Startseite Simple Electroless Synthesis of Cobalt Nanoparticle Chains, Oriented by Externally Applied Magnetic Fields
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Simple Electroless Synthesis of Cobalt Nanoparticle Chains, Oriented by Externally Applied Magnetic Fields

  • Xiaogang Wen , Lin Gu und Alexander M. Bittner EMAIL logo
Veröffentlicht/Copyright: 16. Mai 2018

Abstract

The electroless (chemical) deposition of cobalt on palladium-sensitized oxidized silicon wafers produces nanowires and chains made up by nanoparticles. We demonstrate that the application of moderate magnetic fields, provided by permanent magnets, during the growth produces highly oriented cobalt nanowires and nanoparticle chains. By adjusting the magnetic field direction in plane, parallel and crossed cobalt chain patterns are readily accessible. Perpendicular orientation of the field results in rod-like, standing-up chains of nanoparticles. We explain the observed structures with magnetostatic arguments.

Acknowledgement

We thank Alexander von Humboldt Foundation for supporting this research with a grant. We acknowledge discussions with K. Kern at MPI-FKF, and M. Grimsditch at CIC nanoGUNE. We thank the department Spatz (MPI-MF) for help with SEM, and F. Phillipp, M. Kelsch, K. Hahn, P. Kopold (electron microscopy, MPI-MF) for assistance with HRTEM and VEELS. AMB gratefully acknowledges support by the Basque government (Elkartek KK-2015/0000087 and KK-2017/00012) and by MINECO under the Maria de Maeztu Units of Excellence Programme – MDM-2016-0618.

References

1. R. P. Andres, J. D. Bielefeld, J. I. Henderson, D. B. Janes, V. R. Kolagunta, C. P. Kubiak, W. J. Mahoney, R. G. Osifchin, Science 273 (1996) 1690.10.1126/science.273.5282.1690Suche in Google Scholar

2. G. M. Whitesides, B. Grzybowski, Science 295 (2002) 2418.10.1126/science.1070821Suche in Google Scholar PubMed

3. G. M. Whitesides, J. P. Mathias, C. T. Seto, Science 254 (1991) 1312.10.1126/science.1962191Suche in Google Scholar PubMed

4. A. Kosiorek, W. Kandulski, P. Chudzinski, K. Kempa, M. Giersig, Nano Lett. 4 (2004) 1359.10.1021/nl049361tSuche in Google Scholar

5. T. Martersson, P. Carlberg, M. Borgström, L. Montelius, W. Seifert, L. Samuelson, Nano Lett. 4 (2004) 699.10.1021/nl035100sSuche in Google Scholar

6. Z. Li, Y. Gu, L. Wang, H. Ge, W. Wu, Q. Xia, C. Yuan, Y. Chen, B. Cui, R. S. Williams, Nano Lett. 9 (2009) 2306.10.1021/nl9004892Suche in Google Scholar PubMed

7. A. Colli, A. Fasoli, S. Pisana, Y. Fu, P. Beecher, W. I. Milne, A. C. Ferrari, Nano Lett. 8 (2008) 1358.10.1021/nl080033tSuche in Google Scholar PubMed

8. S. H. Ahn, L. J. Guo, ACS Nano. 3 (2009) 2304.10.1021/nn9003633Suche in Google Scholar PubMed

9. Y. Huang, X. F. Duan, Q. Q. Wei, C. M. Lieber, Science 291 (2001) 630.10.1126/science.291.5504.630Suche in Google Scholar PubMed

