Efficiency assessment of hydrothermally synthesized Mn2+/3+ modified LaCoO3 nanoparticles for advanced wastewater remediation
-
Jhelai Sahadevan
, Ikhyun Kim
Abstract
The use of light and a particular material known as a photocatalyst to degrade hazardous dyes in wastewater is an exciting new development in the field of photocatalytic dye degradation. In this study we investigated the characteristic properties and photocatalytic dye degradation of manganese doped lanthanum cobalt (LaCoO3 (LCO)) nanoparticles (NPs). The NPs were synthesised using hydrothermal synthesis techniques and analysed its properties by utilising diverse technologies such as XRD, FeSEM with EDAX, Raman Spectroscopy, Photoluminescence spectroscopy and UV-DRS. From XRD analysis we found that the Mn doped LCO NPs have single phase rhombohedral crystal structures with R
Funding source: National Research Foundation of Korea (NRF) & Researchers Supporting Project, Saudi Arabia
Award Identifier / Grant number: Ref No. 2022R1C1C1006414 (Korea) & Ref: RSPD2024R670 (Saudi Arabia)
Acknowledgments
The research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MIST) (No. 2022R1C1C1006414). The authors extend their thanks to Researchers Supporting Project (Ref: RSPD2024R670), King Saud University, Riyadh, Saudi Arabia.
-
Research ethics: Not applicable.
-
Author contributions: All authors have read and agreed to the published version of the manuscript.
-
Competing interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
-
Research funding: The research was funded by National Research Foundation of Korea (NRF) grant (Ref No. 2022R1C1C1006414), South Korea and Researchers Supporting Project (Ref No: RSPD2024R670), Saudi Arabia.
-
Data availability: All the data used in the manuscript are within the manuscript.
References
1. Thirumalairajan, S., Girija, K., Ganesh, I., Mangalaraj, D., Viswanathan, C., Balamurugan, A., Ponpandian, N. Chem. Eng. J. 2012, 209, 420–428. https://doi.org/10.1016/J.CEJ.2012.08.012.Search in Google Scholar
2. Sivaprakash, P., Ananth, A. N., Nagarajan, V., Jose, S. P., Arumugam, S. Mater. Res. Bull. 2017, 95, 17–22. https://doi.org/10.1016/j.materresbull.2017.07.017.Search in Google Scholar
3. Sahadevan, J., Sojiya, R., Padmanathan, N., Kulathuraan, K., Shalini, M. G., Sivaprakash, P., Esakki Muthu, S. Mater. Today Proc. 2022, 58, 895–897. https://doi.org/10.1016/j.matpr.2021.11.420.Search in Google Scholar
4. Sivaprakash, P., Ananth, A. N., Nagarajan, V., Parameshwari, R., Arumugam, S., Jose, S. P., Muthu, S. E. Mater. Chem. Phys. 2020, 248, 122922. https://doi.org/10.1016/j.matchemphys.2020.122922.Search in Google Scholar
5. Jayaram, P., Jaya, T. P., Karazhanov, S. Z., Pradyumnan, P. P. J. Mater. Sci. Technol. 2013, 29, 419–422. https://doi.org/10.1016/J.JMST.2013.02.011.Search in Google Scholar
6. Kareem, M. A., Bello, I. T., Shittu, H. A., Sivaprakash, P., Adedokun, O., Arumugam, S. Clean. Mater. 2022, 3, 100041. https://doi.org/10.1016/J.CLEMA.2022.100041.Search in Google Scholar
7. Shittu, H. A., Adedokun, O., Kareem, M. A., Sivaprakash, P., Bello, I. T., Arumugam, S. Biointerface Res. Appl. Chem. 2023, 13, 165. https://doi.org/10.33263/BRIAC132.165.Search in Google Scholar
8. Fu, S., Niu, H., Tao, Z., Song, J., Mao, C., Zhang, S., Chen, C., Wang, D. J. Alloys Compd. 2013, 576, 5–12. https://doi.org/10.1016/J.JALLCOM.2013.04.092.Search in Google Scholar
