Startseite Enhancement of the Fluorescence Quantum Yield of Thiol-Stabilized CdTe Quantum Dots Through Surface Passivation with Sodium Chloride and Bicarbonate
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Enhancement of the Fluorescence Quantum Yield of Thiol-Stabilized CdTe Quantum Dots Through Surface Passivation with Sodium Chloride and Bicarbonate

  • Tetiana Dudka , Stephen V. Kershaw , Shumin Lin , Julian Schneider und Andrey L. Rogach EMAIL logo
Veröffentlicht/Copyright: 24. Februar 2018

Abstract

Colloidal quantum dots (QDs) have potential for several applications, e.g. as novel light sources; as photoluminescent probes; and for solar energy conversion devices, but their sensitivity towards their environmental surroundings, and the presence of surface defects may still degrade their emission properties. Herein, we present a post-synthetic treatment of CdTe QDs stabilized by mixed thiol ligands using chloride and bicarbonate ions to achieve near-complete surface passivation, resulting in a two-fold increase of the photoluminescence quantum yield (PL QY) and significant suppression of non-radiative recombination. Time-resolved PL measurements reveal fluorescence lifetime and PL QY trends did not both track identically; in the most favorable cases a suppression of non-radiative recombination and a slight increase in the radiative recombination rates after the salt treatment took place. The optimized conditions demonstrated here are proven to work for different sizes of CdTe QDs, and also show a dependence on the composition of the mixed ligand systems used.

Acknowledgements

This work was supported by the Research Grants Council of Hong Kong S.A.R. through the General Research Funds (project CityU 11302114). The authors appreciate numerous discussions and insights into the chemistry and photophysics of CdTe quantum dots from our long term collaborator and friend, Alexander Eychmüller, TU Dresden. Happy 60th anniversary, Alex!

References

1. J. Feng, H. Dong, L. Yu, L. Dong, J. Mater. Chem. C 5 (2017) 5984.10.1039/C7TC00631DSuche in Google Scholar

2. D. U. Lee, D. Y. Yun, T. W. Kim, S.-H. Park, D. Choi, S. W. Kim, K.-H. Yoo, H. S. Lee, Y. H. Kwon, T. W. Kang, Appl. Phys. Exp. 8 (2015) 061201.10.7567/APEX.8.061201Suche in Google Scholar

3. A. I. Ekimov, F. Hache, M. C. Schanne-Klein, D. Ricard, C. Flytzanis, I. A. Kudryavtsev, T. V. Yazeva, A. V. Rodina, A. L. Efros, J. Opt. Soc. Am. B 10 (1993) 100.10.1364/JOSAB.10.000100Suche in Google Scholar

4. R. Osovsky, V. Kloper, J. Kolny-Olesiak, A. Sashchiuk, E. Lifshitz, J. Phys. Chem. C 111 (2007) 10841.10.1021/jp071979eSuche in Google Scholar

5. L. E. Brus, J. Chem. Phys. 80 (1984) 4403.10.1063/1.447218Suche in Google Scholar

6. S. Coe, W.-K. Woo, M. Bawendi, V. Bulović, Nature 420 (2002) 800.10.1038/nature01217Suche in Google Scholar PubMed

7. L. Kim, P. O. Anikeeva, S. A. Coe-Sullivan, J. S. Steckel, M. G. Bawendi, V. Bulović, Nano Lett. 8 (2008) 4513.10.1021/nl8025218Suche in Google Scholar PubMed

8. P. O. Anikeeva, J. E. Halpert, M. G. Bawendi, V. Bulović, Nano Lett. 9 (2009) 2532.10.1021/nl9002969Suche in Google Scholar PubMed

9. M. J. Ruedas-Rama, A. Orte, E. A. H. Hall, J. M. Alvarez-Pez, E. M. Talavera, Chem. Commun. 47 (2011) 2898.10.1039/c0cc05252cSuche in Google Scholar PubMed