10. P. D. Yang, Nature 425 (2003) 243.10.1038/425243aSuche in Google Scholar PubMed

11. W. E. Teo, S. Ramakrishna, Nanotechnology 17 (2006) R89.10.1088/0957-4484/17/14/R01Suche in Google Scholar PubMed

12. H. Wu, R. Zhang, X. Liu, D. Lin, W. Pan, Chem. Mater. 19 (2007) 3506.10.1021/cm070280iSuche in Google Scholar

13. D. Li, Y. L. Wang, Y. N. Xia, Nano Lett. 3 (2003) 1167.10.1021/nl0344256Suche in Google Scholar

14. W. Nuansing, D. Frauchiger, F. Huth, R. Hillenbrand, A. M. Bittner, Faraday Disc. 166 (2013) 209–221.10.1039/c3fd00069aSuche in Google Scholar PubMed

15. C. Chiu, N. Tai, M. Yeh, B. Chen, S. Tseng, Y. Cheng, J. Crys. Growth 290 (2006) 171.10.1016/j.jcrysgro.2006.01.013Suche in Google Scholar

16. S. Gepata, Q. Zhang, T. Emrick, T. P. Russell, Nano Lett. 6 (2006) 2066.10.1021/nl061336vSuche in Google Scholar PubMed

17. K. M. Ryan, A. Mastroianni, K. A. Stancil, H. Liu, A. P. Alivisatos, Nano Lett. 6 (2006) 1479.10.1021/nl060866oSuche in Google Scholar PubMed

18. S. Dash, S. Mohanty, Eletrophoresis 35 (2014) 2656.10.1002/elps.201400084Suche in Google Scholar PubMed

19. L. Chitu, Y. Chushkin, S. Luby, E. Majkova, G. Leo, A. Satka, M. Giersig, M. Hilgendorff, Appl. Surf. Sci. 252 (2006) 5559.10.1016/j.apsusc.2005.12.016Suche in Google Scholar

20. Y. Sahoo, M. Cheon, S. Wang, H. Luo, E. P. Furlani, P. N. Prasad, J. Phys. Chem. B 108 (2004) 3380.10.1021/jp031148iSuche in Google Scholar

21. J. Park, Y. Jun, J. Choi, J. Cheon, Chem. Commun. 0 (2007) 5001.10.1039/b712513eSuche in Google Scholar PubMed

22. E. K. Athanassiou, P. Grossmann, R. N. Grass, W. J. Stark, Nanotechnology 18 (2007) 165606.10.1088/0957-4484/18/16/165606Suche in Google Scholar

23. S. Ge, C. Li, X. Ma, W. Li, L. Xi, C. X. Li, J. Appl. Phys. 90 (2001) 509.10.1063/1.1327599Suche in Google Scholar

24. J. Wang, M. Yao, C. Xu, Y. Zhu, G. Xu, P. Cui, Mater. Lett. 62 (2008) 3431.10.1016/j.matlet.2008.02.082Suche in Google Scholar

25. L. Sun, Q. Chen, Y. Tang, Y. Xiong, Chem. Commun. 0 (2007) 2844.10.1039/b704689hSuche in Google Scholar PubMed

26. C. Gong, L. Yu, Y. Duan, J. Tian, Z. Wu, Z. Zhang, Eur. J. Inorg. Chem. 18 (2008) 2884.10.1002/ejic.200800200Suche in Google Scholar

27. X. Li, C. Han, J. Crys. Growth 309 (2007) 60.10.1016/j.jcrysgro.2007.09.015Suche in Google Scholar

28. G. Zhang, T. Zhang, X. Lu, W. Wang, J. Qu, X. Li, J. Phys. Chem. C 111 (2007) 12663.10.1021/jp073075zSuche in Google Scholar

29. H. Niu, Q. Chen, M. Ning, Y. Jia, X. Wang, J. Phys. Chem. B 108 (2004) 3996.10.1021/jp0361172Suche in Google Scholar

30. F. Vereda, J. Vicente, R. Hidalgo-Alvarez, J. Mater. Res. 23 (2008) 1764.10.1557/JMR.2008.0218Suche in Google Scholar

31. M. Wu, Y. Xiong, Y. Jia, H. Niu, H. Qi, J. Ye, Q. Chen, Chem. Phys. Lett. 401 (2005) 374.10.1016/j.cplett.2004.11.080Suche in Google Scholar

