Startseite Ion-Selective Ligands: How Colloidal Nano- and Micro-Particles Can Introduce New Functionalities
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Ion-Selective Ligands: How Colloidal Nano- and Micro-Particles Can Introduce New Functionalities

  • Indranath Chakraborty , Dorleta Jimenez de Aberasturi , Nicolas Pazos-Perez , Luca Guerrini , Atif Masood , Ramon A. Alvarez-Puebla , Neus Feliu und Wolfgang J. Parak EMAIL logo
Veröffentlicht/Copyright: 4. Mai 2018

Abstract

Colloidal nano- and micro-particles can introduce new properties and functionalities to existing materials and thus are a valuable building block for the construction of novel materials. This is discussed for the case of ion-selective ligands, hence molecules that can bind specifically ions of one type. First, in case ion-selective fluorescent ligands are attached to the surface of particles, these fluorophores sense the local ion concentration at the particle surface and not the bulk ion concentration. Thus, the ion-response of the ligands can be tuned by attaching them to the surface of particles. Second, in case ligands specific for particular ions are bound to the surface of particles, these ions can provide contrast and thus the particles can be imaged. This involves for example Gd-ions, which provide contrast for magnetic resonance imaging (MRI), and 111In-ions, which provide contrast for imaging of radioactivity. By attaching the ligands to the surface of particles, their physicochemical properties (as for example size and solubility) are changed, which affects their interaction with cells and, consequently, biodistribution. Attachment of ion-chelators for imaging to particles thus allows for tuning their biodistribution. Third, ion-specific ligands can be also attached to the surface of magnetic particles. In this case ions bound to the ligands can be extracted with magnetic field gradients and magnetic separation becomes possible. Therefore, magnetic particles provide a handle to the ligands, which enables the extraction of ions from solution. These examples demonstrate how the attachment of different types of colloidal particles to one existing class of molecules, ion-selective ligands, can open new fields of applications of these molecules.

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft (grant DFG grant PA 794/25-1). IC acknowledges the Alexander von Humboldt foundation. This work was funded by the Spanish Ministerio de Economia y Competitividad (CTQ2014-59808R, CTQ2017-88648-R, RYC2015-19107 and RYC2016-20331), the Generalitat de Cataluña (2017SGR883), and the Universitat Rovira i Virgili (2017PFR-URV-B2-02 and 2017EXIT-08). NF acknowledges the Swedish Governmental Agency for Innovation Systems (VINNOVA). AM acknowledges the Higher Education Commission (HEC) and Deutscher Akademischer Austauschdienst (DAAD).

References

1. Q. Zhang, E. Uchaker, S. L. Candelaria, G. Cao, Chem. Soc. Rev. 42 (2013) 3127.10.1039/c3cs00009eSuche in Google Scholar PubMed

2. O. V. Salata, J. Nanobiotechnol. 2 (2004) 3.10.1186/1477-3155-2-3Suche in Google Scholar PubMed PubMed Central

3. P. C. Ray, Chem. Rev. 110 (2010) 5332.10.1021/cr900335qSuche in Google Scholar PubMed PubMed Central

4. Z. Ali, A. Z. Abbasi, F. Zhang, P. Arosio, A. Lascialfari, M. F. Casula, A. Wenk, W. Kreyling, R. Plapper, M. Seidel, R. Niessner, J. Knoll, A. Seubert, W. J. Parak, Anal. Chem. 83 (2011) 2877.10.1021/ac103261ySuche in Google Scholar PubMed

5. H. Mohwald, H. Lichtenfeld, S. Moya, A. Voigt, H. Baumler, G. Sukhorov, F. Caruso, E. Donath, Macromol. Symp. 145 (1999) 75.10.1002/masy.19991450109Suche in Google Scholar

6. Y. Wang, A. S. Angelatos, F. Caruso, Chem. Mater. 20 (2008) 848.10.1021/cm7024813Suche in Google Scholar

7. J. Hühn, C. Carrillo-Carrion, M. G. Soliman, C. Pfeiffer, D. Valdeperez, A. Masood, I. Chakraborty, L. Zhu, M. Gallego, Z. Yue, M. Carril, N. Feliu, A. Escudero, A. M. Alkilany, B. Pelaz, P. del Pino, W. J. Parak, Chem. Mater. 29 (2017) 399.10.1021/acs.chemmater.6b04738Suche in Google Scholar

8. A. M. Smith, H. Duan, M. N. Rhyner, G. Ruan, S. Nie, Phys. Chem. Chem. Phys. 8 (2006) 3895.10.1039/b606572bSuche in Google Scholar PubMed

