Startseite Naturwissenschaften Incorporation of CdTe Nanocrystals into Metal Oxide Matrices Towards Inorganic Nanocomposite Materials
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Incorporation of CdTe Nanocrystals into Metal Oxide Matrices Towards Inorganic Nanocomposite Materials

  • Elena Frolova , Tobias Otto , Nikolai Gaponik und Vladimir Lesnyak EMAIL logo
Veröffentlicht/Copyright: 14. März 2018

Abstract

In this work we present a technique of incorporation of semiconductor CdTe nanocrystals (NCs) into metal oxide matrices prepared by inorganic sol-gel method. As the matrices, we chose alumina and aluminum tin oxide, which are optically transparent in the visible region. Among them the first is electrically insulating, while the second is conductive and thus can be used in optoelectronic devices. We found optimal synthetic parameters allowing us to maintain optical properties of the NCs in both matrices even after heating up to 150°C in air. Therefore, in our approach we overcame a common problem of degradation of the optical properties of semiconductor NCs in oxide matrices as a result of the incorporation and subsequent interaction with the matrix. The resulting materials were characterized in detail from the point of view of their optical and structural properties. Based on the results obtained, we suggest the formation mechanism of these materials. Semiconductor NCs embedded in robust and optically transparent metal oxides offer promising applications in optical switching, optical filtering, waveguides, light emitting diodes, and solar concentrators.

Acknowledgments

We are grateful to E. Kern for the SEM measurements, to H. K. Hlushonak for the EPR measurements and to M. Ivanovskaya for the help with interpretation of the EPR spectra.

References

1. M. V. Kovalenko, L. Manna, A. Cabot, Z. Hens, D. V. Talapin, C. R. Kagan, V. I. Klimov, A. L. Rogach, P. Reiss, D. J. Milliron, P. Guyot-Sionnnest, G. Konstantatos, W. J. Parak, T. Hyeon, B. A. Korgel, C. B. Murray, W. Heiss, ACS Nano 9 (2015) 1012.10.1021/nn506223hSuche in Google Scholar PubMed

2. D. V. Talapin, J.-S. Lee, M. V. Kovalenko, E. V. Shevchenko, Chem. Rev. 110 (2010) 389.10.1021/cr900137kSuche in Google Scholar PubMed

3. P. Yang, M. Ando, N. Murase, Adv. Mater. 21 (2009) 4016.10.1002/adma.200900733Suche in Google Scholar

4. C. Li, K. Nishikawa, M. Ando, H. Enomoto, N. Murase, J. Colloid Interface Sci. 321 (2008) 468.10.1016/j.jcis.2008.02.009Suche in Google Scholar PubMed

5. P. Yang, N. Murase, Appl. Phys. A 89 (2007) 189.10.1017/S001667230700883XSuche in Google Scholar

6. K. Rajeshwar, N. R. de Tacconi, C. R. Chenthamarakshan, Chem. Mater. 13 (2001) 2765.10.1021/cm010254zSuche in Google Scholar

7. V. C. Sundar, H. J. Eisler, M. G. Bawendi, Adv. Mater. 14 (2002) 739.10.1002/1521-4095(20020517)14:10<739::AID-ADMA739>3.0.CO;2-YSuche in Google Scholar

8. D. Liu, P. V. Kamat, J. Phys. Chem. 97 (1993) 10769.10.1021/j100143a041Suche in Google Scholar

9. R. H. R. Castro, B. B. S. Murad, D. Gouvêa, Ceram. Int. 30 (2004) 2215.10.1016/j.ceramint.2003.12.005Suche in Google Scholar

10. N. Barsan, D. Koziej, U. Weimar, Sens. Actuators B 121 (2007) 18.10.1016/j.snb.2006.09.047Suche in Google Scholar

11. M. Batzill, U. Diebold, Prog. Surf. Sci. 79 (2005) 47.10.1016/j.progsurf.2005.09.002Suche in Google Scholar

12. S. F. Ahmed, S. Khan, P. K. Ghosh, M. K. Mitra, K. K. Chattopadhyay, J. Sol-Gel Sci. Technol. 39 (2006) 241.10.1007/s10971-006-7808-xSuche in Google Scholar

13. E. V. Frolova, M. I. Ivanovskaya, Solid State Ion. 173 (2004) 125.10.1016/j.ssi.2004.09.011Suche in Google Scholar

14. E. V. Frolova, M. I. Ivanovskaya, H. K. Hlushonak, Opt. Mater. 28 (2006) 660.10.1016/j.optmat.2005.09.038Suche in Google Scholar

