Startseite Color-Enrichment Semiconductor Nanocrystals for Biorhythm-Friendly Backlighting
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Color-Enrichment Semiconductor Nanocrystals for Biorhythm-Friendly Backlighting

  • Talha Erdem und Hilmi Volkan Demir EMAIL logo
Veröffentlicht/Copyright: 23. Februar 2018

Abstract

Nanocrystals (NCs) offer great opportunities for developing novel light-emitting devices possessing superior properties such as high quality indoor lighting, efficient outdoor lighting, and display backlighting with increased color definition. The narrow-band emission spectra of these materials also offer opportunities to protect the human daily biological rhythm against the adverse effects of display backlighting. For this purpose, here we address this problem using color converting NCs and analyzed the effect of the NC integrated color converting light-emitting diode (NC LED) backlight spectra on the human circadian rhythm. We employed the three existing models including the circadian light, the melanopic sensitivity function, and the circadian effect factor by simultaneously satisfying the National Television Standards Committee (NTSC) requirements. The results show that NC LED backlighting exhibits (i) 33% less disruption on the circadian cycle if the same color gamut of the commercially available YAG:Ce LED is targeted and (ii) 34% wider color gamut while causing 4.1% weaker disruption on the circadian rhythm compared to YAG:Ce LED backlight if the NTSC color gamut is fully reproduced. Furthermore, we found out that blue and green emission peaks have to be located at 465 with 30 nm bandwidth and at 535 nm with 20 nm bandwidth, respectively, for a circadian rhythm friendly design while the red component offers flexibility around the peak emission wavelength at 636 nm as opposed to the requirements of quality indoor lighting. These design considerations introduced as a new design perspective for the displays of future will help avoiding the disruption of the human circadian rhythm.

Acknowledgements

We gratefully acknowledge ESF EURYI and EU-FP7 Nanophotonics4Energy NoE. H.V.D. acknowledges additional support from TUBA and T.E. acknowledges support from TUBITAK BIDEB. We also acknowledge M. Figueiro for her helps in CL calculations.

References

1. T. Erdem, H. V. Demir, Nanophotonics 5 (2016) 74.10.1515/nanoph-2016-0009Suche in Google Scholar

2. M. Adam, N. Gaponik, A. Eychmüller, T. Erdem, Z. Soran-Erdem, H. V. Demir, J. Phys. Chem. Lett. 7 (2016) 4117.10.1021/acs.jpclett.6b01699Suche in Google Scholar PubMed

3. T. Erdem, Y. Kelestemur, Z. Soran-Erdem, Y. Ji, H. V. Demir, Nanophotonics 3 (2014) 373.10.1515/nanoph-2014-0016Suche in Google Scholar

4. M. V. Kovalenko, L. Manna, A. Cabot, Z. Hens, D. V. Talapin, C. R. Kagan, V. I. Klimov, A. L. Rogach, P. Reiss, D. J. Milliron, P. Guyot-Sionnnest, G. Konstantatos, W. J. Parak, T. Hyeon, B. A. Korgel, C. B. Murray, W. Heiss, ACS Nano 9 (2015) 1012.10.1021/nn506223hSuche in Google Scholar PubMed

5. M. G. Figueiro, J. Light Vis. Env. 37 (2013) 51.10.2150/jlve.IEIJ130000503Suche in Google Scholar

6. J. S. Terman, J. S. M. Terman, E. S. Lo, T. B. Cooper, Arch. Gen. Psychiatry 58 (2001) 69.10.1001/archpsyc.58.1.69Suche in Google Scholar PubMed

7. M. G. Figueiro, M. S. Rea, P. R. Boyce, R. White, K. Kolberg, J. Perinatol. Neonatol. 14 (2001) 29.Suche in Google Scholar

8. R. R. Auger, H. J. Burgess, R. A. Dierkhising, R. G. Sharma, N. L. Slocumb, Chronobiol. Int. 28 (2011) 911.10.3109/07420528.2011.619906Suche in Google Scholar PubMed PubMed Central

9. C. I. Eastman, M. A. Young, L. F. Fogg, Arch. Gen. Psychiatry 55 (1998) 883.10.1001/archpsyc.55.10.883Suche in Google Scholar PubMed

10. R. G. Stevens, Am. J. Epidemiol. 125 (1987) 556.10.1093/oxfordjournals.aje.a114569Suche in Google Scholar PubMed

11. T. Erdem, PhD Thesis, Bilkent University (2016).Suche in Google Scholar

12. O. Graydon, Nat. Photon. 5 (2011) 1.10.1038/nphoton.2011.139Suche in Google Scholar

13. T. Erdem, H. V. Demir, Nature Photon. 5 (2011) 126.10.1038/nphoton.2011.25Suche in Google Scholar

14. S. Nizamoglu, T. Erdem, X. W. Sun, H. V. Demir, Opt. Lett. 35 (2010) 3372.10.1364/OL.35.003372Suche in Google Scholar PubMed

