Startseite Naturwissenschaften Transient Spectroscopy of Glass-Embedded Perovskite Quantum Dots: Novel Structures in an Old Wrapping
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Transient Spectroscopy of Glass-Embedded Perovskite Quantum Dots: Novel Structures in an Old Wrapping

  • Oleg V. Kozlov , Rohan Singh , Bing Ai , Jihong Zhang , Chao Liu und Victor I. Klimov EMAIL logo
Veröffentlicht/Copyright: 14. April 2018

Abstract

Semiconductor doped glasses had been used by the research and engineering communities as color filters or saturable absorbers well before it was realized that their optical properties were defined by tiny specs of semiconductor matter known presently as quantum dots (QDs). Nowadays, the preferred type of QD samples are colloidal particles typically fabricated via organometallic chemical routines that allow for exquisite control of QD morphology, composition and surface properties. However, there is still a number of applications that would benefit from the availability of high-quality glass-based QD samples. These prospective applications include fiber optics, optically pumped lasers and amplifiers and luminescent solar concentrators (LSCs). In addition to being perfect optical materials, glass matrices could help enhance stability of QDs by isolating them from the environment and improving heat exchange with the outside medium. Here we conduct optical studies of a new type of all-inorganic CsPbBr3 perovskite QDs fabricated directly in glasses by high-temperature precipitation. These samples are virtually scattering free and exhibit excellent waveguiding properties which makes them well suited for applications in, for example, fiber optics and LSCs. However, the presently existing problem is their fairly low room-temperature emission quantum yields of only ca. 1%–2%. Here we investigate the reasons underlying the limited emissivity of these samples by conducting transient photoluminescence (PL) and absorption measurements across a range of temperatures from 20 to 300K. We observe that the low-temperature PL quantum yield of these samples can be as high as ~25%. However, it quickly drops (in a nearly linear fashion) with increasing temperature. Interestingly, contrary to traditional thermal quenching models, experimental observations cannot be explained in terms of a thermally activated nonradiative rate but rather suggest the existence of two distinct QD sub-ensembles of “emissive” and completely “nonemissive” particles. The temperature-induced variation in the PL efficiency is likely due to a structural transformation of the QD surfaces or interior leading to formation of extremely fast trapping sites or nonemissive phases resulting in conversion of emissive QDs into nonemissive. Thus, future efforts on improving emissivity of glass-based perovskite QD samples might focus on approaches for extending the range of stability of the low-temperature highly emissive structure/phase of the QDs up to room temperature.

Acknowledgments

This work was supported by the Laboratory Directed Research and Development program at Los Alamos National Laboratory. We thank Maksym Kovalenko for insightful comments.

References

1. A. I. Ekimov, A. A. Onushchenko, V. A. Tzehomski, Sov. Phys. Chem. Glass 6 (1980) 511.Suche in Google Scholar

2. A. I. Ekimov, A. A. Onushchenko, JETP Lett. 34 (1981) 345.Suche in Google Scholar

3. V. V. Golubkov, A. I. Ekimov, A. A. Onushchenko, V. A. Tzehomski, Sov. Phys. Chem. Glass, 7 (1982) 265.Suche in Google Scholar

4. N. F. Borrelli, D. W. Hall, H. J. Holland, D. W. Smith, J. Appl. Phys. 61 (1987) 5399.10.1063/1.338280Suche in Google Scholar

5. Y. V. Vandyshev, V. S. Dneprovskii, V. I. Klimov, JETP Lett. 53 (1991) 314.Suche in Google Scholar

6. A. I. Ekimov, F. Hache, M. C. Schanne-Klein, D. Ricard, C. Flytzanis, I. A. Kudryavtsev, T. V. Yazeva, A. V. Rodina, A. L. Efros, J. Opt. Soc. Am. B 10 (1993) 100.10.1364/JOSAB.10.000100Suche in Google Scholar

7. M. C. Klein, F. Hache, D. Ricard, C. Flytzanis, Phys. Rev. B 42 (1990) 11123.10.1103/PhysRevB.42.11123Suche in Google Scholar

8. S. Nomura, T. Kobayashi, Phys. Rev. B 45 (1992) 1305.10.1103/PhysRevB.45.1305Suche in Google Scholar

9. J. L. Machol, F. W. Wise, R. C. Patel, D. B. Tanner, Phys. Rev. B 48 (1993) 2819.10.1103/PhysRevB.48.2819Suche in Google Scholar

