Startseite Naturwissenschaften Towards Low-Toxic Colloidal Quantum Dots
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Towards Low-Toxic Colloidal Quantum Dots

  • Youngjin Jang , Arthur Shapiro , Faris Horani , Yaron Kauffmann und Efrat Lifshitz EMAIL logo
Veröffentlicht/Copyright: 30. April 2018

Abstract

Colloidal quantum dots (CQDs) are of enormous interest in the scientific and engineering fields. During the past few decades, significant efforts have been conducted in investigating Cd- and Pb-based CQDs, resulting in excellent photoluminescence (PL) properties and impressive performance in various applications. But the high toxicity of Cd and Pb elements pushed the scientific community to explore low-toxic CQDs excluding poisonous heavy metals. Several semiconductor materials with lower toxicity than Cd and Pb species have been proposed. This article presents a short overview of recent efforts involving low-toxic CQDs, focusing especially on IV–VI and III–V semiconductors which are active in the near- and short-wave-infrared (IR) regimes. Recent achievements pertinent to Sn- and In-based CQDs are highlighted as representative examples. Finally, limitations and future challenges are discussed in the review.

Acknowledgements

This authors acknowledge the financial support from the Israel Council for Higher Education-Focal Area Technology (Project No. 872967), the Volkswagen Stiftung (Project No. 88116), the Israel Ministry of Defense (Project No. 4440827018), the Israel Ministry of Trade (Maymad Project No. 54662), the Israel Science Foundation Bikura (Project No. 1508/14), the Israel Science Foundation (Project No. 985/11 and 914/15), the Niedersachsen-Deutsche Technion Gesellschaft E.V. (Project No. ZN2916) and the European Commission via the Marie-Sklodowska Curie action Phonsi (Project No. H2020-MSCAITN-642656).

References

1. A. Eychmüller, J. Phys. Chem. B 104 (2000) 6514.10.1021/jp9943676Suche in Google Scholar

2. E. Lifshitz, A. Eychmüller, J. Cluster Sci. 18 (2006) 5.10.1007/s10876-006-0102-9Suche in Google Scholar

3. A. L. Rogach, A. Eychmüller, S. G. Hickey, S. V. Kershaw, Small 3 (2007) 536.10.1002/smll.200600625Suche in Google Scholar PubMed

4. D. V. Talapin, J.-S. Lee, M. V. Kovalenko, E. V. Shevchenko, Chem. Rev. 110 (2010) 389.10.1021/cr900137kSuche in Google Scholar PubMed

5. C. R. Kagan, E. Lifshitz, E. H. Sargent, D. V. Talapin, Science 353 (2016) aac5523.10.1126/science.aac5523Suche in Google Scholar PubMed

6. A. J. Nozik, Physica E 14 (2002) 115.10.1016/S1386-9477(02)00374-0Suche in Google Scholar

7. J. Tang, E. H. Sargent, Adv. Mater. 23 (2011) 12.10.1002/adma.201190042Suche in Google Scholar

8. O. E. Semonin, J. M. Luther, M. C. Beard, Mater. Today 15 (2012) 508.10.1016/S1369-7021(12)70220-1Suche in Google Scholar

9. P. V. Kamat, J. Phys. Chem. Lett. 4 (2013) 908.10.1021/jz400052eSuche in Google Scholar PubMed

10. Q. Sun, Y. A. Wang, L. S. Li, D. Wang, T. Zhu, J. Xu, C. Yang, Y. Li, Nat. Photonics 1 (2007) 717.10.1038/nphoton.2007.226Suche in Google Scholar

11. J. M. Caruge, J. E. Halpert, V. Wood, V. Bulović, M. G. Bawendi, Nat. Photonics 2 (2008) 247.10.1038/nphoton.2008.34Suche in Google Scholar

12. X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, X. Peng, Nature 515 (2014) 96.10.1038/nature13829Suche in Google Scholar PubMed

13. R. C. Somers, M. G. Bawendi, D. G. Nocera, Chem. Soc. Rev. 36 (2007) 579.10.1039/b517613cSuche in Google Scholar PubMed