10. C. Yufang, C. Zhang, H. Yejuan, L. Hailan, S. Pengtao, L. Chengbin, L. Shenglian, C. Qingyun, Nanotechnology 21 (2010) 125502.10.1088/0957-4484/21/12/125502Suche in Google Scholar PubMed

11. S. Xu, H. Lu, J. Li, X. Song, A. Wang, L. Chen, S. Han, ACS Appl. Mater. Interfaces 5 (2013) 8146.10.1021/am4022076Suche in Google Scholar PubMed

12. L. Wu, Z.-Z. Lin, H.-P. Zhong, A.-H. Peng, X.-M. Chen, Z.-Y. Huang, Food Chem. 229 (2017) 847.10.1016/j.foodchem.2017.02.144Suche in Google Scholar PubMed

13. B. The Huy, M.-H. Seo, X. Zhang, Y.-I. Lee, Biosens. Bioelectron. 57 (2014) 310.10.1016/j.bios.2014.02.041Suche in Google Scholar PubMed

14. V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, M. G. Bawendi, Science 290 (2000) 314.10.1126/science.290.5490.314Suche in Google Scholar PubMed

15. H.-J. Eisler, V. C. Sundar, M. G. Bawendi, M. Walsh, H. I. Smith, V. Klimov, Appl. Phys. Lett. 80 (2002) 4614.10.1063/1.1485125Suche in Google Scholar

16. W. C. W. Chan, S. Nie, Science 281 (1998) 2016.10.1126/science.281.5385.2016Suche in Google Scholar PubMed

17. S. H. Bhang, N. Won, T.-J. Lee, H. Jin, J. Nam, J. Park, H. Chung, H.-S. Park, Y.-E. Sung, S. K. Hahn, B.-S. Kim, S. Kim, ACS Nano 3 (2009) 1389.10.1021/nn900138dSuche in Google Scholar PubMed

18. X. Li, X. Yang, L. Yuwen, W. Yang, L. Weng, Z. Teng, L. Wang, Biomaterials 96 (2016) 24.10.1016/j.biomaterials.2016.04.014Suche in Google Scholar PubMed

19. R. C. Patra, A. K. Rautray, D. Swarup, Vet. Med. Int. 2011 (2011) 457327.10.4061/2011/457327Suche in Google Scholar PubMed PubMed Central

20. H. Kimura, T. Sawada, S. Oshima, K. Kozawa, T. Ishioka, M. Kato, Curr. Drug. Targets Inflamm. Allergy. 4 (2005) 489.10.2174/1568010054526287Suche in Google Scholar PubMed

21. J. Godt, F. Scheidig, C. Grosse-Siestrup, V. Esche, P. Brandenburg, A. Reich, D. A. Groneberg, J. Occup. Med. Toxicol. 1 (2006) 22.10.1186/1745-6673-1-22Suche in Google Scholar PubMed PubMed Central

22. J. Pan, S.-S. Feng, Biomaterials 30 (2009) 1176.10.1016/j.biomaterials.2008.10.039Suche in Google Scholar PubMed

23. J. Kim, B. T. Huy, K. Sakthivel, H. J. Choi, W. H. Joo, S. K. Shin, M. J. Lee, Y.-I. Lee, Sens. Biosen. Res. 3 (2015) 46.10.1016/j.sbsr.2014.12.001Suche in Google Scholar

24. S. Xiaofang, Micro Nano Lett. 7 (2012) 137.10.1049/mnl.2011.0551Suche in Google Scholar

25. S. Kalytchuk, O. Zhovtiuk, A. L. Rogach, Appl. Phys. Lett. 103 (2013) 103105.10.1063/1.4820406Suche in Google Scholar

26. H. Rao, W. Liu, Z. Lu, Y. Wang, H. Ge, P. Zou, X. Wang, H. He, X. Zeng, Y. Wang, Microchim. Acta 183 (2016) 581.10.1007/s00604-015-1682-6Suche in Google Scholar