10. C. Trallero-Giner, A. Debernardi, M. Cardona, E. Menéndez-Proupín, A. I. Ekimov, Phys. Rev. B 57 (1998) 4664.10.1103/PhysRevB.57.4664Suche in Google Scholar

11. Y. V. Vandyshev, V. S. Dneprovskii, V. I. Klimov, D. K. Okorokov, JETP Lett. 54 (1991) 442.Suche in Google Scholar

12. C. B. Murray, D. J. Norris, M. G. Bawendi, J. Am. Chem. Soc. 115 (1993) 8706.10.1021/ja00072a025Suche in Google Scholar

13. X. G. Peng, L. Manna, W. D. Yang, J. Wickham, E. Scher, A. Kadavanich, A. P. Alivisatos, Nature 404 (2000) 59.10.1038/35003535Suche in Google Scholar PubMed

14. N. Gaponik, D. V. Talapin, A. L. Rogach, K. Hoppe, E. V. Shevchenko, A. Kornowski, A. Eychmüller, H. Weller, J. Phys. Chem. B 106 (2002) 7177.10.1021/jp025541kSuche in Google Scholar

15. A. Eychmüller, J. Phys. Chem. B 104 (2000) 6514.10.1021/jp9943676Suche in Google Scholar

16. W. Weber, J. Lambe, Appl. Opt. 15 (1976) 2299.10.1364/AO.15.002299Suche in Google Scholar PubMed

17. H. Li, K. Wu, H.-J. Song, V. I. Klimov, Nat. Energy 1 (2016) 16157.10.1038/nenergy.2016.157Suche in Google Scholar

18. L. R. Bradshaw, K. E. Knowles, S. McDowall, D. R. Gamelin, Nano Lett. 15 (2015) 1315.10.1021/nl504510tSuche in Google Scholar PubMed

19. H.-J. Eisler, V. C. Sundar, M. G. Bawendi, M. Walsh, H. I. Smith, V. I. Klimov, Appl. Phys. Lett. 80 (2002) 4614.10.1063/1.1485125Suche in Google Scholar

20. M. A. Petruska, A. P. Bartko, V. I. Klimov, J. Am. Chem. Soc. 124 (2004) 714.10.1021/ja037539sSuche in Google Scholar PubMed

21. L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh, M. V. Kovalenko, Nano Lett. 15 (2015) 3692.10.1021/nl5048779Suche in Google Scholar PubMed PubMed Central

22. Y.-H. Suh, T. Kim, J. W. Choi, C.-L. Lee, J. Park, ACS Appl. Nano Mater. 1 (2018) 488.10.1021/acsanm.7b00212Suche in Google Scholar

23. N. J. L. K. Davis, F. J. de la Peña, M. Tabachnyk, J. M. Richter, R. D. Lamboll, E. P. Booker, F. Wisnivesky Rocca Rivarola, J. T. Griffiths, C. Ducati, S. M. Menke, F. Deschler, N. C. Greenham, J. Phys. Chem. C 121 (2017) 3790.10.1021/acs.jpcc.6b12828Suche in Google Scholar PubMed PubMed Central

24. Z. Shi, Y. Li, Y. Zhang, Y. Chen, X. Li, D. Wu, T. Xu, C. Shan, G. Du, Nano Lett. 17 (2017) 313.10.1021/acs.nanolett.6b04116Suche in Google Scholar PubMed

25. Y. Xu, Q. Chen, C. Zhang, R. Wang, H. Wu, X. Zhang, G. Xing, W. W. Yu, X. Wang, Y. Zhang, M. Xiao, J. Am. Chem. Soc. 138 (2016) 3761.10.1021/jacs.5b12662Suche in Google Scholar PubMed

26. S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. De Luca, M. Fiebig, W. Heiss, M. V. Kovalenko, Nat. Commun. 6 (2015) 8056.10.1038/ncomms9056Suche in Google Scholar PubMed PubMed Central

27. Y. Wang, X. Li, V. Nalla, H. Zeng, H. Sun, Adv. Funct. Mater. 27 (2017) 1605088.10.1002/adfm.201605088Suche in Google Scholar

28. H. Zhao, Y. Zhou, D. Benetti, D. Ma, F. Rosei, Nano Energy 37 (2017) 214.10.1016/j.nanoen.2017.05.030Suche in Google Scholar

29. F. Meinardi, Q. A. Akkerman, F. Bruni, S. Park, M. Mauri, Z. Dang, L. Manna, S. Brovelli, ACS Energy Lett. 2 (2017) 2368.10.1021/acsenergylett.7b00701Suche in Google Scholar PubMed PubMed Central