9. Luo, J., Zhou, X., Ning, X., Zhan, L., Ma, L., Xu, X., Li, S., Sun, S. Sep. Purif. Technol. 2018, 201, 309–317. https://doi.org/10.1016/J.SEPPUR.2018.03.016.Search in Google Scholar
10. Haruna, A., Abdulkadir, I., Idris, S. O. Heliyon 2020, 6, e03237. https://doi.org/10.1016/J.HELIYON.2020.E03237.Search in Google Scholar
11. Ajmal, S., Bibi, I., Majid, F., Ata, S., Kamran, K., Jilani, K., Nouren, S., Kamal, S., Ali, A., Iqbal, M. J. Mater. Res. Technol. 2019, 8, 4831–4842. https://doi.org/10.1016/J.JMRT.2019.08.029.Search in Google Scholar
12. Sathiyamoorthy, K., Silambarasan, A., Bharathkumar, S., Archana, J., Navaneethan, M., Harish, S. Mater. Res. Bull. 2023, 158, 112030. https://doi.org/10.1016/J.MATERRESBULL.2022.112030.Search in Google Scholar
13. Verduzco, L. E., Garcia-Díaz, R., Martinez, A. I., Salgado, R. A., Méndez-Arriaga, F., Lozano-Morales, S. A., Avendaño-Alejo, M., Padmasree, K. P. Dyes Pigm. 2020, 183, 108743. https://doi.org/10.1016/J.DYEPIG.2020.108743.Search in Google Scholar
14. Fujishima, A., Honda, K. Nature 1972, 238, 37–38. https://doi.org/10.1038/238037a0.Search in Google Scholar PubMed
15. Vásquez, G. C., Maestre, D., Cremades, A., Ramírez-Castellanos, J., Magnano, E., Nappini, S., Karazhanov, S. Z. Sci. Rep. 2018, 8, 1–12. https://doi.org/10.1038/s41598-018-26728-3.Search in Google Scholar PubMed PubMed Central
16. Andronic, L., Mamedov, D., Cazan, C., Popa, M., Chifiriuc, M. C., Allaniyazov, A., Palencsar, S., Karazhanov, S. Z. Biofouling 2022, 38, 865–875. https://doi.org/10.1080/08927014.2022.2144264.Search in Google Scholar PubMed
17. Kumar, K. V., Andronic, L., Baba, E. M., Deribew, D., Mayandi, J., Moons, E., Karazhanov, S. Z. Nanomaterials 2023, 13, 3093. https://doi.org/10.3390/NANO13243093/S1.Search in Google Scholar
18. Prabhu, S., Poulose, E. K. Int. Nano Lett. 2012, 2, 1–10. https://doi.org/10.1186/2228-5326-2-32.Search in Google Scholar
19. Gao, F., Wang, Y., Shi, D., Zhang, J., Wang, M., Jing, X., Humphry-Baker, R., Wang, P., Zakeeruddin, S. M., Grätzel, M. J. Am. Chem. Soc. 2008, 130, 10720–10728. https://doi.org/10.1021/JA801942J/SUPPL_FILE/JA801942J-FILE002.PDF.Search in Google Scholar
20. Zhang, H., Lv, X., Li, Y., Wang, Y., Li, J. ACS Nano 2010, 4, 380–386. https://doi.org/10.1021/NN901221K/SUPPL_FILE/NN901221K_SI_001.PDF.Search in Google Scholar
21. Woan, K., Pyrgiotakis, G., Sigmund, W. Adv. Mater. 2009, 21, 2233–2239. https://doi.org/10.1002/ADMA.200802738.Search in Google Scholar
22. Chang, S. M., Liu, W. S. Appl. Catal. B 2011, 101, 333–342. https://doi.org/10.1016/J.APCATB.2010.09.035.Search in Google Scholar
23. Andronic, L., Moldarev, D., Deribew, D., Moons, E., Karazhanov, S. Z. J. Solid State Chem. 2022, 316, 123599. https://doi.org/10.1016/J.JSSC.2022.123599.Search in Google Scholar
24. Aarthi, A., Umadevi, M., Parimaladevi, R., Sathe, G. V., Arumugam, S., Sivaprakash, P. J. Inorg. Organomet. Polym. Mater. 2021, 31, 1469–1479. https://doi.org/10.1007/S10904-020-01802-4/METRICS.Search in Google Scholar
25. Velusamy, P., Liu, X., Sathiya, M., Alsaiari, N. S., Alzahrani, F. M., Nazir, M. T., Elamurugu, E., Pandian, M. S., Zhang, F. Chemosphere 2023, 321, 138007. https://doi.org/10.1016/J.CHEMOSPHERE.2023.138007.Search in Google Scholar
26. Udhaya, P. A., Ahmad, A., Meena, M., Queen, M. A. J., Aravind, M., Velusamy, P., Almutairi, T. M., Mohammed, A. A. A., Ali, S. J. Mol. Struct. 2023, 1277, 134807. https://doi.org/10.1016/J.MOLSTRUC.2022.134807.Search in Google Scholar
