Startseite Cellulose-Based Hydrogels with Controllable Electrical and Mechanical Properties
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Cellulose-Based Hydrogels with Controllable Electrical and Mechanical Properties

  • Enwei Zhang , Jing Yang EMAIL logo und Wei Liu EMAIL logo
Veröffentlicht/Copyright: 30. März 2018

Abstract

Electrically conductive cellulose-based hydrogels are prepared by a facile and environmentally friendly method, of which the electrical and mechanical properties can be easily controlled by varying the graphene loading. With an ultralow initial addition of graphene oxide (GO, 0.2 wt% versus the mass of cellulose), the resulting cellulose/reduced graphene oxide (CG0.2) hydrogel shows a significantly enhanced compressive modulus of 332.01 kPa, 54.8% higher than that of pure cellulose hydrogel. Further increasing the addition of GO to 2 wt% (versus the mass of cellulose), the electrical conductivity of the resultant CG2.0 hydrogel is as high as 7.3×10−3 S/m, 10,000-fold higher than that of pure cellulose hydrogel, and of which the mechanical properties are also enhanced. These cellulose-based hydrogels with controllable electrical and mechanical properties have a great potential for application in drug delivery and artificial muscle.


Dedicated to: Alexander Eychmüller on the occasion of his 60th birthday.


References

1. K. Y. Lee, M. C. Peters, D. J. Mooney, Adv. Mater. 13 (2001) 837.10.1002/1521-4095(200106)13:11<837::AID-ADMA837>3.0.CO;2-DSuche in Google Scholar

2. M. Sauer, D. Streich, W. Meier, Adv. Mater. 13 (2001) 1649.10.1002/1521-4095(200111)13:21<1649::AID-ADMA1649>3.0.CO;2-ESuche in Google Scholar

3. Y. Tian, X. Wei, Z. J. Wang, P. Pan, F. Li, D. Ling, Z. L. Wu, Q. Zheng, ACS Appl. Mater. Interfaces 9 (2017) 34349.10.1021/acsami.7b10652Suche in Google Scholar

4. D. P. Browe, C. Wood, M. T. Sze, K. A. White, T. Scott, R. M. Olabisi, J. W. Freeman, Polymer 117 (2017) 331.10.1016/j.polymer.2017.04.044Suche in Google Scholar

5. Q. Zhang, B. Chen, L. Tao, M. Yan, L. Chen, Y. Wei, RSC Adv. 4 (2014) 32475.10.1039/C4RA04243CSuche in Google Scholar

6. H. M. N. Iqbal, A. M. Villalba-R, K. Dhama, Int. J. Pharmacol. 13 (2017) 864.10.3923/ijp.2017.864.873Suche in Google Scholar

7. I. Siró, D. Plackett, Cellulose 17 (2010) 459.10.1007/s10570-010-9405-ySuche in Google Scholar

8. S. K. Siddhanta, R. Gangopadhyay, Polymer 46 (2005) 2993.10.1016/j.polymer.2005.01.084Suche in Google Scholar

9. L. M. Lira, S. I. C. D. Torresi, Electrochem. Commun. 7 (2005) 717.10.1016/j.elecom.2005.04.027Suche in Google Scholar

10. X. Liang, B. Qu, J. Li, H. Xiao, B. He, L. Qian, React. Funct. Polym. 86 (2015) 1.10.1016/j.reactfunctpolym.2014.11.002Suche in Google Scholar

11. D. Xu, L. Fan, L. Gao, Y. Xiong, Y. Wang, Q. Ye, A. Yu, H. Dai, Y. Yin, J. Cai, L. Zhang, ACS Appl. Mater. Interfaces 8 (2016) 17090.10.1021/acsami.6b03555Suche in Google Scholar PubMed

12. L. Fang, L. Zhao, X. Liang, H. Xiao, L. Qian, J. Appl. Polym. Sci. 133 (2016) 43759.10.1002/app.43759Suche in Google Scholar