30. H. Huang, M. I. Bodnarchuk, S. V. Kershaw, M. V. Kovalenko, A. L. Rogach, ACS Energy Lett. 2 (2017) 2071.10.1021/acsenergylett.7b00547Suche in Google Scholar PubMed PubMed Central

31. B. Ai, C. Liu, J. Wang, J. Xie, J. Han, X. Zhao, J. Am. Ceram. Soc. 99 (2016) 2875.10.1111/jace.14400Suche in Google Scholar

32. B. Ai, C. Liu, Z. Deng, J. Wang, J. Han, and X. Zhao, Phys. Chem. Chem. Phys. 19 (2017) 17349.10.1039/C7CP02482GSuche in Google Scholar PubMed

33. N. S. Makarov, S. Guo, O. Isaienko, W. Liu, I. Robel, V. I. Klimov, Nano Lett. 16 (2016) 2349.10.1021/acs.nanolett.5b05077Suche in Google Scholar PubMed

34. L.-G. Zhang, D.-Z. Shen, X.-W. Fan, S.-Z. Lu, Chin. Phys. Lett. 19 (2002) 578.10.1088/0256-307X/19/4/340Suche in Google Scholar

35. D. Valerini, A. Cretí, M. Lomascolo, L. Manna, R. Cingolani, M. Anni, Phys. Rev. B 71 (2005) 235409.10.1103/PhysRevB.71.235409Suche in Google Scholar

36. J. Lee, E. S. Koteles, M. O. Vassell, Phys. Rev. B 33 (1986) 5512.10.1103/PhysRevB.33.5512Suche in Google Scholar

37. C. M. Iaru, J. J. Geuchies, P. M. Koenraad, D. Vanmaekelbergh, A. Y. Silov, ACS Nano 11 (2017) 11024.10.1021/acsnano.7b05033Suche in Google Scholar PubMed PubMed Central

38. V. I. Klimov, D. W. McBranch, Phys. Rev. Lett. 80 (1998) 4028.10.1103/PhysRevLett.80.4028Suche in Google Scholar

39. V. I. Klimov, D. W. McBranch, C. A. Leatherdale, M. G. Bawendi, Phys. Rev. B 60 (1999) 13740.10.1103/PhysRevB.60.13740Suche in Google Scholar

40. S. Kalytchuk, O. Zhovtiuk, S. V. Kershaw, R. Zbořil, A. L. Rogach, Small 12 (2016) 466.10.1002/smll.201501984Suche in Google Scholar PubMed

41. C. de Mello Donegá, M. Bode, A. Meijerink, Phys. Rev. B 74 (2006) 085320.10.1103/PhysRevB.74.085320Suche in Google Scholar

42. J. A. McGuire, M. Sykora, I. Robel, L. A. Padilha, J. Joo, J. M. Pietryga, V. I. Klimov, ACS Nano 4 (2010) 6087.10.1021/nn1016296Suche in Google Scholar PubMed

43. L. A. Padilha, I. Robel, D. C. Lee, P. Nagpal, J. M. Pietryga, V. I. Klimov, ACS Nano 5 (2011) 5045.10.1021/nn201135kSuche in Google Scholar PubMed

44. M. A. Becker, R. Vaxenburg, G. Nedelcu, P. C. Sercel, A. Shabaev, M. J. Mehl, J. G. Michopoulos, S. G. Lambrakos, N. Bernstein, J. L. Lyons, T. Stöferle, R. F. Mahrt, M. V. Kovalenko, D. J. Norris, G. Rainò, A. L. Efros, Nature 553 (2018) 189.10.1038/nature25147Suche in Google Scholar PubMed

45. I. Robel, R. Gresback, U. Kortshagen, R. D. Schaller, V. I. Klimov, Phys. Rev. Lett. 102 (2009) 177404.10.1103/PhysRevLett.102.177404Suche in Google Scholar PubMed

46. V. I. Klimov, Annu. Rev. Condens. Matter Phys. 5 (2014) 13.1.10.1146/annurev-conmatphys-031113-133900Suche in Google Scholar

47. J. A. Castañeda, G. Nagamine, E. Yassitepe, L. G. Bonato, O. Voznyy, S. Hoogland, A. F. Nogueira, E. H. Sargent, C. H. B. Cruz, L. A. Padilha, ACS Nano 10 (2016) 8603.10.1021/acsnano.6b03908Suche in Google Scholar PubMed

48. H.-H. Fang, L. Protesescu, D. M. Balazs, S. Adjokatse, M. V. Kovalenko, M. A. Loi, Small 13 (2017) 1700673.10.1002/smll.201700673Suche in Google Scholar PubMed


Supplementary Material:

The online version of this article offers supplementary material (https://doi.org/10.1515/zpch-2018-1168).