9. T. Ung, L. M. Liz-Marzán, P. Mulvaney, J. Phys. Chem. B 103 (1999) 6770.10.1021/jp991111rSuche in Google Scholar

10. T. Pellegrino, L. Manna, S. Kudera, T. Liedl, D. Koktysh, A. L. Rogach, S. Keller, J. Rädler, G. Natile, W. J. Parak, Nano Lett. 4 (2004) 703.10.1021/nl035172jSuche in Google Scholar

11. W. Wang, X. Ji, A. Kapur, C. Zhang, H. Mattoussi, J. Am. Chem. Soc. 137 (2016) 14158.10.1021/jacs.5b08915Suche in Google Scholar PubMed

12. W. Wang, A. Kapur, X. Ji, B. Zeng, D. Mishra, H. Mattoussi, Bioconjug. Chem. 27 (2016) 2024.10.1021/acs.bioconjchem.6b00309Suche in Google Scholar PubMed

13. C.-A. J. Lin, R. A. Sperling, J. K. Li, T.-Y. Yang, P.-Y. Li, M. Zanella, W. H. Chang, W. J. Parak, Small 4 (2008) 334.10.1002/smll.200700654Suche in Google Scholar PubMed

14. R. A. Sperling, T. Pellegrino, J.K. Li, W.H. Chang, W.J. Parak, Adv. Funct. Mater. 16 (2006) 943.10.1002/adfm.200500589Suche in Google Scholar

15. G. Decher, Science 277 (1997) 1232.10.1126/science.277.5330.1232Suche in Google Scholar

16. P. Rivera Gil, L. L. del Mercato, P. del Pino, A. Muñoz Javier, W. J. Parak, Nano Today 3 (2008) 12.10.1016/S1748-0132(08)70040-9Suche in Google Scholar

17. L. J. De Cock, S. De Koker, B. G. De Geest, J. Grooten, C. Vervaet, J. P. Remon, G. B. Sukhorukov, M. N. Antipina, Angew. Chem. Int. Ed. 49 (2010) 6954.10.1002/anie.200906266Suche in Google Scholar PubMed

18. S. De Koker, B. G. De Geest, S. K. Singh, R. De Rycke, T. Naessens, Y. Van Kooyk, J. Demeester, S. C. De Smedt, J. Grooten, Angew. Chem. Int. Ed. 48 (2009) 8485.10.1002/anie.200903769Suche in Google Scholar PubMed

19. O. Kreft, A. M. Javier, G. B. Sukhorukov, W. J. Parak, J. Mater. Chem. 17 (2007) 4471.10.1039/b705419jSuche in Google Scholar

20. W. Tong, Y. Zhu, Z. Wang, C. Gao, H. Möhwald, Macromol. Rapid Commun. 31 (2010) 1015.10.1002/marc.200900881Suche in Google Scholar PubMed

21. O. S. Wolfbeis, Sens. Actuators B Chem. 29 (1995) 140.10.1016/0925-4005(95)01675-9Suche in Google Scholar

22. B. Hötzer, I. L. Medintz, N. Hildebrandt, Small 8 (2012) 2297.10.1002/smll.201200109Suche in Google Scholar PubMed

23. M. J. Ruedas-Rama, J. D. Walters, A. Orte, E. A. H.Hall, Anal. Chim. Acta 751 (2012) 1.10.1016/j.aca.2012.09.025Suche in Google Scholar PubMed

24. S. Carregal-Romero, E. Caballero-Díaz, L. Beqa, A. M. Abdelmonem, M. Ochs, D. Hühn, B. S. Suau, M. Valcarcel, W. J. Parak, Annu. Rev. Anal. Chem. 6 (2013) 53.10.1146/annurev-anchem-062012-092621Suche in Google Scholar PubMed

25. S. Jailani, G. V. Franks, T. W. Healy, J. Am. Ceram. Soc. 91 (2008) 1141.10.1111/j.1551-2916.2008.02277.xSuche in Google Scholar

26. F. Zhang, E. Lees, F. Amin, P. Rivera_Gil, F. Yang, P. Mulvaney, W. J. Parak, Small 7 (2011) 3113.10.1002/smll.201100608Suche in Google Scholar PubMed

27. F. Zhang, Z. Ali, F. Amin, A. Feltz, M. Oheim, W. J. Parak, ChemPhysChem 11 (2010) 730.10.1002/cphc.200900849Suche in Google Scholar PubMed

