Startseite Colloidal Photoluminescent Refractive Index Nanosensor Using Plasmonic Effects
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Colloidal Photoluminescent Refractive Index Nanosensor Using Plasmonic Effects

  • Dmitry V. Guzatov , Sergey V. Gaponenko EMAIL logo und Hilmi V. Demir
Veröffentlicht/Copyright: 14. März 2018

Abstract

Fluorescence enhancement by metal nanostructures which is sensitive to refractive index n of an ambient medium is suggested as an operation principle of a novel refractive index sensor for liquids. Calculations are made for spherical and spheroidal Ag particles, and potential feasibility of sensitivity of the order of Δn=10−4 is demonstrated. Sensors of this type can be made fully colloidal with metal bodies deposited on a substrate or comprising a metal layer covering colloidal assembly of dielectric particles to serve as a test strip as well as placed on a fiber tip end to get local probing of refractive index in the tip-enhanced refractometry mode. Colloidal core-shell semiconductor nanocrystals may become the best candidates for this type of sensors whereas molecular probes may be affected by chemical properties of tested liquids.

Acknowledgement

The work has been supported by BRFFR-TUBITAK #F16T/A-010 and TUBITAK no.115E679, and in part bySingapore National Research Foundation under NRF-NRFI2016-08.

References

1. D. Markov, D. Begari, D. J. Bornhop, Anal. Chem. 4 (2002) 5438.10.1021/ac020403cSuche in Google Scholar

2. S. V. Gaponenko, Introduction to Nanophotonics, Cambridge University Press, Cambridge UK (2010).10.1017/CBO9780511750502Suche in Google Scholar

3. N. Jiang, X. Zhuo, J. Wang, Chem. Rev. (2017). DOI: 10.1021/acs.chemrev.7b0025210.1021/acs.chemrev.7b00252Suche in Google Scholar PubMed

4. K. M. Mayer, J. Y. Hafner, Chem. Rev. 111 (2011) 3828.10.1021/cr100313vSuche in Google Scholar

5. K. A. Willets, R. P. Van Duyne, Annu. Rev. Phys. Chem. 58 (2007) 267.10.1146/annurev.physchem.58.032806.104607Suche in Google Scholar

6. Y. Sun, Y. Xia, Anal. Chem. 74 (2002) 5297.10.1021/ac0258352Suche in Google Scholar

7. F. Tam, C. Moran, N. Halas, J. Phys. Chem. B 108 (2004) 17290.10.1021/jp048499xSuche in Google Scholar

8. M. M. Miller, A. A. Lazarides, J. Phys. Chem. B 109 (2005) 21556.10.1021/jp054227ySuche in Google Scholar

9. H. Liao, C. L. Nehl, J. H. Hafner, Nanomedicine 1 (2006) 201.10.2217/17435889.1.2.201Suche in Google Scholar

10. J. Zhu, F. Zhang, J. Li, J. Zhao, Sens. Actuators, B: Chem. 183 (2013) 143.10.1016/j.snb.2013.04.042Suche in Google Scholar

11. P. K. Jain, M. A. El-Sayed, J. Phys. Chem. C 111 (2007) 17451.10.1021/jp0773177Suche in Google Scholar

12. H. Chen, X. S. Kou, Z. Yang, W. H. Ni, J. F. Wang, Langmuir 24 (2008) 5233.10.1021/la800305jSuche in Google Scholar

13. C. D. Geddes (Ed.), Metal-Enhanced Fluorescence, John Wiley & Sons, Hoboken, New Jersey (2010).10.1002/9780470642795Suche in Google Scholar

14. D. V. Guzatov, S. V. Vaschenko, V. V. Stankevich, A. Ya. Lunevich, Y. F. Glukhov, S. V. Gaponenko, J. Phys. Chem. C 116 (2012) 10723.10.1021/jp301598wSuche in Google Scholar

15. Y. Chen, K. Munechika, D. S. Ginger, Nano Lett. 7 (2007) 690.10.1021/nl062795zSuche in Google Scholar

16. D. V. Guzatov, S. V. Gaponenko, H. V. Demir, AIP Adv. 8, (2018) 015324.10.1063/1.5019778Suche in Google Scholar

17. H. Chen, L. Shao, Q. Li, J. Wang, Chem. Soc. Rev. 42 (2013) 2679.10.1039/C2CS35367ASuche in Google Scholar

18. S. Gaponenko, H. V. Demir, C. Seassal, U. Woggon, Opt. Express 24 (2016) A430.10.1364/OE.24.00A430Suche in Google Scholar

19. A. Eychmüller, J. Phys. Chem. B 104 (2000) 6514.10.1021/jp9943676Suche in Google Scholar

20. A. Eychmüller, A. L. Rogach, Pure Appl. Chem. 72 (2000) 179.10.1351/pac200072010179Suche in Google Scholar

21. N. Gaponik, S. G. Hickey, D. Dorfs, A. L. Rogach, A. Eychmüller, Small 6 (2010) 1364.10.1002/smll.200902006Suche in Google Scholar

22. J. T. Van Wijngaarden, M. M. Van Schooneveld, C. de Mello Donegá, A. Meijerink, Europhys. Lett. 93 (2011) 57005.10.1209/0295-5075/93/57005Suche in Google Scholar

23. M. V. Artemyev, L. I. Gurinovich, A. P. Stupak, S. V. Gaponenko, Phys. Stat. Sol. (b) 224 (2001) 191.10.1002/1521-3951(200103)224:1<191::AID-PSSB191>3.0.CO;2-WSuche in Google Scholar