Received: 2018-02-28
Accepted: 2018-03-18
Published Online: 2018-04-14
Published in Print: 2018-08-28

©2018 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Preface
  3. Congratulations to Alexander Eychmüller
  4. Halogens in the Synthesis of Colloidal Semiconductor Nanocrystals
  5. Controlled Aqueous Synthesis of CdSe Quantum Dots using Double-Hydrophilic Block Copolymers as Stabilizers
  6. Fabrication of Ag2S/CdS Heterostructured Nanosheets via Self-Limited Cation Exchange
  7. Ion-Selective Ligands: How Colloidal Nano- and Micro-Particles Can Introduce New Functionalities
  8. TEM, FTIR and Electrochemistry Study: Desorption of PVP from Pt Nanocubes
  9. Incorporation of CdTe Nanocrystals into Metal Oxide Matrices Towards Inorganic Nanocomposite Materials
  10. Diatoms – A “Green” Way to Biosynthesize Gold-Silica Nanocomposites?
  11. Evidence for Photo-Switchable Carrier Mobilities in Blends of PbS Nanocrystals and Photochromic Dithienylcyclopentene Derivatives
  12. Gelation-Assisted Layer-by-Layer Deposition of High Performance Nanocomposites
  13. Enhancement of the Fluorescence Quantum Yield of Thiol-Stabilized CdTe Quantum Dots Through Surface Passivation with Sodium Chloride and Bicarbonate
  14. Fluorescence Quenching of CdTe Quantum Dots with Co (III) Complexes via Electrostatic Assembly Formation
  15. Colloidal Photoluminescent Refractive Index Nanosensor Using Plasmonic Effects
  16. Towards Low-Toxic Colloidal Quantum Dots
  17. Color-Enrichment Semiconductor Nanocrystals for Biorhythm-Friendly Backlighting
  18. Transient Absorption Studies on Nanostructured Materials and Composites: Towards the Development of New Photocatalytic Systems
  19. Transient Spectroscopy of Glass-Embedded Perovskite Quantum Dots: Novel Structures in an Old Wrapping
  20. Energy Transfer Between Single Semiconductor Quantum Dots and Organic Dye Molecules
  21. Chemical Routes to Surface Enhanced Infrared Absorption (SEIRA) Substrates
  22. Plasmonic Cu/CuCl/Cu2S/Ag and Cu/CuCl/Cu2S/Au Supports with Peroxidase-Like Activity: Insights from Surface Enhanced Raman Spectroscopy
  23. n-Type Cu2O/α-Fe2O3 Heterojunctions by Electrochemical Deposition: Tuning of Cu2O Thickness for Maximum Photoelectrochemical Performance
  24. The Photoelectrochemistry of Assemblies of Semiconductor Nanoparticles at Interfaces
  25. Surface-Charge Dependent Orientation of Water at the Interface of a Gold Electrode: A Cluster Study
  26. Single Particle Spectroscopy of Radiative Processes in Colloid-to-Film-Coupled Nanoantennas
  27. Coupled Plasmon Resonances and Gap Modes in Laterally Assembled Gold Nanorod Arrays
  28. Anisotropy of Structure and Optical Properties of Self-Assembled and Oriented Colloidal CdSe Nanoplatelets
  29. Simple Electroless Synthesis of Cobalt Nanoparticle Chains, Oriented by Externally Applied Magnetic Fields
  30. Functionalization of Graphene Aerogels and their Applications in Energy Storage and Conversion
  31. Macroscopic Aerogels with Retained Nanoscopic Plasmonic Properties
  32. Application of Aqueous-Based Covalent Crosslinking Strategies to the Formation of Metal Chalcogenide Gels and Aerogels
  33. Cellulose-Based Hydrogels with Controllable Electrical and Mechanical Properties
  34. Naphthalenetetracarboxylic Diimide Derivatives: Molecular Structure, Thin Film Properties and Solar Cell Applications
  35. Metal-Phenolic Encapsulated Mesoporous Silica Nanoparticles for pH-Responsive Drug Delivery and Magnetic Resonance Imaging
  36. Extraction of K2CO3 from Low Concentration [K+] Solutions with the Aid of CO2: A Study on the Metastable Phase Equilibrium of K2CO3-Na2CO3-H2O Ternary System
Heruntergeladen am 28.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2018-1168/html?lang=de
Button zum nach oben scrollen