Startseite Fluorescence Quenching of CdTe Quantum Dots with Co (III) Complexes via Electrostatic Assembly Formation
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Fluorescence Quenching of CdTe Quantum Dots with Co (III) Complexes via Electrostatic Assembly Formation

  • Anuushka Pal , Bhawna Arora , Diksha Rani , Sumit Srivastava , Rajeev Gupta und Sameer Sapra EMAIL logo
Veröffentlicht/Copyright: 11. April 2018

Abstract

The photoluminescence quenching of CdTe QDs in the presence of three different Co (III)-complexes is studied to elucidate the role of interactions between functional groups of positively charged cysteamine capped CdTe QDs and negatively charged Co (III) complexes bearing carboxylic groups. The steady state and time resolved spectroscopy has been used to investigate the mechanism of quenching. After detailed analysis, it is concluded that quenching is contributed by both static as well as dynamic processes. The static contribution has been assigned to the electrostatic assembly formation via ionic interactions between the amine functional groups of positively charged cysteamine capped CdTe QDs and carboxylic acid groups of negatively charged complexes. The electrostatic interactions were confirmed by zeta potential measurement as well as from effect of salt addition. These studies have implications in designing donor/acceptor pairs having complementary functional groups for efficient optoelectronic devices or photocatalytic systems.

Acknowledgments

The authors are thankful to CSIR/UGC for fellowships and SS acknowledges DST/TMD/CERI/C166(G) project for partial financial assistance.

References

1. H. Jin, S. Choi, H. J. Lee, S. Kim, J. Phys. Chem. Lett. 4 (2013) 2461.10.1021/jz400910xSuche in Google Scholar

2. M. Karg, T. A. F. Koenig, M. Retsch, C. Stelling, P. M. Reichstein, T. Honold, M. Thelakkat, A. Fery, Mater. Today 18 (2017) 185.10.1016/j.mattod.2014.10.036Suche in Google Scholar

3. A. J. Nozik, M. C. Beard, J. M. Luther, M. Law, R. J. Ellingson, J. C. Johnson, Chem. Rev. 110 (2010) 6873.10.1021/cr900289fSuche in Google Scholar PubMed

4. J. Du, C. Wang, X. Xu, Z. Wang, S. Xu, Y Cui, Luminescence 31 (2016) 419.10.1002/bio.2976Suche in Google Scholar PubMed

5. E. Petryayeva, W. R. Algar, I. L. Medintz, Appl. Spectrosc. 67 (2013) 215.10.1366/12-06948Suche in Google Scholar PubMed

6. X. Gao, Y. Cui, R. M. Levenson, L. W. K. Chung, S. Nie, Nat. Biotechnol. 22 (2004) 969.10.1038/nbt994Suche in Google Scholar PubMed

7. M. Ji, L. Jin, J. Guo, W. Yang, C. Wang, S. Fu, J. Colloid Interface Sci. 318 (2008) 487.10.1016/j.jcis.2007.09.071Suche in Google Scholar PubMed

8. B. Thierry, L. Zimmer, S. McNiven, K. Finnie, C. Barbé, H. J. Griesser, Langmuir 24 (2008) 8143.10.1021/la8007206Suche in Google Scholar PubMed

9. R. Gill, I. Willner, I. Shweky, U. Banin, J. Phys. Chem. B 109 (2005) 23715.10.1021/jp054874pSuche in Google Scholar PubMed

10. A. M. Kalsin, M. Fialkowski, M. Paszewski, S. K. Smoukov, K. J. M. Bishop, B. A. Grzybowski, Science 312 (2006) 420.10.1126/science.1125124Suche in Google Scholar PubMed

11. T.-H. Kim, S.-H. Kang, C. Doe, J. Yu, J.-B. Sim, J. Kim, S. R. Kline, S.-M. Choi, J. Am. Chem. Soc. 131 (2009) 7456.10.1021/ja901810nSuche in Google Scholar PubMed