32. J. Wang, Q. Chen, C. Zeng, B. Hou, Adv. Mater. 16 (2004) 137.10.1002/adma.200306136Suche in Google Scholar

33. Y. Xu, Z. Ren, W. Ren, G. Cao, K. Deng, Y. Zhong, Nanotechnology 19 (2008) 115602.10.1088/0957-4484/19/11/115602Suche in Google Scholar PubMed

34. Z. He, S. H. Yu, X. Zhou, X. Li, J. Qu, Adv. Funct. Mater. 16 (2006) 1105.10.1002/adfm.200500580Suche in Google Scholar

35. J. Wang, C. Zeng, J. Cryst. Growth 270 (2004) 729.10.1016/j.jcrysgro.2004.07.012Suche in Google Scholar

36. M. Varón, L. Peña, L. Balcells, V. Skumryev, B. Mertinez, V. Puntes, Langmuir 26 (2010) 109.10.1021/la902169sSuche in Google Scholar PubMed

37. S. Bodea, R. Ballou, P. Molho, Phys. Rev. E 69 (2004) 021605.10.1103/PhysRevE.69.021605Suche in Google Scholar PubMed

38. R. W. CHantrell, A. Bradbury, J. Popplewell, S. W. Charles, J. Appl. Phys. 53 (1982) 2742.10.1063/1.330953Suche in Google Scholar

39. Y. Lalatonne, J. Richardi, M. P. Pileni, Nature Mat. 3 (2004) 121.10.1038/nmat1054Suche in Google Scholar PubMed

40. A. M. Bittner, Surf. Sci. Rep. 61 (2006) 383.10.1016/j.surfrep.2006.03.003Suche in Google Scholar

41. E. K. Yung, L. T. Romankiw, R. C. Alkire, J. Electrochem. Soc. 136 (1989) 206.10.1149/1.2096587Suche in Google Scholar

42. Y. Wu, D. Wang, Y. Li, Sci. China Mat. 59 (2016) 938.10.1007/s40843-016-5112-0Suche in Google Scholar

43. S. Balci, K. Hahn, P. Kopold, A. Kadri, C. Wege, K. Kern, A. M. Bittner, Nanotechnology 23 (2012) 045603.10.1088/0957-4484/23/4/045603Suche in Google Scholar PubMed

44. A. Kadri, E. Maiss, N. Amsharov, A. M. Bittner, S. Balci, K. Kern, H. Jeske, C. Wege, Virus Res. 157 (2011) 35.10.1016/j.virusres.2011.01.014Suche in Google Scholar PubMed

45. M. Yoshino, Y. Kikuchi, A. Sugiyama, T. Osaka, Electrochim. Acta 53 (2007) 285.10.1016/j.electacta.2007.04.090Suche in Google Scholar

46. R. Rosensweig, Ferrohydrodynamics, Cambridge University Press, New York (1985).Suche in Google Scholar

47. H. Morimoto, T. Maekawa, J. Phys. A: Math. Gen. 33 (2000) 247.10.1088/0305-4470/33/2/302Suche in Google Scholar

48. Y.-Y. Weng, B. Zhang, S.-J. Fu, M. Wang, R.-W. Peng, G.-B. Ma, D.-J. Shu, N.-B. Ming, Phys. Rev. E 81 (2010) 051607.10.1103/PhysRevE.81.051607Suche in Google Scholar PubMed

Received: 2018-01-30
Accepted: 2018-04-12
Published Online: 2018-05-16
Published in Print: 2018-08-28