13. Z. Zhou, Y. Yang, Y. Han, Q. Guo, X. Zhang, C. Lu, Carbohyd. Polym. 177 (2017) 241.10.1016/j.carbpol.2017.08.136Suche in Google Scholar PubMed

14. M. D. Stoller, S. Park, Y. Zhu, J. An, R. S. Ruoff, Nano Lett. 8 (2008) 3498.10.1021/nl802558ySuche in Google Scholar PubMed

15. X. Wang, A. Linjie Zhi, K. Müllen, Nano Lett. 8 (2008) 323.10.1021/nl072838rSuche in Google Scholar PubMed

16. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C. N. Lau, Nano Lett. 8 (2008) 902.10.1021/nl0731872Suche in Google Scholar PubMed

17. C. Lee, X. Wei, J. W. Kysar, J. Hone, Science 321 (2008) 385.10.1126/science.1157996Suche in Google Scholar PubMed

18. S. Z. Zu, B. H. Han, J. Phys. Chem. C 113 (2009) 13651.10.1021/jp9035887Suche in Google Scholar

19. L. Zhang, Z. Wang, C. Xu, Y. Li, J. Gao, W. Wang, Y. Liu, J. Mater. Chem. 21 (2011) 10399.10.1039/c0jm04043fSuche in Google Scholar

20. Y. Chen, L. Chen, H. Bai, L. Li, J. Mater. Chem. A 1 (2013) 1992.10.1039/C2TA00406BSuche in Google Scholar

21. N. Annabi, S. R. Shin, A. Tamayol, M. Miscuglio, M. A. Bakooshli, A. Assmann, P. Mostafalu, J. Y. Sun, S. Mithieux, L. Cheung, X. S. Tang, A. S. Weiss, A. Khademhosseini, Adv. Mater. 28 (2016) 40.10.1002/adma.201503255Suche in Google Scholar PubMed PubMed Central

22. W. Ouyang, J. Sun, J. Memon, C. Wang, J. Geng, Y. Huang, Carbon 62 (2013) 501.10.1016/j.carbon.2013.06.049Suche in Google Scholar

23. J. Cai, S. Kimura, M. Wada, S. Kuga, L. Zhang, ChemSusChem 1 (2008) 149.10.1002/cssc.200700039Suche in Google Scholar PubMed

24. D. Bondeson, A. Mathew, K. Oksman, Cellulose 13 (2006) 171.10.1007/s10570-006-9061-4Suche in Google Scholar

25. F. Tuinstra, J. L. Koenig, J. Chem. Phys. 53 (2003) 1126.10.1063/1.1674108Suche in Google Scholar

26. A. C. Ferrari, J. Robertson, Phys. Rev. B 61 (2000) 14095.10.1103/PhysRevB.61.14095Suche in Google Scholar

27. K. N. Kudin, B. Ozbas, H. C. Schniepp, R. K. Prud’Homme, I. A. Aksay, R. Car, Nano Lett. 8 (2008) 36.10.1021/nl071822ySuche in Google Scholar PubMed

28. X. Mei, J. Ouyang, Carbon 49 (2011) 5389.10.1016/j.carbon.2011.08.019Suche in Google Scholar

29. S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. B. T. Nguyen, R. S. Ruoff, Carbon 45 (2007) 1558.10.1016/j.carbon.2007.02.034Suche in Google Scholar

Received: 2018-01-31
Accepted: 2018-03-01
Published Online: 2018-03-30
Published in Print: 2018-08-28