27. S. Ebrahim, M. Reda, A. Hussien, D. Zayed, Spectrochim. Acta A 150 (2015) 212.10.1016/j.saa.2015.05.042Suche in Google Scholar PubMed

28. H. G. B. Carvalho, A. G. Brasil, P. E. C. Filho, D. P. L. A. Tenorio, A. C. A. de Siqueira, E. S. Leite, A. Fontes, B. S. Santos, J. Nanosci. Nanotechnol. 14 (2014) 3320.10.1166/jnn.2014.8721Suche in Google Scholar PubMed

29. A. L. Rogach, T. Franzl, T. A. Klar, J. Feldmann, N. Gaponik, V. Lesnyak, A. Shavel, A. Eychmüller, Y. P. Rakovich, J. F. Donegan, J. Phys. Chem. C 111 (2007) 14628.10.1021/jp072463ySuche in Google Scholar

30. D. Espinobarro-Velazquez, M. A. Leontiadou, R. C. Page, M. Califano, P. O’Brien, D. J. Binks, ChemPhysChem 16 (2015) 1239.10.1002/cphc.201402753Suche in Google Scholar PubMed PubMed Central

31. K. Katsiev, A. H. Ip, A. Fischer, I. Tanabe, X. Zhang, A. R. Kirmani, O. Voznyy, L. R. Rollny, K. W. Chou, S. M. Thon, G. H. Carey, X. Cui, A. Amassian, P. Dowben, E. H. Sargent, O. M. Bakr, Adv. Mater. 26 (2014) 937.10.1002/adma.201304166Suche in Google Scholar PubMed

32. D. Zhitomirsky, O. Voznyy, S. Hoogland, E. H. Sargent, ACS Nano 7 (2013) 5282.10.1021/nn402197aSuche in Google Scholar PubMed

33. P. V. Kamat, J. Phys. Chem. Lett. 4 (2013) 908.10.1021/jz400052eSuche in Google Scholar PubMed

34. A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey, A. Fischer, K. W. Kemp, I. J. Kramer, Z. Ning, A. J. Labelle, K. W. Chou, A. Amassian, E. H. Sargent, Nat. Nanotechnol. 7 (2012) 577.10.1038/nnano.2012.127Suche in Google Scholar PubMed

35. D. A. Hines, P. V. Kamat, J. Phys. Chem. C 117 (2013) 14418.10.1021/jp404031sSuche in Google Scholar

36. R. Cohen, L. Kronik, A. Shanzer, D. Cahen, A. Liu, Y. Rosenwaks, J. K. Lorenz, A. B. Ellis, J. Am. Chem. Soc. 121 (1999) 10545.10.1021/ja9906150Suche in Google Scholar

37. W. K. Bae, J. Joo, L. A. Padilha, J. Won, D. C. Lee, Q. Lin, W.-k. Koh, H. Luo, V. I. Klimov, J. M. Pietryga, J. Am. Chem. Soc. 134 (2012) 20160.10.1021/ja309783vSuche in Google Scholar PubMed

38. L. Jing, S. V. Kershaw, T. Kipp, S. Kalytchuk, K. Ding, J. Zeng, M. Jiao, X. Sun, A. Mews, A. L. Rogach, M. Gao, J. Am. Chem. Soc. 137 (2015) 2073.10.1021/ja5127352Suche in Google Scholar PubMed

39. Y.-H. Li, X. G. Gong, S.-H. Wei, Phys. Rev. B 73 (2006) 245206.10.1103/PhysRevB.73.245206Suche in Google Scholar

40. A. Saha, K. V. Chellappan, K. S. Narayan, J. Ghatak, R. Datta, R. Viswanatha, J. Phys. Chem. Lett. 4 (2013) 3544.10.1021/jz401958uSuche in Google Scholar

41. C.-H. M. Chuang, P. R. Brown, V. Bulović, M. G. Bawendi, Nat. Mater. 13 (2014) 796.10.1038/nmat3984Suche in Google Scholar PubMed PubMed Central

