Abstract
Mesoporous silica MCM-41 is prepared, for which the inner surfaces are modified by 3-(aminopropyl)triethoxysilane (APTES) in a controlled manner. Nitrogen gas adsorpition yields a pore diameter of 2.2 nm for the APTES functionalized MCM-41. 2H nuclear magnetic resonance (NMR) and broadband dielectric spectroscopy (BDS) provide detailed and consistent insights into the temperature-dependent reorientation dynamics of water in this confinement. We find that a liquid water species becomes accompanied by a solid water species when cooling through ~210 K, as indicated by an onset of bimodal 2H spin-lattice relaxation. The reorientation of the liquid water species is governed by pronounced dynamical heterogeneity in the whole temperature range. Its temperature dependence shows a mild dynamic crossover when the solid water species emerges and, hence, the volume accessible to the liquid water species further shrinks. Therefore, we attribute this variation in the temperature dependence to a change from bulk-like behavior towards interface-dominated dynamics. Below this dynamic crossover, 2H line-shape and stimulted-echo studies show that water reorientation becomes anisotropic upon cooling, suggesting that these NMR approaches, but also BDS measurements do no longer probe the structural (α) relaxation, but rather a secondary (β) relaxation of water at sufficiently low temperatures. Then, another dynamic crossover at ~180 K can be rationalized in terms of a change of the temperature dependence of the β relaxation in response to a glassy freezing of the α relaxation of confined water. Comparing these results for APTES modied MCM-41 with previous findings for mesoporous silica with various pore diameters, we obtain valuable information about the dependence of water dynamics in restricted geometries on the size of the nanoscopic confinements and the properties of the inner surfaces.
Acknowledgement
Financial support of the Deutsche Forschungsgemeinschaft (DFG) in the framework of Forschergruppe FOR 1583 through grants Bu-911/18-1/2 and Vo-905/8-1/2 is gratefully acknowledged.
References
1. M. Alcoutlabi, G. B. McKenna, J. Phys.: Condens. Matter 17 (2005) R461.10.1088/0953-8984/17/15/R01Search in Google Scholar
2. R. Richert, Annu. Rev. Phys. Chem. 62 (2011) 65.10.1146/annurev-physchem-032210-103343Search in Google Scholar PubMed
3. M. Vogel, Eur. Phys. J. Special Topics 189 (2010) 47.10.1140/epjst/e2010-01309-9Search in Google Scholar
4. S. Cerveny, F. Mallamace, J. Swenson, M. Vogel, L. Xu, Chem. Rev. 116 (2016) 7608.10.1021/acs.chemrev.5b00609Search in Google Scholar PubMed
5. S. Kittaka, S. Ishimaru, M. Kuranishi, T. Matsuda, T. Yamaguchi, Phys. Chem. Chem. Phy. 8 (2006) 3223.10.1039/b518365kSearch in Google Scholar PubMed
6. S. Jähnert, F. V. Chavez, G. E. Schaumann, A. Schreiber, M. Schönhoff, G. H. Findenegg, Phys. Chem. Chem. Phys. 10 (2008) 6039.10.1039/b809438cSearch in Google Scholar PubMed
7. J. Deschamps, F. Audonnet, N. Brodie-Linder, M. Schoeffel, C. Alba-Simionesco, Phys. Chem. Chem. Phys. 12 (2010) 1440.10.1039/B920816JSearch in Google Scholar PubMed
8. P. Ball, Chem. Rev. 108 (2008) 74.10.1021/cr068037aSearch in Google Scholar PubMed
9. L. Liu, S.-H. Chen, A. Faraone, C.-W. Yen, C.-Y. Mou, Phys. Rev. Lett. 95 (2005) 117802.10.1103/PhysRevLett.95.117802Search in Google Scholar PubMed
10. P. H. Poole, F. Sciortino, U. Essmann, H. E. Stanley, Nature 360 (1992) 324.10.1038/360324a0Search in Google Scholar
11. J. Swenson, H. Jansson, R. Bergman, Phys. Rev. Lett. 96 (2006) 247802.10.1103/PhysRevLett.96.247802Search in Google Scholar PubMed
12. J. Swenson, S. Cerveny, J. Phys.: Condens. Matter 27 (2015) 033102.10.1088/0953-8984/27/3/033102Search in Google Scholar PubMed
13. M. Sattig, M. Vogel, J. Phys. Chem. Lett. 5 (2014) 174.10.1021/jz402539rSearch in Google Scholar PubMed
14. M. Sattig, S. Reutter, F. Fujara, M. Werner, G. Buntkowsky, M. Vogel, Phys. Chem. Chem. Phys. 16 (2014) 19229.10.1039/C4CP02057JSearch in Google Scholar PubMed
