastewater remediation

  • Jhelai Sahadevan , Sudhi Suresh , Kulathuraan Kavu , Velusamy Periyasamy , Esakki Muthu Sankaran EMAIL logo , Ikhyun Kim , Imran Hasan and Sivaprakash Paramasivam
Published/Copyright: March 27, 2024

Abstract

The use of light and a particular material known as a photocatalyst to degrade hazardous dyes in wastewater is an exciting new development in the field of photocatalytic dye degradation. In this study we investigated the characteristic properties and photocatalytic dye degradation of manganese doped lanthanum cobalt (LaCoO3 (LCO)) nanoparticles (NPs). The NPs were synthesised using hydrothermal synthesis techniques and analysed its properties by utilising diverse technologies such as XRD, FeSEM with EDAX, Raman Spectroscopy, Photoluminescence spectroscopy and UV-DRS. From XRD analysis we found that the Mn doped LCO NPs have single phase rhombohedral crystal structures with R 3 c space group and doping cause expansion of lattice. Surface morphology of the synthesised NPs was found to be altered from spherical to spine/rod like microstructure when Mn is incorporated to LCO lattice. PL spectroscopies show broad photoemission at 360–490 nm after absorbing 310 nm light. From the UV–Vis spectroscopy the optical bandgap of the materials around 4.5 eV, indicating they can absorb visible light effectively. LCO can absorb both UV and visible light, expanding its potential for outdoor applications under natural sunlight. Doping LCO with other elements can modify its bandgap and improve its activity towards specific dyes. LCO exhibits good chemical and thermal stability, making it reusable for multiple cycles. While LCO shows promise as a visible light photocatalyst for dye degradation, its efficiency can vary significantly depending on the specific conditions. We tested Congo Red (CR) dye with prepared photocatalyst to study how well they breakdown in visible light. Studies have reported degradation rates for different dyes ranging from 50 to 90 % within an hour under optimized conditions. The LCMO nanoparticles exhibited noteworthy photocatalytic activity, as evidenced by a degradation efficiency of 77 % within a 30 min timeframe. Our findings indicate that LCMO nanoparticles possess significant potential for environmental clean-up.


Corresponding author: Esakki Muthu Sankaran, Department of Physics, Centre for Material Science, Karpagam Academy of Higher Education, Coimbatore 641021, India, E-mail:

Funding source: National Research Foundation of Korea (NRF) & Researchers Supporting Project, Saudi Arabia

Award Identifier / Grant number: Ref No. 2022R1C1C1006414 (Korea) & Ref: RSPD2024R670 (Saudi Arabia)

Acknowledgments

The research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MIST) (No. 2022R1C1C1006414). The authors extend their thanks to Researchers Supporting Project (Ref: RSPD2024R670), King Saud University, Riyadh, Saudi Arabia.

  1. Research ethics: Not applicable.

  2. Author contributions: All authors have read and agreed to the published version of the manuscript.

  3. Competing interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

  4. Research funding: The research was funded by National Research Foundation of Korea (NRF) grant (Ref No. 2022R1C1C1006414), South Korea and Researchers Supporting Project (Ref No: RSPD2024R670), Saudi Arabia.

  5. Data availability: All the data used in the manuscript are within the manuscript.

References

1. Thirumalairajan, S., Girija, K., Ganesh, I., Mangalaraj, D., Viswanathan, C., Balamurugan, A., Ponpandian, N. Chem. Eng. J. 2012, 209, 420–428. https://doi.org/10.1016/J.CEJ.2012.08.012.Search in Google Scholar

2. Sivaprakash, P., Ananth, A. N., Nagarajan, V., Jose, S. P., Arumugam, S. Mater. Res. Bull. 2017, 95, 17–22. https://doi.org/10.1016/j.materresbull.2017.07.017.Search in Google Scholar

3. Sahadevan, J., Sojiya, R., Padmanathan, N., Kulathuraan, K., Shalini, M. G., Sivaprakash, P., Esakki Muthu, S. Mater. Today Proc. 2022, 58, 895–897. https://doi.org/10.1016/j.matpr.2021.11.420.Search in Google Scholar

4. Sivaprakash, P., Ananth, A. N., Nagarajan, V., Parameshwari, R., Arumugam, S., Jose, S. P., Muthu, S. E. Mater. Chem. Phys. 2020, 248, 122922. https://doi.org/10.1016/j.matchemphys.2020.122922.Search in Google Scholar