28. H. Ohshima, T. W. Healy, L. R. White, J. Colloid Interface Sci. 90 (1982) 17.10.1016/0021-9797(82)90393-9Suche in Google Scholar

29. J. J. Lopez-Garcia, J. Horno, C. Grosse, Phys. Chem. Chem. Phys. 3 (2001) 3754.10.1039/b101701mSuche in Google Scholar

30. H. Ohshima, J. Colloid Interface Sci. 323 (2008) 92.10.1016/j.jcis.2008.03.021Suche in Google Scholar PubMed

31. J. Z. Wu, Z. D. Li, Annu. Rev. Phys. Chem. 58 (2007) 85.10.1146/annurev.physchem.58.032806.104650Suche in Google Scholar PubMed

32. A. Riedinger, F. Zhang, F. Dommershausen, C. Röcker, S. Brandholt, G. U. Nienhaus, U. Koert, W. J. Parak, Small 6 (2010) 2590.10.1002/smll.201000868Suche in Google Scholar PubMed

33. M. P. Morales, O. Bomati-Miguel, R. P. De Alejo, J. Ruiz-Cabello, S. Veintemillas-Verdaguer, K. O’Grady, J. Magn. Magn. Mater. 266 (2003) 102.10.1016/S0304-8853(03)00461-XSuche in Google Scholar

34. P. Sharma, S. Brown, G. Walter, S. Santra, B. Moudgil, Adv. Colloid Interface Sci. 123–126 (2006) 471.10.1016/j.cis.2006.05.026Suche in Google Scholar PubMed

35. S. Aime, C. Cabella, S. Colombatto, S. Geninatti Crich, E. Gianolio, F. Maggioni, J. Magn. Reson. Imaging 16 (2002) 394.10.1002/jmri.10180Suche in Google Scholar PubMed

36. A. N. Oksendal, P. A. Hals, J. Magn. Reson. Imaging 3 (1993) 157.10.1002/jmri.1880030128Suche in Google Scholar PubMed

37. A. Bianchi, L. Calabi, F. Corana, S. Fontana, P. Losi, A. Maiocchi, L. Paleari, B. Valtancoli, Coord. Chem. Rev. 204 (2000) 309.10.1016/S0010-8545(99)00237-4Suche in Google Scholar

38. W. G. Kreyling, A. M. Abdelmonem, Z. Ali, F. Alves, M. Geiser, N. Haberl, R. Hartmann, S. Hirn, D. J. De Aberasturi, K. Kantner, G. Khadem-Saba, Nat. Nanotechnol. 10 (2015) 619.10.1038/nnano.2015.111Suche in Google Scholar PubMed

39. T. N. Angelidis, E. Skouraki, Appl. Catal. A Gen. 142 (1996) 387.10.1016/0926-860X(96)00088-9Suche in Google Scholar

40. C. Nowottny, W. Halwachs, K. Schügerl, Sep. Purif. Technol. 12 (1997) 135.10.1016/S1383-5866(97)00041-5Suche in Google Scholar

41. M. Baghalha, G. H. Khosravian, H. R. Mortaheb, Hydrometallurgy 95 (2009) 247.10.1016/j.hydromet.2008.06.003Suche in Google Scholar

42. M. Moldovan, S. Rauch, G. M. Morrison, M. Gomez, M. Antonia Palacios, Surf. Interface Anal. 35 (2003) 354.10.1002/sia.1541Suche in Google Scholar

43. M. Faisal, Y. Atsuta, H. Daimon, K. Fujie, Asia Pac. J. Chem. Eng. 3 (2008) 364.10.1002/apj.156Suche in Google Scholar

44. C. T. Yavuz, J. T. Mayo, W. Y. William, A. Prakash, J. C. Falkner, S. Yean, L. Cong, H. J. Shipley, A. Kan, M. Tomson, D. Natelson, Science 314 (2006) 964.10.1126/science.1131475Suche in Google Scholar PubMed

45. K. Mandel, F. Hutter, Nano Today 7 (2012) 485.10.1016/j.nantod.2012.05.001Suche in Google Scholar

46. G. De Las Cuevas, J. Faraudo, J. Camacho, J. Phys. Chem. C 112 (2008) 945.10.1021/jp0755286Suche in Google Scholar

47. A. Z. Abbasi, L. Gutiérrez, L. L. del Mercato, F. Herranz, O. Chubykalo-Fesenko, S. Veintemillas-Verdaguer, W. J. Parak, M. P. Morales, J. M. González, A. Hernando, P. de la Presa, J. Phys. Chem. C 115 (2011) 6257.10.1021/jp1118234Suche in Google Scholar