27. Amalanathan, M., Aravind, M., Ahmed, N., Sony Michel Mary, M., Velusamy, P., Kumaresubitha, T., Noreen, R., Ali, S. Inorg. Chem. Commun. 2022, 146, 110149. https://doi.org/10.1016/J.INOCHE.2022.110149.Search in Google Scholar
28. Prabitha, V. G., Sahadevan, J., Madhavan, M., Muthu, S. E., Kim, I., Sudheer, T. K., Sivaprakash, P. Discov. Nano 2023, 18, 1–12. https://doi.org/10.1186/S11671-023-03942-1/TABLES/5.Search in Google Scholar
29. Sahadevan, J., Radhakrishnan, M., Padmanathan, N., Esakki Muthu, S., Sivaprakash, P., Kadiresan, M. Mater. Sci. Eng. B 2022, 284, 115875. https://doi.org/10.1016/J.MSEB.2022.115875.Search in Google Scholar
30. Sahadevan, J., Sivaprakash, P., Muthu, S. E., Kim, I., Padmanathan, N., Eswaramoorthi, V. Int. J. Mol. Sci. 2023, 2023, 10107. https://doi.org/10.3390/ijms241210107.Search in Google Scholar PubMed PubMed Central
31. Sahadevan, J., Sanjay, R., Esakki Muthu, S., Kim, I., Vivekananthan, V., Ansar, S., Sivaprakash, P. Mater. Sci. Eng. B 2023, 296, 116669. https://doi.org/10.1016/j.mseb.2023.116669.Search in Google Scholar
32. Karazhanov, S. Z., Ravindran, P., Vajeeston, P., Ulyashin, A. G., Fjellvg, H., Svensson, B. G. J. Phys.: Condens. Matter 2009, 21, 485801. https://doi.org/10.1088/0953-8984/21/48/485801.Search in Google Scholar PubMed
33. Deng, H., Mao, Z., Xu, H., Zhang, L., Zhong, Y., Sui, X. Ecotoxicol. Environ. Saf. 2019, 168, 35–44. https://doi.org/10.1016/J.ECOENV.2018.09.056.Search in Google Scholar PubMed
34. Li, Y., Yao, S., Wen, W., Xue, L., Yan, Y. J. Alloys Compd. 2010, 491, 560–564. https://doi.org/10.1016/J.JALLCOM.2009.10.269.Search in Google Scholar
35. Zhong, W., Jiang, T., Dang, Y., He, J., Chen, S. Y., Kuo, C. H., Kriz, D., Meng, Y., Meguerdichian, A. G., Suib, S. L. Appl. Catal. A Gen. 2018, 549, 302–309. https://doi.org/10.1016/J.APCATA.2017.10.013.Search in Google Scholar
36. Berger, D., Fruth, V., Jitaru, I., Schoonman, J. Mater. Lett. 2004, 58, 2418–2422. https://doi.org/10.1016/J.MATLET.2004.02.035.Search in Google Scholar
37. Vignesh, S., Eniya, P., Srinivasan, M., Kalyana Sundar, J., Li, H., Jayavel, S., Pandiaraman, M., Manthrammel, M. A., Shkir, M., Palanivel, B. J. Environ. Chem. Eng. 2021, 9, 105996. https://doi.org/10.1016/J.JECE.2021.105996.Search in Google Scholar
38. Ranjith, R., Vignesh, S., Balachandar, R., Suganthi, S., Raj, V., Ramasundaram, S., Kalyana Sundar, J., Shkir, M., Oh, T. H. J. Environ. Manage. 2023, 330, 117134. https://doi.org/10.1016/J.JENVMAN.2022.117134.Search in Google Scholar PubMed
39. Velmurugan, G., Ganapathi Raman, R., Sivaprakash, P., Viji, A., Cho, S. H., Kim, I. Nanomaterials 2023, 13, 2494. https://doi.org/10.3390/NANO13172494.Search in Google Scholar
40. Ljubas, D., Smoljanić, G., Juretić, H. J. Environ. Manage. 2015, 161, 83–91. https://doi.org/10.1016/J.JENVMAN.2015.06.042.Search in Google Scholar
41. Zhang, C., He, H., Wang, N., Chen, H., Kong, D. Ceram. Int. 2013, 39, 3685–3689. https://doi.org/10.1016/J.CERAMINT.2012.10.200.Search in Google Scholar
42. Chavoshani, A., Hashemi, M., Mehdi Amin, M., Ameta, S. C. Micropollutants and Challenges: Emerging in the Aquatic Environments and Treatment Processes; Elsevier: Netherland, 1, 2020; p. 292.10.1016/B978-0-12-818612-1.00001-5Search in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Contributions to “Materials for solar water splitting”
- Synergistic enhancement of electrochemical supercapacitor efficiency via Co3O4/GO composite electrode
- Impact of annealing temperature on the structural, morphological and optical properties of Ni doped ZnO nanostructured thin films synthesized by sol–gel methodology