5. Jayaram, P., Jaya, T. P., Karazhanov, S. Z., Pradyumnan, P. P. J. Mater. Sci. Technol. 2013, 29, 419–422. https://doi.org/10.1016/J.JMST.2013.02.011.Search in Google Scholar

6. Kareem, M. A., Bello, I. T., Shittu, H. A., Sivaprakash, P., Adedokun, O., Arumugam, S. Clean. Mater. 2022, 3, 100041. https://doi.org/10.1016/J.CLEMA.2022.100041.Search in Google Scholar

7. Shittu, H. A., Adedokun, O., Kareem, M. A., Sivaprakash, P., Bello, I. T., Arumugam, S. Biointerface Res. Appl. Chem. 2023, 13, 165. https://doi.org/10.33263/BRIAC132.165.Search in Google Scholar

8. Fu, S., Niu, H., Tao, Z., Song, J., Mao, C., Zhang, S., Chen, C., Wang, D. J. Alloys Compd. 2013, 576, 5–12. https://doi.org/10.1016/J.JALLCOM.2013.04.092.Search in Google Scholar

9. Luo, J., Zhou, X., Ning, X., Zhan, L., Ma, L., Xu, X., Li, S., Sun, S. Sep. Purif. Technol. 2018, 201, 309–317. https://doi.org/10.1016/J.SEPPUR.2018.03.016.Search in Google Scholar

10. Haruna, A., Abdulkadir, I., Idris, S. O. Heliyon 2020, 6, e03237. https://doi.org/10.1016/J.HELIYON.2020.E03237.Search in Google Scholar

11. Ajmal, S., Bibi, I., Majid, F., Ata, S., Kamran, K., Jilani, K., Nouren, S., Kamal, S., Ali, A., Iqbal, M. J. Mater. Res. Technol. 2019, 8, 4831–4842. https://doi.org/10.1016/J.JMRT.2019.08.029.Search in Google Scholar

12. Sathiyamoorthy, K., Silambarasan, A., Bharathkumar, S., Archana, J., Navaneethan, M., Harish, S. Mater. Res. Bull. 2023, 158, 112030. https://doi.org/10.1016/J.MATERRESBULL.2022.112030.Search in Google Scholar

13. Verduzco, L. E., Garcia-Díaz, R., Martinez, A. I., Salgado, R. A., Méndez-Arriaga, F., Lozano-Morales, S. A., Avendaño-Alejo, M., Padmasree, K. P. Dyes Pigm. 2020, 183, 108743. https://doi.org/10.1016/J.DYEPIG.2020.108743.Search in Google Scholar

14. Fujishima, A., Honda, K. Nature 1972, 238, 37–38. https://doi.org/10.1038/238037a0.Search in Google Scholar PubMed

15. Vásquez, G. C., Maestre, D., Cremades, A., Ramírez-Castellanos, J., Magnano, E., Nappini, S., Karazhanov, S. Z. Sci. Rep. 2018, 8, 1–12. https://doi.org/10.1038/s41598-018-26728-3.Search in Google Scholar PubMed PubMed Central

16. Andronic, L., Mamedov, D., Cazan, C., Popa, M., Chifiriuc, M. C., Allaniyazov, A., Palencsar, S., Karazhanov, S. Z. Biofouling 2022, 38, 865–875. https://doi.org/10.1080/08927014.2022.2144264.Search in Google Scholar PubMed

17. Kumar, K. V., Andronic, L., Baba, E. M., Deribew, D., Mayandi, J., Moons, E., Karazhanov, S. Z. Nanomaterials 2023, 13, 3093. https://doi.org/10.3390/NANO13243093/S1.Search in Google Scholar

18. Prabhu, S., Poulose, E. K. Int. Nano Lett. 2012, 2, 1–10. https://doi.org/10.1186/2228-5326-2-32.Search in Google Scholar

19. Gao, F., Wang, Y., Shi, D., Zhang, J., Wang, M., Jing, X., Humphry-Baker, R., Wang, P., Zakeeruddin, S. M., Grätzel, M. J. Am. Chem. Soc. 2008, 130, 10720–10728. https://doi.org/10.1021/JA801942J/SUPPL_FILE/JA801942J-FILE002.PDF.Search in Google Scholar