15. V. Lesnyak, N. Gaponik, A. Eychmüller, Chem. Soc. Rev. 42 (2013) 2905.10.1039/C2CS35285KSuche in Google Scholar

16. A. L. Rogach, T. Franzl, T. A. Klar, J. Feldmann, N. Gaponik, V. Lesnyak, A. Shavel, A. Eychmüller, Y. P. Rakovich, J. F. Donegan, J. Phys. Chem. C 111 (2007) 14628.10.1021/jp072463ySuche in Google Scholar

17. P. Kirszensztejn, Mater. Chem. Phys. 27 (1991) 117.10.1111/j.1475-1305.1991.tb00768.xSuche in Google Scholar

18. M. Verelst, K. R. Kannan, G. N. Subbanna, C. N. R. Rao, C. Laurent, A. Rousset, J. Mater. Res. 7 (2011) 3072.10.1557/JMR.1992.3072Suche in Google Scholar

19. C. H. Holm, C. R. Adams, J. A. Ibers, J. Phys. Chem. 62 (1958) 992.10.1021/j150566a027Suche in Google Scholar

20. L. Xi, D. Qian, X. Huang, H.-E. Wang, J. Alloys Compd. 462 (2008) 42.10.1016/j.jallcom.2007.08.051Suche in Google Scholar

21. E. V. Frolova, M. I. Ivanovskaya, Y. A. Kosareva, Thin Solid Films 495 (2006) 139.10.1016/j.tsf.2005.08.193Suche in Google Scholar

22. C. Chung, M. Lee, Bull. Korean Chem. Soc. 25 (2004) 1461.10.5012/bkcs.2004.25.10.1461Suche in Google Scholar

23. Y. Yamaguchi, T. T. Nge, A. Takemura, N. Hori, H. Ono, Biomacromolecules 6 (2005) 1941.10.1021/bm0492172Suche in Google Scholar PubMed

24. F. Berger, E. Beche, R. Berjoan, D. Klein, A. Chambaudet, Appl. Surf. Sci. 93 (1996) 9.10.1016/0169-4332(95)00319-3Suche in Google Scholar

25. D. Amalric-Popescu, F. Bozon-Verduraz, Catal. Today 70 (2001) 139.10.1016/S0920-5861(01)00414-XSuche in Google Scholar

26. A. F. Wells, Structural Inorganic Chemistry, Oxford University Press, London (1987).Suche in Google Scholar

27. V. Lochař, Appl. Catal. A 309 (2006) 33.10.1016/j.apcata.2006.04.030Suche in Google Scholar

28. E. V. Frolova, M. I. Ivanoskaya, Def. Diff. Forum 242–244 (2005) 143.10.4028/www.scientific.net/DDF.242-244.143Suche in Google Scholar

29. C. Oliva, L. Forni, A. D’Ambrosio, F. Navarrini, A. D. Stepanov, Z. D. Kagramanov, A. I. Mikhailichenko, Appl. Catal. A 205 (2001) 245.10.1016/S0926-860X(00)00572-XSuche in Google Scholar

30. V. A. Poluboyarov, V. F. Anufrienko, N. G. Kalinina, S. V. Vosel, Kinet. Catal. (Engl. Transl.) 26 (1985) 653.Suche in Google Scholar

31. R. S. Ningthoujam, D. Lahiri, V. Sudarsan, H. K. Poswal, S. K. Kulshreshtha, S. M. Sharma, B. Bhushan, M. D. Sastry, Mater. Res. Bull. 42 (2007) 1293.10.1016/j.materresbull.2006.10.006Suche in Google Scholar

32. H. Hongwei, X. Yi, Y. Qing, G. Qixun, T. Chenrong, Nanotechnology 16 (2005) 741.10.1088/0957-4484/16/6/019Suche in Google Scholar

33. F. Gu, S. F. Wang, M. K. Lü, X. F. Cheng, S. W. Liu, G. J. Zhou, D. Xu, D. R. Yuan, J. Cryst. Growth 262 (2004) 182.10.1016/j.jcrysgro.2003.10.028Suche in Google Scholar

34. R. S. Ningthoujam, V. Sudarsan, S. K. Kulshreshtha, J. Lumin. 127 (2007) 747.10.1016/j.jlumin.2007.05.004Suche in Google Scholar