14. Q. Ma, X. Su, Analyst 136 (2011) 4883.10.1039/c1an15741hSuche in Google Scholar PubMed

15. R. E. Bailey, A. M. Smith, S. Nie, Physica E 25 (2004) 1.10.1016/j.physe.2004.07.013Suche in Google Scholar

16. A. P. Alivisatos, Nat. Biotechnol. 22 (2004) 47.10.1038/nbt927Suche in Google Scholar PubMed

17. I. L. Medintz, H. T. Uyeda, E. R. Goldman, H. Mattoussi, Nat. Mater. 4 (2005) 435.10.1038/nmat1390Suche in Google Scholar PubMed

18. W. W. Yu, L. Qu, W. Guo, X. Peng, Chem. Mater. 15 (2003) 2854.10.1021/cm034081kSuche in Google Scholar

19. H. Fu, S.-W. Tsang, Nanoscale 4 (2012) 2187.10.1039/c2nr11836jSuche in Google Scholar PubMed

20. V. Sayevich, N. Gaponik, M. Plötner, M. Kruszynska, T. Gemming, V. M. Dzhagan, S. Akhavan, D. R. T. Zahn, H. V. Demir, A. Eychmüller, Chem. Mater. 27 (2015) 4328.10.1021/acs.chemmater.5b00793Suche in Google Scholar

21. V. Sayevich, C. Guhrenz, M. Sin, V. M. Dzhagan, A. Weiz, D. Kasemann, E. Brunner, M. Ruck, D. R. T. Zahn, K. Leo, N. Gaponik, A. Eychmüller, Adv. Funct. Mater. 26 (2016) 2163.10.1002/adfm.201504767Suche in Google Scholar

22. A. Navas-Acien, E. Selvin, A. R. Sharrett, E. Calderon-Aranda, E. Silbergeld, E. Guallar, Circulation 109 (2004) 3196.10.1161/01.CIR.0000130848.18636.B2Suche in Google Scholar PubMed

23. J. Geys, A. Nemmar, E. Verbeken, E. Smolders, M. Ratoi, M. F. Hoylaerts, B. Nemery, P. H. Hoet, Environ. Health Perspect. 116 (2008) 1607.10.1289/ehp.11566Suche in Google Scholar PubMed PubMed Central

24. P. C. Ray, H. Yu, P. P. Fu, J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev. 27 (2009) 1.10.1080/10590500802708267Suche in Google Scholar PubMed PubMed Central

25. P. N. Wiecinski, K. M. Metz, A. N. Mangham, K. H. Jacobson, R. J. Hamers, J. A. Pedersen, Nanotoxicology 3 (2009) 202.10.1080/17435390902859556Suche in Google Scholar PubMed PubMed Central

26. O. I. Micic, J. R. Sprague, C. J. Curtis, K. M. Jones, J. L. Machol, A. J. Nozik, H. Giessen, B. Fluegel, G. Mohs, N. Peyghambarian, J. Phys. Chem. 99 (1995) 7754.10.1021/j100019a063Suche in Google Scholar

27. L. Li, P. Reiss, J. Am. Chem. Soc. 130 (2008) 11588.10.1021/ja803687eSuche in Google Scholar PubMed

28. C. Steinhagen, V. A. Akhavan, B. W. Goodfellow, M. G. Panthani, J. T. Harris, V. C. Holmberg, B. A. Korgel, ACS Appl. Mater. Interfaces 3 (2011) 1781.10.1021/am200334dSuche in Google Scholar PubMed

29. J. Y. Kim, J. Yang, J. H. Yu, W. Baek, C. H. Lee, H. J. Son, T. Hyeon, M. J. Ko, ACS Nano 9 (2015) 11286.10.1021/acsnano.5b04917Suche in Google Scholar PubMed

30. J. Kolny-Olesiak, H. Weller, ACS Appl. Mater. Interfaces 5 (2013) 12221.10.1021/am404084dSuche in Google Scholar PubMed

31. P. Reiss, M. Carriere, C. Lincheneau, L. Vaure, S. Tamang, Chem. Rev. 116 (2016) 10731.10.1021/acs.chemrev.6b00116Suche in Google Scholar PubMed

32. C. Coughlan, M. Ibanez, O. Dobrozhan, A. Singh, A. Cabot, K. M. Ryan, Chem. Rev. 117 (2017) 5865.10.1021/acs.chemrev.6b00376Suche in Google Scholar PubMed