15. T. Erdem, S. Nizamoglu, X. W. Sun, H. V. Demir, Opt. Express 18 (2010) 340.10.1364/OE.18.000340Suche in Google Scholar PubMed

16. T. Erdem, H. V. Demir, Nanophotonics 2 (2013) 57.10.1515/nanoph-2012-0031Suche in Google Scholar

17. H. V. Demir, S. Nizamoglu, T. Erdem, E. Mutlugun, N. Gaponik, A. Eychmüller, Nano Today 6 (2011) 632.10.1016/j.nantod.2011.10.006Suche in Google Scholar

18. E. Jang, S. Jun, H. Jang, J. Lim, B. Kim, Y. Kim, Adv. Mater. 22 (2010) 3076.10.1002/adma.201000525Suche in Google Scholar PubMed

19. http://blog.pgi.com/2013/10/screen-fiends-infographic-reveals-shocking-truths-technology-usage-screen-time/ (2013). Accessed February 12, 2018.Suche in Google Scholar

20. M. G. Figueiro, B. Wood, B. Plitnick, M. S. Rea, Neuroendocrinol. Lett. 32 (2011) 158.Suche in Google Scholar

21. B. Wood, M. S. Rea, B. Plitnick, M. G. Figueiro, Appl. Ergon. 44 (2013) 237.10.1016/j.apergo.2012.07.008Suche in Google Scholar PubMed

22. C. Cajochen, S. Frey, D. Anders, J. Späti, M. Bues, A. Pross, R. Mager, A. Wirz-Justice, O. Stefani, J. Appl. Physiol. 110 (2011) 1432.10.1152/japplphysiol.00165.2011Suche in Google Scholar PubMed

23. F.lux, https://justgetflux.com/ (2009). Accessed February 12, 2018.Suche in Google Scholar

24. Redshift, http://jonls.dk/redshift/ (2009). Accessed February 12, 2018.Suche in Google Scholar

25. D. Berson, F. Dunn, M. Takao, Science 295 (2002) 1070.10.1126/science.1067262Suche in Google Scholar PubMed

26. S. Hattar, R. J. Lucas, N. Mrosovsky, S. Thompson, R. H. Douglas, M. W. Hankins, J. Lem, M. Biel, F. Hofmann, R. G. Foster, K.-W. Yau, Nature 424 (2003) 75.10.1038/nature01761Suche in Google Scholar PubMed PubMed Central

27. N. F. Ruby, T. J. Brennan, X. Xie, V. Cao, P. Franken, H. C. Heller, B. F. O’Hara, Science 298 (2002) 2211.10.1126/science.1076701Suche in Google Scholar PubMed

28. M. S. Rea, M. G. Figueiro, A. Bierman, J. D. Bullough, J. Circadian Rhythms 8 (2010) 1.10.1186/1740-3391-8-2Suche in Google Scholar PubMed PubMed Central

29. J. Enezi, V. Revell, T. Brown, J. Wynne, L. Schlangen, R. Lucas, J. Biol. Rhythms 26 (2011) 314.10.1177/0748730411409719Suche in Google Scholar PubMed

30. D. Gall, C. Vandahl, K. Bieske, Licht für den Menschen: 10. Europäischer Lichtkongress Berlin; 2005. https://www.db-thueringen.de/servlets/MCRFileNodeServlet/dbt_derivate_00008658/LuxEuropa2005_GVB.pdf. Accessed February 12, 2018.Suche in Google Scholar

31. Lumileds. Luxeon DCC for LCD backlighting. Application Brief [PDF on Internet]. Available from: http://www.philipslumileds.com/uploads/215/AB27-PDF (2005). Accessed February 12, 2018.Suche in Google Scholar

32. T. M. Brown, J. Wynne, H. D. Piggins, R. J. Lucas, J. Physiol. 589 (2011) 1173.10.1113/jphysiol.2010.199877Suche in Google Scholar PubMed PubMed Central

33. G. C. Brainard, J. P. Hanifin, J. M. Greeson, B. Byrne, G. Glickman, E. Gerner, M. D. Rollag, J. Neurosci. 21 (2001) 6405.10.1523/JNEUROSCI.21-16-06405.2001Suche in Google Scholar PubMed PubMed Central

34. K. Thapan, J. Arendt, D. J. Skene, J. Physiol. 535 (2001) 261.10.1111/j.1469-7793.2001.t01-1-00261.xSuche in Google Scholar PubMed PubMed Central