©2018 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Preface
  3. Congratulations to Alexander Eychmüller
  4. Halogens in the Synthesis of Colloidal Semiconductor Nanocrystals
  5. Controlled Aqueous Synthesis of CdSe Quantum Dots using Double-Hydrophilic Block Copolymers as Stabilizers
  6. Fabrication of Ag2S/CdS Heterostructured Nanosheets via Self-Limited Cation Exchange
  7. Ion-Selective Ligands: How Colloidal Nano- and Micro-Particles Can Introduce New Functionalities
  8. TEM, FTIR and Electrochemistry Study: Desorption of PVP from Pt Nanocubes
  9. Incorporation of CdTe Nanocrystals into Metal Oxide Matrices Towards Inorganic Nanocomposite Materials
  10. Diatoms – A “Green” Way to Biosynthesize Gold-Silica Nanocomposites?
  11. Evidence for Photo-Switchable Carrier Mobilities in Blends of PbS Nanocrystals and Photochromic Dithienylcyclopentene Derivatives
  12. Gelation-Assisted Layer-by-Layer Deposition of High Performance Nanocomposites
  13. Enhancement of the Fluorescence Quantum Yield of Thiol-Stabilized CdTe Quantum Dots Through Surface Passivation with Sodium Chloride and Bicarbonate
  14. Fluorescence Quenching of CdTe Quantum Dots with Co (III) Complexes via Electrostatic Assembly Formation
  15. Colloidal Photoluminescent Refractive Index Nanosensor Using Plasmonic Effects
  16. Towards Low-Toxic Colloidal Quantum Dots
  17. Color-Enrichment Semiconductor Nanocrystals for Biorhythm-Friendly Backlighting
  18. Transient Absorption Studies on Nanostructured Materials and Composites: Towards the Development of New Photocatalytic Systems
  19. Transient Spectroscopy of Glass-Embedded Perovskite Quantum Dots: Novel Structures in an Old Wrapping
  20. Energy Transfer Between Single Semiconductor Quantum Dots and Organic Dye Molecules
  21. Chemical Routes to Surface Enhanced Infrared Absorption (SEIRA) Substrates
  22. Plasmonic Cu/CuCl/Cu2S/Ag and Cu/CuCl/Cu2S/Au Supports with Peroxidase-Like Activity: Insights from Surface Enhanced Raman Spectroscopy
  23. n-Type Cu2O/α-Fe2O3 Heterojunctions by Electrochemical Deposition: Tuning of Cu2O Thickness for Maximum Photoelectrochemical Performance
  24. The Photoelectrochemistry of Assemblies of Semiconductor Nanoparticles at Interfaces
  25. Surface-Charge Dependent Orientation of Water at the Interface of a Gold Electrode: A Cluster Study
  26. Single Particle Spectroscopy of Radiative Processes in Colloid-to-Film-Coupled Nanoantennas
  27. Coupled Plasmon Resonances and Gap Modes in Laterally Assembled Gold Nanorod Arrays
  28. Anisotropy of Structure and Optical Properties of Self-Assembled and Oriented Colloidal CdSe Nanoplatelets
  29. Simple Electroless Synthesis of Cobalt Nanoparticle Chains, Oriented by Externally Applied Magnetic Fields
  30. Functionalization of Graphene Aerogels and their Applications in Energy Storage and Conversion
  31. Macroscopic Aerogels with Retained Nanoscopic Plasmonic Properties
  32. Application of Aqueous-Based Covalent Crosslinking Strategies to the Formation of Metal Chalcogenide Gels and Aerogels
  33. Cellulose-Based Hydrogels with Controllable Electrical and Mechanical Properties
  34. Naphthalenetetracarboxylic Diimide Derivatives: Molecular Structure, Thin Film Properties and Solar Cell Applications
  35. Metal-Phenolic Encapsulated Mesoporous Silica Nanoparticles for pH-Responsive Drug Delivery and Magnetic Resonance Imaging
  36. Extraction of K2CO3 from Low Concentration [K+] Solutions with the Aid of CO2: A Study on the Metastable Phase Equilibrium of K2CO3-Na2CO3-H2O Ternary System
Heruntergeladen am 6.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2018-1135/html?lang=de
Button zum nach oben scrollen