24. S. V. Gaponenko, A. A. Gaiduk, O. S. Kulakovich, S. A. Maskevich, N. D. Strekal, O. A. Prokhorov, V. M. Shelekhina, J. Exper. Theor. Phys. Lett. 74 (2001) 309.10.1134/1.1421446Suche in Google Scholar

25. C. Zhu, D. Du, A. Eychmüller, Y. Lin, Chem. Rev. 115 (2015) 8896.10.1021/acs.chemrev.5b00255Suche in Google Scholar

26. L. Lu, I. Randjelovic, R. Capek, N. Gaponik, J. Yang, H. Zhang, A. Eychmüller, Chem. Mater. 17 (2005) 5731.10.1021/cm051473dSuche in Google Scholar

27. V. Lesnyak, A. Wolf, A. Dubavik, L. Borchardt, S. V. Voitekhovich, N. Gaponik, S. Kaskel, A. Eychmüller, J. Amer. Chem. Soc. 133 (2011) 13413.10.1021/ja202068sSuche in Google Scholar

28. S. V. Vaschenko, A. A. Ramanenka, D. V. Guzatov, V. V. Stankevich, A. Y. Lunevich, Y. F. Glukhov, I. F. Sveklo, S. V. Gaponenko, J. Nanophotonics 6 (2012) 061710.10.1117/1.JNP.6.061710Suche in Google Scholar

Received: 2018-01-28
Accepted: 2018-02-23
Published Online: 2018-03-14
Published in Print: 2018-08-28

©2018 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Preface
  3. Congratulations to Alexander Eychmüller
  4. Halogens in the Synthesis of Colloidal Semiconductor Nanocrystals
  5. Controlled Aqueous Synthesis of CdSe Quantum Dots using Double-Hydrophilic Block Copolymers as Stabilizers
  6. Fabrication of Ag2S/CdS Heterostructured Nanosheets via Self-Limited Cation Exchange
  7. Ion-Selective Ligands: How Colloidal Nano- and Micro-Particles Can Introduce New Functionalities
  8. TEM, FTIR and Electrochemistry Study: Desorption of PVP from Pt Nanocubes
  9. Incorporation of CdTe Nanocrystals into Metal Oxide Matrices Towards Inorganic Nanocomposite Materials
  10. Diatoms – A “Green” Way to Biosynthesize Gold-Silica Nanocomposites?
  11. Evidence for Photo-Switchable Carrier Mobilities in Blends of PbS Nanocrystals and Photochromic Dithienylcyclopentene Derivatives
  12. Gelation-Assisted Layer-by-Layer Deposition of High Performance Nanocomposites
  13. Enhancement of the Fluorescence Quantum Yield of Thiol-Stabilized CdTe Quantum Dots Through Surface Passivation with Sodium Chloride and Bicarbonate
  14. Fluorescence Quenching of CdTe Quantum Dots with Co (III) Complexes via Electrostatic Assembly Formation
  15. Colloidal Photoluminescent Refractive Index Nanosensor Using Plasmonic Effects
  16. Towards Low-Toxic Colloidal Quantum Dots
  17. Color-Enrichment Semiconductor Nanocrystals for Biorhythm-Friendly Backlighting
  18. Transient Absorption Studies on Nanostructured Materials and Composites: Towards the Development of New Photocatalytic Systems
  19. Transient Spectroscopy of Glass-Embedded Perovskite Quantum Dots: Novel Structures in an Old Wrapping
  20. Energy Transfer Between Single Semiconductor Quantum Dots and Organic Dye Molecules
  21. Chemical Routes to Surface Enhanced Infrared Absorption (SEIRA) Substrates
  22. Plasmonic Cu/CuCl/Cu2S/Ag and Cu/CuCl/Cu2S/Au Supports with Peroxidase-Like Activity: Insights from Surface Enhanced Raman Spectroscopy
  23. n-Type Cu2O/α-Fe2O3 Heterojunctions by Electrochemical Deposition: Tuning of Cu2O Thickness for Maximum Photoelectrochemical Performance
  24. The Photoelectrochemistry of Assemblies of Semiconductor Nanoparticles at Interfaces
  25. Surface-Charge Dependent Orientation of Water at the Interface of a Gold Electrode: A Cluster Study
  26. Single Particle Spectroscopy of Radiative Processes in Colloid-to-Film-Coupled Nanoantennas
  27. Coupled Plasmon Resonances and Gap Modes in Laterally Assembled Gold Nanorod Arrays
  28. Anisotropy of Structure and Optical Properties of Self-Assembled and Oriented Colloidal CdSe Nanoplatelets
  29. Simple Electroless Synthesis of Cobalt Nanoparticle Chains, Oriented by Externally Applied Magnetic Fields
  30. Functionalization of Graphene Aerogels and their Applications in Energy Storage and Conversion
  31. Macroscopic Aerogels with Retained Nanoscopic Plasmonic Properties
  32. Application of Aqueous-Based Covalent Crosslinking Strategies to the Formation of Metal Chalcogenide Gels and Aerogels
  33. Cellulose-Based Hydrogels with Controllable Electrical and Mechanical Properties
  34. Naphthalenetetracarboxylic Diimide Derivatives: Molecular Structure, Thin Film Properties and Solar Cell Applications
  35. Metal-Phenolic Encapsulated Mesoporous Silica Nanoparticles for pH-Responsive Drug Delivery and Magnetic Resonance Imaging
  36. Extraction of K2CO3 from Low Concentration [K+] Solutions with the Aid of CO2: A Study on the Metastable Phase Equilibrium of K2CO3-Na2CO3-H2O Ternary System
Heruntergeladen am 6.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2018-1127/html
Button zum nach oben scrollen