Received: 2018-02-01
Accepted: 2018-02-20
Published Online: 2018-03-14
Published in Print: 2018-08-28

©2018 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Preface
  3. Congratulations to Alexander Eychmüller
  4. Halogens in the Synthesis of Colloidal Semiconductor Nanocrystals
  5. Controlled Aqueous Synthesis of CdSe Quantum Dots using Double-Hydrophilic Block Copolymers as Stabilizers
  6. Fabrication of Ag2S/CdS Heterostructured Nanosheets via Self-Limited Cation Exchange
  7. Ion-Selective Ligands: How Colloidal Nano- and Micro-Particles Can Introduce New Functionalities
  8. TEM, FTIR and Electrochemistry Study: Desorption of PVP from Pt Nanocubes
  9. Incorporation of CdTe Nanocrystals into Metal Oxide Matrices Towards Inorganic Nanocomposite Materials
  10. Diatoms – A “Green” Way to Biosynthesize Gold-Silica Nanocomposites?
  11. Evidence for Photo-Switchable Carrier Mobilities in Blends of PbS Nanocrystals and Photochromic Dithienylcyclopentene Derivatives
  12. Gelation-Assisted Layer-by-Layer Deposition of High Performance Nanocomposites
  13. Enhancement of the Fluorescence Quantum Yield of Thiol-Stabilized CdTe Quantum Dots Through Surface Passivation with Sodium Chloride and Bicarbonate
  14. Fluorescence Quenching of CdTe Quantum Dots with Co (III) Complexes via Electrostatic Assembly Formation
  15. Colloidal Photoluminescent Refractive Index Nanosensor Using Plasmonic Effects
  16. Towards Low-Toxic Colloidal Quantum Dots
  17. Color-Enrichment Semiconductor Nanocrystals for Biorhythm-Friendly Backlighting
  18. Transient Absorption Studies on Nanostructured Materials and Composites: Towards the Development of New Photocatalytic Systems
  19. Transient Spectroscopy of Glass-Embedded Perovskite Quantum Dots: Novel Structures in an Old Wrapping
  20. Energy Transfer Between Single Semiconductor Quantum Dots and Organic Dye Molecules
  21. Chemical Routes to Surface Enhanced Infrared Absorption (SEIRA) Substrates
  22. Plasmonic Cu/CuCl/Cu2S/Ag and Cu/CuCl/Cu2S/Au Supports with Peroxidase-Like Activity: Insights from Surface Enhanced Raman Spectroscopy
  23. n-Type Cu2O/α-Fe2O3 Heterojunctions by Electrochemical Deposition: Tuning of Cu2O Thickness for Maximum Photoelectrochemical Performance
  24. The Photoelectrochemistry of Assemblies of Semiconductor Nanoparticles at Interfaces
  25. Surface-Charge Dependent Orientation of Water at the Interface of a Gold Electrode: A Cluster Study
  26. Single Particle Spectroscopy of Radiative Processes in Colloid-to-Film-Coupled Nanoantennas
  27. Coupled Plasmon Resonances and Gap Modes in Laterally Assembled Gold Nanorod Arrays
  28. Anisotropy of Structure and Optical Properties of Self-Assembled and Oriented Colloidal CdSe Nanoplatelets
  29. Simple Electroless Synthesis of Cobalt Nanoparticle Chains, Oriented by Externally Applied Magnetic Fields
  30. Functionalization of Graphene Aerogels and their Applications in Energy Storage and Conversion
  31. Macroscopic Aerogels with Retained Nanoscopic Plasmonic Properties
  32. Application of Aqueous-Based Covalent Crosslinking Strategies to the Formation of Metal Chalcogenide Gels and Aerogels
  33. Cellulose-Based Hydrogels with Controllable Electrical and Mechanical Properties
  34. Naphthalenetetracarboxylic Diimide Derivatives: Molecular Structure, Thin Film Properties and Solar Cell Applications
  35. Metal-Phenolic Encapsulated Mesoporous Silica Nanoparticles for pH-Responsive Drug Delivery and Magnetic Resonance Imaging
  36. Extraction of K2CO3 from Low Concentration [K+] Solutions with the Aid of CO2: A Study on the Metastable Phase Equilibrium of K2CO3-Na2CO3-H2O Ternary System
Heruntergeladen am 28.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2018-1139/html?lang=de
Button zum nach oben scrollen