12. A. Shavel, N. Gaponik, A. Eychmüller, ChemPhysChem 6 (2005) 449.10.1002/cphc.200400516Suche in Google Scholar PubMed

13. M. Yue, Y. Li, Y. Hou, W. Cao, J. Zhu, J. Han, Z. Lu, M. Yang, ACS Nano 9 (2015) 5807.10.1021/acsnano.5b00344Suche in Google Scholar PubMed

14. M. Oszajca, C. Lincheneau, M. Amelia, M. Baroncini, S. Silvi, K. Szaciłowski, A. Credi, RSC Adv. 4 (2014) 29847.10.1039/C4RA03259DSuche in Google Scholar

15. A. Pal, S. Srivastava, R. Gupta, S. Sapra, Phys. Chem. Chem. Phys. 15 (2013) 15888.10.1039/c3cp51834eSuche in Google Scholar PubMed

16. A. Pal, S. Srivastava, P. Saini, S. Raina, P. P. Ingole, R. Gupta, S. Sapra, J. Phys. Chem. C 119 (2015) 22690.10.1021/acs.jpcc.5b06795Suche in Google Scholar

17. A. Pal, I. Ghosh, S. Sapra, B. König, Chem. Mater. 29 (2017) 5225.10.1021/acs.chemmater.7b01109Suche in Google Scholar

18. M. Mittal, S. Sapra, ChemPhysChem 18 (2017) 2509.10.1002/cphc.201700598Suche in Google Scholar PubMed

19. Z. Tang, Z. Zhang, Y. Wang, S. C. Glotzer, N. A. Kotov, Science 314 (2006) 274.10.1126/science.1128045Suche in Google Scholar PubMed

20. N. A. Kotov, S. C. Glotzer, Nano Lett. 7 (2007) 1670.10.1021/nl0706300Suche in Google Scholar PubMed

21. S. Gupta, P. Uhlmann, M. Agrawal, V. Lesnyak, N. Gaponik, F. Simon, M. Stamm, A. Eychmüller, J. Mater. Chem. 18 (2008) 214.10.1039/B711082KSuche in Google Scholar

22. Y. P. Rakovich, Y. Volkov, S. Sapra, A. S. Susha, M. Doeblinger, J. F. Donegan, A. L. Rogach, J. Phys. Chem. C 111 (2007) 18927.10.1021/jp076622pSuche in Google Scholar

23. D. Deng, L. Qu, Y. Li, Y. Gu, Langmuir 29 (2013) 10907.10.1021/la401999rSuche in Google Scholar PubMed

24. S. Mayilo, J. Hilhorst, A. S. Susha, C. Höhl, T. Franzl, T. A. Klar, A. L. Rogach, J. Feldmann, J. Phys. Chem. C 112 (2008) 14589.10.1021/jp803503gSuche in Google Scholar

25. S. Srivastava, R. Gupta, ChemistrySelect 1 (2016) 6167.10.1002/slct.201601393Suche in Google Scholar

26. W. W. Yu, L. Qu, W. Guo, X. Peng, Chem. Mat. 15 (2003) 2854.10.1002/ejoc.200300206Suche in Google Scholar

27. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd edn., Springer, New York, 2006.10.1007/978-0-387-46312-4Suche in Google Scholar


Supplementary Material:

The online version of this article offers supplementary material (https://doi.org/10.1515/zpch-2018-1138).