20. Zhang, H., Lv, X., Li, Y., Wang, Y., Li, J. ACS Nano 2010, 4, 380–386. https://doi.org/10.1021/NN901221K/SUPPL_FILE/NN901221K_SI_001.PDF.Search in Google Scholar

21. Woan, K., Pyrgiotakis, G., Sigmund, W. Adv. Mater. 2009, 21, 2233–2239. https://doi.org/10.1002/ADMA.200802738.Search in Google Scholar

22. Chang, S. M., Liu, W. S. Appl. Catal. B 2011, 101, 333–342. https://doi.org/10.1016/J.APCATB.2010.09.035.Search in Google Scholar

23. Andronic, L., Moldarev, D., Deribew, D., Moons, E., Karazhanov, S. Z. J. Solid State Chem. 2022, 316, 123599. https://doi.org/10.1016/J.JSSC.2022.123599.Search in Google Scholar

24. Aarthi, A., Umadevi, M., Parimaladevi, R., Sathe, G. V., Arumugam, S., Sivaprakash, P. J. Inorg. Organomet. Polym. Mater. 2021, 31, 1469–1479. https://doi.org/10.1007/S10904-020-01802-4/METRICS.Search in Google Scholar

25. Velusamy, P., Liu, X., Sathiya, M., Alsaiari, N. S., Alzahrani, F. M., Nazir, M. T., Elamurugu, E., Pandian, M. S., Zhang, F. Chemosphere 2023, 321, 138007. https://doi.org/10.1016/J.CHEMOSPHERE.2023.138007.Search in Google Scholar

26. Udhaya, P. A., Ahmad, A., Meena, M., Queen, M. A. J., Aravind, M., Velusamy, P., Almutairi, T. M., Mohammed, A. A. A., Ali, S. J. Mol. Struct. 2023, 1277, 134807. https://doi.org/10.1016/J.MOLSTRUC.2022.134807.Search in Google Scholar

27. Amalanathan, M., Aravind, M., Ahmed, N., Sony Michel Mary, M., Velusamy, P., Kumaresubitha, T., Noreen, R., Ali, S. Inorg. Chem. Commun. 2022, 146, 110149. https://doi.org/10.1016/J.INOCHE.2022.110149.Search in Google Scholar

28. Prabitha, V. G., Sahadevan, J., Madhavan, M., Muthu, S. E., Kim, I., Sudheer, T. K., Sivaprakash, P. Discov. Nano 2023, 18, 1–12. https://doi.org/10.1186/S11671-023-03942-1/TABLES/5.Search in Google Scholar

29. Sahadevan, J., Radhakrishnan, M., Padmanathan, N., Esakki Muthu, S., Sivaprakash, P., Kadiresan, M. Mater. Sci. Eng. B 2022, 284, 115875. https://doi.org/10.1016/J.MSEB.2022.115875.Search in Google Scholar

30. Sahadevan, J., Sivaprakash, P., Muthu, S. E., Kim, I., Padmanathan, N., Eswaramoorthi, V. Int. J. Mol. Sci. 2023, 2023, 10107. https://doi.org/10.3390/ijms241210107.Search in Google Scholar PubMed PubMed Central

31. Sahadevan, J., Sanjay, R., Esakki Muthu, S., Kim, I., Vivekananthan, V., Ansar, S., Sivaprakash, P. Mater. Sci. Eng. B 2023, 296, 116669. https://doi.org/10.1016/j.mseb.2023.116669.Search in Google Scholar

32. Karazhanov, S. Z., Ravindran, P., Vajeeston, P., Ulyashin, A. G., Fjellvg, H., Svensson, B. G. J. Phys.: Condens. Matter 2009, 21, 485801. https://doi.org/10.1088/0953-8984/21/48/485801.Search in Google Scholar PubMed

33. Deng, H., Mao, Z., Xu, H., Zhang, L., Zhong, Y., Sui, X. Ecotoxicol. Environ. Saf. 2019, 168, 35–44. https://doi.org/10.1016/J.ECOENV.2018.09.056.Search in Google Scholar PubMed

34. Li, Y., Yao, S., Wen, W., Xue, L., Yan, Y. J. Alloys Compd. 2010, 491, 560–564. https://doi.org/10.1016/J.JALLCOM.2009.10.269.Search in Google Scholar