42. R. C. Page, D. Espinobarro-Velazquez, M. A. Leontiadou, C. Smith, E. A. Lewis, S. J. Haigh, C. Li, H. Radtke, A. Pengpad, F. Bondino, E. Magnano, I. Pis, W. R. Flavell, P. O’Brien, D. J. Binks, Small 11 (2015) 1548.10.1002/smll.201402264Suche in Google Scholar PubMed PubMed Central

43. M. Müller, M. Kaiser, G. M. Stachowski, U. Resch-Genger, N. Gaponik, A. Eychmüller, Chem. Mater. 26 (2014) 3231.10.1021/cm5009043Suche in Google Scholar

44. J. Tan, Y. Liang, J. Wang, J. Chen, B. Sun, L. Shao, New J. Chem. 39 (2015) 4488.10.1039/C5NJ00075KSuche in Google Scholar

45. Y. Wang, R. Hu, G. Lin, W.-C. Law, K.-T. Yong, RSC Adv. 3 (2013) 8899.10.1039/c3ra41056kSuche in Google Scholar

46. N. Gaponik, D. V. Talapin, A. L. Rogach, K. Hoppe, E. V. Shevchenko, A. Kornowski, A. Eychmüller, H. Weller, J. Phys. Chem. B 106 (2002) 7177.10.1021/jp025541kSuche in Google Scholar

47. M. Grabolle, M. Spieles, V. Lesnyak, N. Gaponik, A. Eychmüller, U. Resch-Genger, Anal. Chem. 81 (2009) 6285.10.1021/ac900308vSuche in Google Scholar

48. D. L. Ferreira, F. O. Silva, L. C. S. Viol, M. A. Schiavon, P. Licinio, M. Valadares, L. A. Cury, J. L. A. Alves, AIP Conf. Proc. 1199 (2010) 309.Suche in Google Scholar

49. A. Moulick, V. Milosavljevic, J. Vlachova, R. Podgajny, D. Hynek, P. Kopel, V. Adam, Int. J. Nanomed. 2017 (2017) 1277.10.2147/IJN.S121840Suche in Google Scholar PubMed PubMed Central

50. V. A. Hackley, J. D. Clogston, Measuring the Size of Nanoparticles in Aqueous Media Using Batch Mode Dynamic Light Scattering, NIST: National Institute of Standards and Technology, USA (2015), P. 1.10.6028/NIST.SP.1200-6Suche in Google Scholar

51. Q. Wen, S. V. Kershaw, S. Kalytchuk, O. Zhovtiuk, C. Reckmeier, M. I. Vasilevskiy, A. L. Rogach, ACS Nano 10 (2016) 4301.10.1021/acsnano.5b07852Suche in Google Scholar PubMed

52. B. Omogo, J. F. Aldana, C. D. Heyes, J. Phys. Chem. C Nanomater Interfaces 117 (2013) 2317.10.1021/jp309368qSuche in Google Scholar PubMed PubMed Central

53. S. V. Kershaw, N. M. Abdelazim, Y. Zhao, A. S. Susha, O. Zhovtiuk, W. Y. Teoh, A. L. Rogach, Chem. Mater. 29 (2017) 2756.10.1021/acs.chemmater.6b04544Suche in Google Scholar

54. M. Califano, ACS Nano 9 (2015) 2960.10.1021/nn5070327Suche in Google Scholar PubMed

55. M. S. de la Fuente, R. S. Sánchez, V. González-Pedro, P. P. Boix, S. G. Mhaisalkar, M. E. Rincón, J. Bisquert, I. Mora-Seró, J. Phys. Chem. Lett. 4 (2013) 1519.10.1021/jz400626rSuche in Google Scholar PubMed

Received: 2018-02-01
Accepted: 2018-02-07
Published Online: 2018-02-24
Published in Print: 2018-08-28