33. D. J. Lewis, P. Kevin, O. Bakr, C. A. Muryn, M. A. Malik, P. O’Brien, Inorg. Chem. Front. 1 (2014) 577.10.1039/C4QI00059ESuche in Google Scholar

34. M. V. Kovalenko, W. Heiss, E. V. Shevchenko, J.-S. Lee, H. Schwinghammer, A. P. Alivisatos, D. V. Talapin, J. Am. Chem. Soc. 129 (2007) 11354.10.1021/ja074481zSuche in Google Scholar PubMed

35. J. Ning, K. Men, G. Xiao, L. Wang, Q. Dai, B. Zou, B. Liu, G. Zou, Nanoscale 2 (2010) 1699.10.1039/c0nr00052cSuche in Google Scholar PubMed

36. M. A. Franzman, C. W. Schlenker, M. E. Thompson, R. L. Brutchey, J. Am. Chem. Soc. 132 (2010) 4060.10.1021/ja100249mSuche in Google Scholar PubMed

37. S. Guo, A. F. Fidler, K. He, D. Su, G. Chen, Q. Lin, J. M. Pietryga, V. I. Klimov, J. Am. Chem. Soc. 137 (2015) 15074.10.1021/jacs.5b09490Suche in Google Scholar PubMed

38. S. G. Hickey, C. Waurisch, B. Rellinghaus, A. Eychmüller, J. Am. Chem. Soc. 130 (2008) 14978.10.1021/ja8048755Suche in Google Scholar PubMed

39. A. J. Biacchi, D. D. Vaughn, R. E. Schaak, J. Am. Chem. Soc. 135 (2013) 11634.10.1021/ja405203eSuche in Google Scholar PubMed

40. A. de Kergommeaux, M. Lopez-Haro, S. Pouget, J. M. Zuo, C. Lebrun, F. Chandezon, D. Aldakov, P. Reiss, J. Am. Chem. Soc. 137 (2015) 9943.10.1021/jacs.5b05576Suche in Google Scholar PubMed

41. W. J. Baumgardner, J. J. Choi, Y. F. Lim, T. Hanrath, J. Am. Chem. Soc. 132 (2010) 9519.10.1021/ja1013745Suche in Google Scholar PubMed

42. D. D. Vaughn II, S. I. In, R. E. Schaak, ACS Nano 5 (2011) 8852.10.1021/nn203009vSuche in Google Scholar PubMed

43. X. Liu, Y. Li, B. Zhou, X. Wang, A. N. Cartwright, M. T. Swihart, Chem. Mater. 26 (2014) 3515.10.1021/cm501023wSuche in Google Scholar

44. Y. Jang, D. Yanover, R. K. Capek, A. Shapiro, N. Grumbach, Y. Kauffmann, A. Sashchiuk, E. Lifshitz, J. Phys. Chem. Lett. 7 (2016) 2602.10.1021/acs.jpclett.6b00995Suche in Google Scholar PubMed

45. S. Sugai, K. Murase, H. Kawamura, Solid State Commun. 23 (1977) 127.10.1016/0038-1098(77)90665-2Suche in Google Scholar

46. T. Shimada, K. L. I. Kobayashi, Y. Katayama, K. F. Komatsubara, Phys. Rev. Lett. 39 (1977) 143.10.1103/PhysRevLett.39.143Suche in Google Scholar

47. C. An, K. Tang, B. Hai, G. Shen, C. Wang, Y. Qian, Inorg. Chem. Commun. 6 (2003) 181.10.1016/S1387-7003(02)00707-4Suche in Google Scholar

48. I. H. Campbell, P. M. Fauchet, Solid State Commun. 58 (1986) 739.10.1016/0038-1098(86)90513-2Suche in Google Scholar

49. J. Habinshuti, O. Kilian, O. Cristini-Robbe, A. Sashchiuk, A. Addad, S. Turrell, E. Lifshitz, B. Grandidier, L. Wirtz, Phys. Rev. B 88 (2013) 115313.10.1103/PhysRevB.88.115313Suche in Google Scholar

50. A. de Kergommeaux, J. Faure-Vincent, A. Pron, R. de Bettignies, B. Malaman, P. Reiss, J. Am. Chem. Soc. 134 (2012) 11659.10.1021/ja3033313Suche in Google Scholar PubMed