48. B. Zebli, A. S. Susha, G. B. Sukhorukov, A. L. Rogach, W. J. Parak, Langmuir 21 (2005) 4262.10.1021/la0502286Suche in Google Scholar PubMed

Received: 2018-03-02
Accepted: 2018-04-08
Published Online: 2018-05-04
Published in Print: 2018-08-28

©2018 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Preface
  3. Congratulations to Alexander Eychmüller
  4. Halogens in the Synthesis of Colloidal Semiconductor Nanocrystals
  5. Controlled Aqueous Synthesis of CdSe Quantum Dots using Double-Hydrophilic Block Copolymers as Stabilizers
  6. Fabrication of Ag2S/CdS Heterostructured Nanosheets via Self-Limited Cation Exchange
  7. Ion-Selective Ligands: How Colloidal Nano- and Micro-Particles Can Introduce New Functionalities
  8. TEM, FTIR and Electrochemistry Study: Desorption of PVP from Pt Nanocubes
  9. Incorporation of CdTe Nanocrystals into Metal Oxide Matrices Towards Inorganic Nanocomposite Materials
  10. Diatoms – A “Green” Way to Biosynthesize Gold-Silica Nanocomposites?
  11. Evidence for Photo-Switchable Carrier Mobilities in Blends of PbS Nanocrystals and Photochromic Dithienylcyclopentene Derivatives
  12. Gelation-Assisted Layer-by-Layer Deposition of High Performance Nanocomposites
  13. Enhancement of the Fluorescence Quantum Yield of Thiol-Stabilized CdTe Quantum Dots Through Surface Passivation with Sodium Chloride and Bicarbonate
  14. Fluorescence Quenching of CdTe Quantum Dots with Co (III) Complexes via Electrostatic Assembly Formation
  15. Colloidal Photoluminescent Refractive Index Nanosensor Using Plasmonic Effects
  16. Towards Low-Toxic Colloidal Quantum Dots
  17. Color-Enrichment Semiconductor Nanocrystals for Biorhythm-Friendly Backlighting
  18. Transient Absorption Studies on Nanostructured Materials and Composites: Towards the Development of New Photocatalytic Systems
  19. Transient Spectroscopy of Glass-Embedded Perovskite Quantum Dots: Novel Structures in an Old Wrapping
  20. Energy Transfer Between Single Semiconductor Quantum Dots and Organic Dye Molecules
  21. Chemical Routes to Surface Enhanced Infrared Absorption (SEIRA) Substrates
  22. Plasmonic Cu/CuCl/Cu2S/Ag and Cu/CuCl/Cu2S/Au Supports with Peroxidase-Like Activity: Insights from Surface Enhanced Raman Spectroscopy
  23. n-Type Cu2O/α-Fe2O3 Heterojunctions by Electrochemical Deposition: Tuning of Cu2O Thickness for Maximum Photoelectrochemical Performance
  24. The Photoelectrochemistry of Assemblies of Semiconductor Nanoparticles at Interfaces
  25. Surface-Charge Dependent Orientation of Water at the Interface of a Gold Electrode: A Cluster Study
  26. Single Particle Spectroscopy of Radiative Processes in Colloid-to-Film-Coupled Nanoantennas
  27. Coupled Plasmon Resonances and Gap Modes in Laterally Assembled Gold Nanorod Arrays
  28. Anisotropy of Structure and Optical Properties of Self-Assembled and Oriented Colloidal CdSe Nanoplatelets
  29. Simple Electroless Synthesis of Cobalt Nanoparticle Chains, Oriented by Externally Applied Magnetic Fields
  30. Functionalization of Graphene Aerogels and their Applications in Energy Storage and Conversion
  31. Macroscopic Aerogels with Retained Nanoscopic Plasmonic Properties
  32. Application of Aqueous-Based Covalent Crosslinking Strategies to the Formation of Metal Chalcogenide Gels and Aerogels
  33. Cellulose-Based Hydrogels with Controllable Electrical and Mechanical Properties
  34. Naphthalenetetracarboxylic Diimide Derivatives: Molecular Structure, Thin Film Properties and Solar Cell Applications
  35. Metal-Phenolic Encapsulated Mesoporous Silica Nanoparticles for pH-Responsive Drug Delivery and Magnetic Resonance Imaging
  36. Extraction of K2CO3 from Low Concentration [K+] Solutions with the Aid of CO2: A Study on the Metastable Phase Equilibrium of K2CO3-Na2CO3-H2O Ternary System
Heruntergeladen am 6.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2018-1172/html
Button zum nach oben scrollen