©2018 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Preface
  3. Congratulations to Alexander Eychmüller
  4. Halogens in the Synthesis of Colloidal Semiconductor Nanocrystals
  5. Controlled Aqueous Synthesis of CdSe Quantum Dots using Double-Hydrophilic Block Copolymers as Stabilizers
  6. Fabrication of Ag2S/CdS Heterostructured Nanosheets via Self-Limited Cation Exchange
  7. Ion-Selective Ligands: How Colloidal Nano- and Micro-Particles Can Introduce New Functionalities
  8. TEM, FTIR and Electrochemistry Study: Desorption of PVP from Pt Nanocubes
  9. Incorporation of CdTe Nanocrystals into Metal Oxide Matrices Towards Inorganic Nanocomposite Materials
  10. Diatoms – A “Green” Way to Biosynthesize Gold-Silica Nanocomposites?
  11. Evidence for Photo-Switchable Carrier Mobilities in Blends of PbS Nanocrystals and Photochromic Dithienylcyclopentene Derivatives
  12. Gelation-Assisted Layer-by-Layer Deposition of High Performance Nanocomposites
  13. Enhancement of the Fluorescence Quantum Yield of Thiol-Stabilized CdTe Quantum Dots Through Surface Passivation with Sodium Chloride and Bicarbonate
  14. Fluorescence Quenching of CdTe Quantum Dots with Co (III) Complexes via Electrostatic Assembly Formation
  15. Colloidal Photoluminescent Refractive Index Nanosensor Using Plasmonic Effects
  16. Towards Low-Toxic Colloidal Quantum Dots
  17. Color-Enrichment Semiconductor Nanocrystals for Biorhythm-Friendly Backlighting
  18. Transient Absorption Studies on Nanostructured Materials and Composites: Towards the Development of New Photocatalytic Systems
  19. Transient Spectroscopy of Glass-Embedded Perovskite Quantum Dots: Novel Structures in an Old Wrapping
  20. Energy Transfer Between Single Semiconductor Quantum Dots and Organic Dye Molecules
  21. Chemical Routes to Surface Enhanced Infrared Absorption (SEIRA) Substrates
  22. Plasmonic Cu/CuCl/Cu2S/Ag and Cu/CuCl/Cu2S/Au Supports with Peroxidase-Like Activity: Insights from Surface Enhanced Raman Spectroscopy
  23. n-Type Cu2O/α-Fe2O3 Heterojunctions by Electrochemical Deposition: Tuning of Cu2O Thickness for Maximum Photoelectrochemical Performance
  24. The Photoelectrochemistry of Assemblies of Semiconductor Nanoparticles at Interfaces
  25. Surface-Charge Dependent Orientation of Water at the Interface of a Gold Electrode: A Cluster Study
  26. Single Particle Spectroscopy of Radiative Processes in Colloid-to-Film-Coupled Nanoantennas
  27. Coupled Plasmon Resonances and Gap Modes in Laterally Assembled Gold Nanorod Arrays
  28. Anisotropy of Structure and Optical Properties of Self-Assembled and Oriented Colloidal CdSe Nanoplatelets
  29. Simple Electroless Synthesis of Cobalt Nanoparticle Chains, Oriented by Externally Applied Magnetic Fields
  30. Functionalization of Graphene Aerogels and their Applications in Energy Storage and Conversion
  31. Macroscopic Aerogels with Retained Nanoscopic Plasmonic Properties
  32. Application of Aqueous-Based Covalent Crosslinking Strategies to the Formation of Metal Chalcogenide Gels and Aerogels
  33. Cellulose-Based Hydrogels with Controllable Electrical and Mechanical Properties
  34. Naphthalenetetracarboxylic Diimide Derivatives: Molecular Structure, Thin Film Properties and Solar Cell Applications
  35. Metal-Phenolic Encapsulated Mesoporous Silica Nanoparticles for pH-Responsive Drug Delivery and Magnetic Resonance Imaging
  36. Extraction of K2CO3 from Low Concentration [K+] Solutions with the Aid of CO2: A Study on the Metastable Phase Equilibrium of K2CO3-Na2CO3-H2O Ternary System
Heruntergeladen am 6.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2018-1133/html
Button zum nach oben scrollen