35. Zhong, W., Jiang, T., Dang, Y., He, J., Chen, S. Y., Kuo, C. H., Kriz, D., Meng, Y., Meguerdichian, A. G., Suib, S. L. Appl. Catal. A Gen. 2018, 549, 302–309. https://doi.org/10.1016/J.APCATA.2017.10.013.Search in Google Scholar

36. Berger, D., Fruth, V., Jitaru, I., Schoonman, J. Mater. Lett. 2004, 58, 2418–2422. https://doi.org/10.1016/J.MATLET.2004.02.035.Search in Google Scholar

37. Vignesh, S., Eniya, P., Srinivasan, M., Kalyana Sundar, J., Li, H., Jayavel, S., Pandiaraman, M., Manthrammel, M. A., Shkir, M., Palanivel, B. J. Environ. Chem. Eng. 2021, 9, 105996. https://doi.org/10.1016/J.JECE.2021.105996.Search in Google Scholar

38. Ranjith, R., Vignesh, S., Balachandar, R., Suganthi, S., Raj, V., Ramasundaram, S., Kalyana Sundar, J., Shkir, M., Oh, T. H. J. Environ. Manage. 2023, 330, 117134. https://doi.org/10.1016/J.JENVMAN.2022.117134.Search in Google Scholar PubMed

39. Velmurugan, G., Ganapathi Raman, R., Sivaprakash, P., Viji, A., Cho, S. H., Kim, I. Nanomaterials 2023, 13, 2494. https://doi.org/10.3390/NANO13172494.Search in Google Scholar

40. Ljubas, D., Smoljanić, G., Juretić, H. J. Environ. Manage. 2015, 161, 83–91. https://doi.org/10.1016/J.JENVMAN.2015.06.042.Search in Google Scholar

41. Zhang, C., He, H., Wang, N., Chen, H., Kong, D. Ceram. Int. 2013, 39, 3685–3689. https://doi.org/10.1016/J.CERAMINT.2012.10.200.Search in Google Scholar

42. Chavoshani, A., Hashemi, M., Mehdi Amin, M., Ameta, S. C. Micropollutants and Challenges: Emerging in the Aquatic Environments and Treatment Processes; Elsevier: Netherland, 1, 2020; p. 292.10.1016/B978-0-12-818612-1.00001-5Search in Google Scholar

Received: 2023-12-11
Accepted: 2024-03-08
Published Online: 2024-03-27
Published in Print: 2025-02-25

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. Contributions to “Materials for solar water splitting”
  3. Synergistic enhancement of electrochemical supercapacitor efficiency via Co3O4/GO composite electrode
  4. Impact of annealing temperature on the structural, morphological and optical properties of Ni doped ZnO nanostructured thin films synthesized by sol–gel methodology
  5. Comparison of different iron oxides for degradation of tetracycline anti-bacterial drug
  6. Structural and electrical properties of mol% (100 − x)Li2SO4:xP2O5 solid electrolyte system (0 ≤ x ≤ 20)
  7. Microwave synthesis of magnesium phosphate-rGO as an effective electrode for supercapacitor application
  8. Adsorptive removal of Cu(II) ions from aqueous solution using Teff (Eragrostis tef) hay based magnetized biocarbon: RSM-GA, ANN based optimization and kinetics aspects
  9. Efficiency assessment of hydrothermally synthesized Mn2+/3+ modified LaCoO3 nanoparticles for advanced wastewater remediation
  10. Synthesis of BaO/NiO/rGO nanocomposite for supercapacitor application
  11. Ethanedithiol-modified silica nanoparticles for selective removal of Hg2+ ions from aqueous wastewater
  12. Effect of Zr substitution on photocatalytic and magnetic properties of lanthanum titanate
  13. Investigations on the microbial activity and anti-corrosive efficiency of nickel oxide nanoparticles synthesised through green route
  14. Multifunctional application of different iron oxide nanoparticles
  15. Effect of pH in the bismuth vanadate nanorods for their supercapacitor applications
  16. Maximizing biogas production from leftover injera: influence of yeast addition to anaerobic digestion system
  17. Synthesis, characterization and efficient photo-catalytic performance of methylene blue by Zn doped SnO2 nanoparticles
  18. Enhancing performance: insights into the augmentation potential of acrylonitrile butadiene styrene/boron nitride composites
Downloaded on 8.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zpch-2023-0516/pdf
Scroll to top button