35. M. S. Rea, M. G. Figueiro, A. Bierman, R. Hamner, Lighting Res. Technol. 44 (2012) 386.10.1177/1477153511430474Suche in Google Scholar

Received: 2018-01-30
Accepted: 2018-02-05
Published Online: 2018-02-23
Published in Print: 2018-08-28

©2018 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Preface
  3. Congratulations to Alexander Eychmüller
  4. Halogens in the Synthesis of Colloidal Semiconductor Nanocrystals
  5. Controlled Aqueous Synthesis of CdSe Quantum Dots using Double-Hydrophilic Block Copolymers as Stabilizers
  6. Fabrication of Ag2S/CdS Heterostructured Nanosheets via Self-Limited Cation Exchange
  7. Ion-Selective Ligands: How Colloidal Nano- and Micro-Particles Can Introduce New Functionalities
  8. TEM, FTIR and Electrochemistry Study: Desorption of PVP from Pt Nanocubes
  9. Incorporation of CdTe Nanocrystals into Metal Oxide Matrices Towards Inorganic Nanocomposite Materials
  10. Diatoms – A “Green” Way to Biosynthesize Gold-Silica Nanocomposites?
  11. Evidence for Photo-Switchable Carrier Mobilities in Blends of PbS Nanocrystals and Photochromic Dithienylcyclopentene Derivatives
  12. Gelation-Assisted Layer-by-Layer Deposition of High Performance Nanocomposites
  13. Enhancement of the Fluorescence Quantum Yield of Thiol-Stabilized CdTe Quantum Dots Through Surface Passivation with Sodium Chloride and Bicarbonate
  14. Fluorescence Quenching of CdTe Quantum Dots with Co (III) Complexes via Electrostatic Assembly Formation
  15. Colloidal Photoluminescent Refractive Index Nanosensor Using Plasmonic Effects
  16. Towards Low-Toxic Colloidal Quantum Dots
  17. Color-Enrichment Semiconductor Nanocrystals for Biorhythm-Friendly Backlighting
  18. Transient Absorption Studies on Nanostructured Materials and Composites: Towards the Development of New Photocatalytic Systems
  19. Transient Spectroscopy of Glass-Embedded Perovskite Quantum Dots: Novel Structures in an Old Wrapping
  20. Energy Transfer Between Single Semiconductor Quantum Dots and Organic Dye Molecules
  21. Chemical Routes to Surface Enhanced Infrared Absorption (SEIRA) Substrates
  22. Plasmonic Cu/CuCl/Cu2S/Ag and Cu/CuCl/Cu2S/Au Supports with Peroxidase-Like Activity: Insights from Surface Enhanced Raman Spectroscopy
  23. n-Type Cu2O/α-Fe2O3 Heterojunctions by Electrochemical Deposition: Tuning of Cu2O Thickness for Maximum Photoelectrochemical Performance
  24. The Photoelectrochemistry of Assemblies of Semiconductor Nanoparticles at Interfaces
  25. Surface-Charge Dependent Orientation of Water at the Interface of a Gold Electrode: A Cluster Study
  26. Single Particle Spectroscopy of Radiative Processes in Colloid-to-Film-Coupled Nanoantennas
  27. Coupled Plasmon Resonances and Gap Modes in Laterally Assembled Gold Nanorod Arrays
  28. Anisotropy of Structure and Optical Properties of Self-Assembled and Oriented Colloidal CdSe Nanoplatelets
  29. Simple Electroless Synthesis of Cobalt Nanoparticle Chains, Oriented by Externally Applied Magnetic Fields
  30. Functionalization of Graphene Aerogels and their Applications in Energy Storage and Conversion
  31. Macroscopic Aerogels with Retained Nanoscopic Plasmonic Properties
  32. Application of Aqueous-Based Covalent Crosslinking Strategies to the Formation of Metal Chalcogenide Gels and Aerogels
  33. Cellulose-Based Hydrogels with Controllable Electrical and Mechanical Properties
  34. Naphthalenetetracarboxylic Diimide Derivatives: Molecular Structure, Thin Film Properties and Solar Cell Applications
  35. Metal-Phenolic Encapsulated Mesoporous Silica Nanoparticles for pH-Responsive Drug Delivery and Magnetic Resonance Imaging
  36. Extraction of K2CO3 from Low Concentration [K+] Solutions with the Aid of CO2: A Study on the Metastable Phase Equilibrium of K2CO3-Na2CO3-H2O Ternary System
Heruntergeladen am 6.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2018-1134/html
Button zum nach oben scrollen