Received: 2018-02-01
Accepted: 2018-03-10
Published Online: 2018-04-11
Published in Print: 2018-08-28

©2018 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Preface
  3. Congratulations to Alexander Eychmüller
  4. Halogens in the Synthesis of Colloidal Semiconductor Nanocrystals
  5. Controlled Aqueous Synthesis of CdSe Quantum Dots using Double-Hydrophilic Block Copolymers as Stabilizers
  6. Fabrication of Ag2S/CdS Heterostructured Nanosheets via Self-Limited Cation Exchange
  7. Ion-Selective Ligands: How Colloidal Nano- and Micro-Particles Can Introduce New Functionalities
  8. TEM, FTIR and Electrochemistry Study: Desorption of PVP from Pt Nanocubes
  9. Incorporation of CdTe Nanocrystals into Metal Oxide Matrices Towards Inorganic Nanocomposite Materials
  10. Diatoms – A “Green” Way to Biosynthesize Gold-Silica Nanocomposites?
  11. Evidence for Photo-Switchable Carrier Mobilities in Blends of PbS Nanocrystals and Photochromic Dithienylcyclopentene Derivatives
  12. Gelation-Assisted Layer-by-Layer Deposition of High Performance Nanocomposites
  13. Enhancement of the Fluorescence Quantum Yield of Thiol-Stabilized CdTe Quantum Dots Through Surface Passivation with Sodium Chloride and Bicarbonate
  14. Fluorescence Quenching of CdTe Quantum Dots with Co (III) Complexes via Electrostatic Assembly Formation
  15. Colloidal Photoluminescent Refractive Index Nanosensor Using Plasmonic Effects
  16. Towards Low-Toxic Colloidal Quantum Dots
  17. Color-Enrichment Semiconductor Nanocrystals for Biorhythm-Friendly Backlighting
  18. Transient Absorption Studies on Nanostructured Materials and Composites: Towards the Development of New Photocatalytic Systems
  19. Transient Spectroscopy of Glass-Embedded Perovskite Quantum Dots: Novel Structures in an Old Wrapping
  20. Energy Transfer Between Single Semiconductor Quantum Dots and Organic Dye Molecules
  21. Chemical Routes to Surface Enhanced Infrared Absorption (SEIRA) Substrates
  22. Plasmonic Cu/CuCl/Cu2S/Ag and Cu/CuCl/Cu2S/Au Supports with Peroxidase-Like Activity: Insights from Surface Enhanced Raman Spectroscopy
  23. n-Type Cu2O/α-Fe2O3 Heterojunctions by Electrochemical Deposition: Tuning of Cu2O Thickness for Maximum Photoelectrochemical Performance
  24. The Photoelectrochemistry of Assemblies of Semiconductor Nanoparticles at Interfaces
  25. Surface-Charge Dependent Orientation of Water at the Interface of a Gold Electrode: A Cluster Study
  26. Single Particle Spectroscopy of Radiative Processes in Colloid-to-Film-Coupled Nanoantennas
  27. Coupled Plasmon Resonances and Gap Modes in Laterally Assembled Gold Nanorod Arrays
  28. Anisotropy of Structure and Optical Properties of Self-Assembled and Oriented Colloidal CdSe Nanoplatelets
  29. Simple Electroless Synthesis of Cobalt Nanoparticle Chains, Oriented by Externally Applied Magnetic Fields
  30. Functionalization of Graphene Aerogels and their Applications in Energy Storage and Conversion
  31. Macroscopic Aerogels with Retained Nanoscopic Plasmonic Properties
  32. Application of Aqueous-Based Covalent Crosslinking Strategies to the Formation of Metal Chalcogenide Gels and Aerogels
  33. Cellulose-Based Hydrogels with Controllable Electrical and Mechanical Properties
  34. Naphthalenetetracarboxylic Diimide Derivatives: Molecular Structure, Thin Film Properties and Solar Cell Applications
  35. Metal-Phenolic Encapsulated Mesoporous Silica Nanoparticles for pH-Responsive Drug Delivery and Magnetic Resonance Imaging
  36. Extraction of K2CO3 from Low Concentration [K+] Solutions with the Aid of CO2: A Study on the Metastable Phase Equilibrium of K2CO3-Na2CO3-H2O Ternary System
Heruntergeladen am 6.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2018-1138/html
Button zum nach oben scrollen