- Comparison of different iron oxides for degradation of tetracycline anti-bacterial drug
- Structural and electrical properties of mol% (100 − x)Li2SO4:xP2O5 solid electrolyte system (0 ≤ x ≤ 20)
- Microwave synthesis of magnesium phosphate-rGO as an effective electrode for supercapacitor application
- Adsorptive removal of Cu(II) ions from aqueous solution using Teff (Eragrostis tef) hay based magnetized biocarbon: RSM-GA, ANN based optimization and kinetics aspects
- Efficiency assessment of hydrothermally synthesized Mn2+/3+ modified LaCoO3 nanoparticles for advanced wastewater remediation
- Synthesis of BaO/NiO/rGO nanocomposite for supercapacitor application
- Ethanedithiol-modified silica nanoparticles for selective removal of Hg2+ ions from aqueous wastewater
- Effect of Zr substitution on photocatalytic and magnetic properties of lanthanum titanate
- Investigations on the microbial activity and anti-corrosive efficiency of nickel oxide nanoparticles synthesised through green route
- Multifunctional application of different iron oxide nanoparticles
- Effect of pH in the bismuth vanadate nanorods for their supercapacitor applications
- Maximizing biogas production from leftover injera: influence of yeast addition to anaerobic digestion system
- Synthesis, characterization and efficient photo-catalytic performance of methylene blue by Zn doped SnO2 nanoparticles
- Enhancing performance: insights into the augmentation potential of acrylonitrile butadiene styrene/boron nitride composites
Articles in the same Issue
- Frontmatter
- Contributions to “Materials for solar water splitting”
- Synergistic enhancement of electrochemical supercapacitor efficiency via Co3O4/GO composite electrode
- Impact of annealing temperature on the structural, morphological and optical properties of Ni doped ZnO nanostructured thin films synthesized by sol–gel methodology
- Comparison of different iron oxides for degradation of tetracycline anti-bacterial drug
- Structural and electrical properties of mol% (100 − x)Li2SO4:xP2O5 solid electrolyte system (0 ≤ x ≤ 20)
- Microwave synthesis of magnesium phosphate-rGO as an effective electrode for supercapacitor application
- Adsorptive removal of Cu(II) ions from aqueous solution using Teff (Eragrostis tef) hay based magnetized biocarbon: RSM-GA, ANN based optimization and kinetics aspects
- Efficiency assessment of hydrothermally synthesized Mn2+/3+ modified LaCoO3 nanoparticles for advanced wastewater remediation
- Synthesis of BaO/NiO/rGO nanocomposite for supercapacitor application
- Ethanedithiol-modified silica nanoparticles for selective removal of Hg2+ ions from aqueous wastewater
- Effect of Zr substitution on photocatalytic and magnetic properties of lanthanum titanate
- Investigations on the microbial activity and anti-corrosive efficiency of nickel oxide nanoparticles synthesised through green route
- Multifunctional application of different iron oxide nanoparticles
- Effect of pH in the bismuth vanadate nanorods for their supercapacitor applications
- Maximizing biogas production from leftover injera: influence of yeast addition to anaerobic digestion system
- Synthesis, characterization and efficient photo-catalytic performance of methylene blue by Zn doped SnO2 nanoparticles
- Enhancing performance: insights into the augmentation potential of acrylonitrile butadiene styrene/boron nitride composites