©2018 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Preface
  3. Congratulations to Alexander Eychmüller
  4. Halogens in the Synthesis of Colloidal Semiconductor Nanocrystals
  5. Controlled Aqueous Synthesis of CdSe Quantum Dots using Double-Hydrophilic Block Copolymers as Stabilizers
  6. Fabrication of Ag2S/CdS Heterostructured Nanosheets via Self-Limited Cation Exchange
  7. Ion-Selective Ligands: How Colloidal Nano- and Micro-Particles Can Introduce New Functionalities
  8. TEM, FTIR and Electrochemistry Study: Desorption of PVP from Pt Nanocubes
  9. Incorporation of CdTe Nanocrystals into Metal Oxide Matrices Towards Inorganic Nanocomposite Materials
  10. Diatoms – A “Green” Way to Biosynthesize Gold-Silica Nanocomposites?
  11. Evidence for Photo-Switchable Carrier Mobilities in Blends of PbS Nanocrystals and Photochromic Dithienylcyclopentene Derivatives
  12. Gelation-Assisted Layer-by-Layer Deposition of High Performance Nanocomposites
  13. Enhancement of the Fluorescence Quantum Yield of Thiol-Stabilized CdTe Quantum Dots Through Surface Passivation with Sodium Chloride and Bicarbonate
  14. Fluorescence Quenching of CdTe Quantum Dots with Co (III) Complexes via Electrostatic Assembly Formation
  15. Colloidal Photoluminescent Refractive Index Nanosensor Using Plasmonic Effects
  16. Towards Low-Toxic Colloidal Quantum Dots
  17. Color-Enrichment Semiconductor Nanocrystals for Biorhythm-Friendly Backlighting
  18. Transient Absorption Studies on Nanostructured Materials and Composites: Towards the Development of New Photocatalytic Systems
  19. Transient Spectroscopy of Glass-Embedded Perovskite Quantum Dots: Novel Structures in an Old Wrapping
  20. Energy Transfer Between Single Semiconductor Quantum Dots and Organic Dye Molecules
  21. Chemical Routes to Surface Enhanced Infrared Absorption (SEIRA) Substrates
  22. Plasmonic Cu/CuCl/Cu2S/Ag and Cu/CuCl/Cu2S/Au Supports with Peroxidase-Like Activity: Insights from Surface Enhanced Raman Spectroscopy
  23. n-Type Cu2O/α-Fe2O3 Heterojunctions by Electrochemical Deposition: Tuning of Cu2O Thickness for Maximum Photoelectrochemical Performance
  24. The Photoelectrochemistry of Assemblies of Semiconductor Nanoparticles at Interfaces
  25. Surface-Charge Dependent Orientation of Water at the Interface of a Gold Electrode: A Cluster Study
  26. Single Particle Spectroscopy of Radiative Processes in Colloid-to-Film-Coupled Nanoantennas
  27. Coupled Plasmon Resonances and Gap Modes in Laterally Assembled Gold Nanorod Arrays
  28. Anisotropy of Structure and Optical Properties of Self-Assembled and Oriented Colloidal CdSe Nanoplatelets
  29. Simple Electroless Synthesis of Cobalt Nanoparticle Chains, Oriented by Externally Applied Magnetic Fields
  30. Functionalization of Graphene Aerogels and their Applications in Energy Storage and Conversion
  31. Macroscopic Aerogels with Retained Nanoscopic Plasmonic Properties
  32. Application of Aqueous-Based Covalent Crosslinking Strategies to the Formation of Metal Chalcogenide Gels and Aerogels
  33. Cellulose-Based Hydrogels with Controllable Electrical and Mechanical Properties
  34. Naphthalenetetracarboxylic Diimide Derivatives: Molecular Structure, Thin Film Properties and Solar Cell Applications
  35. Metal-Phenolic Encapsulated Mesoporous Silica Nanoparticles for pH-Responsive Drug Delivery and Magnetic Resonance Imaging
  36. Extraction of K2CO3 from Low Concentration [K+] Solutions with the Aid of CO2: A Study on the Metastable Phase Equilibrium of K2CO3-Na2CO3-H2O Ternary System
Heruntergeladen am 6.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2018-1130/html
Button zum nach oben scrollen