51. K. Lambert, B. D. Geyter, I. Moreels, Z. Hens, Chem. Mater. 21 (2009) 778.10.1021/cm8029399Suche in Google Scholar

52. J. He, J. Xu, G. Liu, X. Tan, H. Shao, Z. Liu, J. Xu, J. Jiang, H. Jiang, RSC Adv. 5 (2015) 59379.10.1039/C5RA08542JSuche in Google Scholar

53. H. Mehrer, N. Stolica, N. Stolwijk, Diffusion in Solid Metals and Alloys. Landolt-Börnstein – Group III Condensed Matter, ed. H. Mehrer, Springer Berlin Heidelberg, (1990).Suche in Google Scholar

54. T. Mokari, A. Aharoni, I. Popov, U. Banin, Angew. Chem. Int. Ed. 45 (2006) 8001.10.1002/anie.200602559Suche in Google Scholar PubMed

55. A. Cabot, R. K. Smith, Y. Yin, H. Zheng, B. M. Reinhard, H. Liu, A. P. Alivisatos, ACS Nano 2 (2008) 1452.10.1021/nn800270mSuche in Google Scholar PubMed

56. P. K. Jain, L. Amirav, S. Aloni, A. P. Alivisatos, J. Am. Chem. Soc. 132 (2010) 9997.10.1021/ja104126uSuche in Google Scholar PubMed

57. K. Miszta, D. Dorfs, A. Genovese, M. R. Kim, L. Manna, ACS Nano 5 (2011) 7176.10.1021/nn201988wSuche in Google Scholar PubMed

58. W. Liu, A. Y. Chang, R. D. Schaller, D. V. Talapin, J. Am. Chem. Soc. 134 (2012) 20258.10.1021/ja309821jSuche in Google Scholar PubMed

59. M. Yarema, M. V. Kovalenko, Chem. Mater. 25 (2013) 1788.10.1021/cm400320rSuche in Google Scholar

60. K. Zhang, Y. Wang, W. Jin, X. Fang, Y. Wan, Y. Zhang, J. Han, L. Dai, RSC Adv. 6 (2016) 25123.10.1039/C6RA00503ASuche in Google Scholar

61. Y. Qian, Q. Yang, Nano Lett. 17 (2017) 7183.10.1021/acs.nanolett.7b01266Suche in Google Scholar PubMed

62. I. Moreels, K. Lambert, D. De Muynck, F. Vanhaecke, D. Poelman, J. C. Martins, G. Allan, Z. Hens, Chem. Mater. 19 (2007) 6101.10.1021/cm071410qSuche in Google Scholar

63. S. Tamang, K. Kim, H. Choi, Y. Kim, S. Jeong, Dalton Trans. 44 (2015) 16923.10.1039/C5DT02181BSuche in Google Scholar PubMed

64. A. Pinczuk, E. Burstein, Phys. Rev. Lett. 21 (1968) 1073.10.1103/PhysRevLett.21.1073Suche in Google Scholar

65. K. Aoki, E. Anastassakis, M. Cardona, Phys. Rev. B 30 (1984) 681.10.1103/PhysRevB.30.681Suche in Google Scholar

66. D. R. T. Zahn, R. H. Williams, T. D. Golding, J. H. Dinan, K. J. Mackey, J. Geurts, W. Richter, Appl. Phys. Lett. 53 (1988) 2409.10.1063/1.100245Suche in Google Scholar

67. D. Chen, C. Li, Z. Zhu, J. Fan, S. Wei, Phys. Rev. B 72 (2005) 075341.10.1103/PhysRevB.72.075341Suche in Google Scholar

68. G. Sapkota, U. Philipose, Semicond. Sci. Tech. 29 (2014) 035001.10.1088/0268-1242/29/3/035001Suche in Google Scholar

69. M. Salavati-Niasari, M. Bazarganipour, F. Davar, A. A. Fazl, Appl. Surf. Sci. 257 (2010) 781.10.1016/j.apsusc.2010.07.065Suche in Google Scholar

Received: 2018-02-11
Accepted: 2018-03-26
Published Online: 2018-04-30
Published in Print: 2018-08-28

©2018 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Preface
  3. Congratulations to Alexander Eychmüller
  4. Halogens in the Synthesis of Colloidal Semiconductor Nanocrystals
  5. Controlled Aqueous Synthesis of CdSe Quantum Dots using Double-Hydrophilic Block Copolymers as Stabilizers
  6. Fabrication of Ag2S/CdS Heterostructured Nanosheets via Self-Limited Cation Exchange
  7. Ion-Selective Ligands: How Colloidal Nano- and Micro-Particles Can Introduce New Functionalities
  8. TEM, FTIR and Electrochemistry Study: Desorption of PVP from Pt Nanocubes
  9. Incorporation of CdTe Nanocrystals into Metal Oxide Matrices Towards Inorganic Nanocomposite Materials
  10. Diatoms – A “Green” Way to Biosynthesize Gold-Silica Nanocomposites?
  11. Evidence for Photo-Switchable Carrier Mobilities in Blends of PbS Nanocrystals and Photochromic Dithienylcyclopentene Derivatives
  12. Gelation-Assisted Layer-by-Layer Deposition of High Performance Nanocomposites
  13. Enhancement of the Fluorescence Quantum Yield of Thiol-Stabilized CdTe Quantum Dots Through Surface Passivation with Sodium Chloride and Bicarbonate
  14. Fluorescence Quenching of CdTe Quantum Dots with Co (III) Complexes via Electrostatic Assembly Formation
  15. Colloidal Photoluminescent Refractive Index Nanosensor Using Plasmonic Effects
  16. Towards Low-Toxic Colloidal Quantum Dots
  17. Color-Enrichment Semiconductor Nanocrystals for Biorhythm-Friendly Backlighting
  18. Transient Absorption Studies on Nanostructured Materials and Composites: Towards the Development of New Photocatalytic Systems
  19. Transient Spectroscopy of Glass-Embedded Perovskite Quantum Dots: Novel Structures in an Old Wrapping
  20. Energy Transfer Between Single Semiconductor Quantum Dots and Organic Dye Molecules
  21. Chemical Routes to Surface Enhanced Infrared Absorption (SEIRA) Substrates
  22. Plasmonic Cu/CuCl/Cu2S/Ag and Cu/CuCl/Cu2S/Au Supports with Peroxidase-Like Activity: Insights from Surface Enhanced Raman Spectroscopy
  23. n-Type Cu2O/α-Fe2O3 Heterojunctions by Electrochemical Deposition: Tuning of Cu2O Thickness for Maximum Photoelectrochemical Performance
  24. The Photoelectrochemistry of Assemblies of Semiconductor Nanoparticles at Interfaces
  25. Surface-Charge Dependent Orientation of Water at the Interface of a Gold Electrode: A Cluster Study
  26. Single Particle Spectroscopy of Radiative Processes in Colloid-to-Film-Coupled Nanoantennas
  27. Coupled Plasmon Resonances and Gap Modes in Laterally Assembled Gold Nanorod Arrays
  28. Anisotropy of Structure and Optical Properties of Self-Assembled and Oriented Colloidal CdSe Nanoplatelets
  29. Simple Electroless Synthesis of Cobalt Nanoparticle Chains, Oriented by Externally Applied Magnetic Fields
  30. Functionalization of Graphene Aerogels and their Applications in Energy Storage and Conversion
  31. Macroscopic Aerogels with Retained Nanoscopic Plasmonic Properties
  32. Application of Aqueous-Based Covalent Crosslinking Strategies to the Formation of Metal Chalcogenide Gels and Aerogels
  33. Cellulose-Based Hydrogels with Controllable Electrical and Mechanical Properties
  34. Naphthalenetetracarboxylic Diimide Derivatives: Molecular Structure, Thin Film Properties and Solar Cell Applications
  35. Metal-Phenolic Encapsulated Mesoporous Silica Nanoparticles for pH-Responsive Drug Delivery and Magnetic Resonance Imaging
  36. Extraction of K2CO3 from Low Concentration [K+] Solutions with the Aid of CO2: A Study on the Metastable Phase Equilibrium of K2CO3-Na2CO3-H2O Ternary System
Heruntergeladen am 28.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2018-1148/html?lang=de
Button zum nach oben scrollen