15. M. Rosenstihl, K. Kämpf, F. Klameth, M. Sattig, M. Vogel, J. Non-Cryst. Solids 407 (2015) 449.10.1016/j.jnoncrysol.2014.08.040Search in Google Scholar
16. J. Sjöström, J. Swenson, R. Bergman, S. Kittaka, J. Chem. Phys. 128 (2008) 154503.10.1063/1.2902283Search in Google Scholar PubMed
17. K. Schmidt-Rohr, H. W. Spiess, Multidimensional Solid-State NMR and Polymers, Academic Press, London (1994).Search in Google Scholar
18. N. Bloembergen, E. M. Purcell, R. V. Pound, Phys. Rev. 730 (1948) 679.10.1103/PhysRev.73.679Search in Google Scholar
19. P. A. Beckmann, Phys. Rep. 171 (1988) 85.10.1016/0370-1573(88)90073-7Search in Google Scholar
20. R. Böhmer, G. Diezemann, G. Hinze, E. Rössler, Prog. Nucl. Magn. Reson. Spectrosc. 39 (2001) 191.10.1016/S0079-6565(01)00036-XSearch in Google Scholar
21. G. Fleischer, F. Fujara, NMR, Basic Principles and Progress, volume 30 of NMR, Springer Berlin Heidelberg, 1 edition (1994), P. 159.10.1007/978-3-642-78483-5_4Search in Google Scholar
22. D. Demuth, M. Sattig, E. Steinücken, M. Weigler, M. Vogel, Z. Phys. Chem. 232 (2018) 1059.10.1515/zpch-2017-1027Search in Google Scholar
23. B. Grünberg, T. Emmler, E. Gedat, I. Shenderovich, G. H. Findenegg, H.-H. Limbach, G. Buntkowsky, Chem. – Eur. J. 10 (2004) 5689.10.1002/chem.200400351Search in Google Scholar PubMed
24. A. Adamczyk, Y. Xu, B. Walaszek, F. Roelofs, T. Pery, K. Pelzer, K. Philippot, B. Chaudret, H.-H. Limbach, H. Breitzke, G. Buntkowsky, Chem. Eur. J. 10 (2004) 5689.10.1002/chem.200400351Search in Google Scholar
25. M. Brodrecht, E. Klotz, C. Lederle, H. Breitzke, B. Stühn, M. Vogel, G. Buntkowsky, Z. Phys. Chem. 232 (2018) 1003.10.1515/zpch-2017-1030Search in Google Scholar
26. D. Schaefer, J. Leisen, H. W. Spiess, J. Magn. Reson. A 115 (1995) 60.10.1006/jmra.1995.1149Search in Google Scholar
27. M. Vogel, Phys. Rev. Lett. 101 (2008) 225701.10.1103/PhysRevLett.101.225701Search in Google Scholar PubMed
28. S. A. Lusceac, M. R. Vogel, C. R. Herbers, BBA-Proteins Proteom. 1804 (2010) 41.10.1016/j.bbapap.2009.06.009Search in Google Scholar PubMed
29. S. A. Lusceac, M. Vogel, J. Phys. Chem. B 114 (2010) 10209.10.1021/jp103663tSearch in Google Scholar PubMed
30. M. Sattig, K. Elamin, M. Reuhl, J. Swenson, M. Vogel, J. Phys. Chem. C 121 (2017) 6796.10.1021/acs.jpcc.7b00655Search in Google Scholar
31. W. Schnauss, F. Fujara, H. Sillescu, J. Chem Phys. 970 (1992) 1378.10.1063/1.463264Search in Google Scholar
32. S. A. Lusceac, C. Koplin, P. Medick, M. Vogel, N. Brodie-Linder, C. LeQuellec, C. Alba-Simionesco, E. A. Rössler, J. Phys. Chem. B 108 (2004) 16601.10.1021/jp040376pSearch in Google Scholar
33. K. L. Ngai, S. Capaccioli, A. Paciaroni, Chem. Phys. 424 (2013) 37.10.1016/j.chemphys.2013.05.018Search in Google Scholar
34. N. Roussenova, M. A. Alam, S. Townrow, D. Kilburn, P. E. Sokol, R. Guillet-Nicolas, F. Kleitz, New J. Phys. 16 (2014) 103030.10.1088/1367-2630/16/10/103030Search in Google Scholar
©2018 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Preface
- Editorial: Molecules in Prison
- Properties of Hydrogen-Bonded Liquids at Interfaces
- Ab-Initio Molecular Dynamics Simulations and Calculations of Spectroscopic Parameters in Hydrogen-Bonding Liquids in Confinement (Project 8)
- Liquid Water Confined in Cellulose with Variable Interfacial Hydrophilicity
- A Combined Solid-State NMR, Dielectric Spectroscopy and Calorimetric Study of Water in Lowly Hydrated MCM-41 Samples
- Triplet Solvation Dynamics of Hydrogen Bonding Liquids in Confinement
- 2H NMR Studies on Water Dynamics in Functionalized Mesoporous Silica
- 2H NMR Studies on the Dynamics of Pure and Mixed Hydrogen-Bonded Liquids in Confinement
- Water/PEG Mixtures: Phase Behavior, Dynamics and Soft Confinement
- Effects of Cosolvents and Macromolecular Crowding on the Phase Transitions and Temperature-Pressure Stability of Chiral and Racemic Poly-Lysine
- Chemically Modified Silica Materials as Model Systems for the Characterization of Water-Surface Interactions
- Nanoscale Structuring in Confined Geometries using Atomic Layer Deposition: Conformal Coating and Nanocavity Formation
- Surface Enhanced DNP Assisted Solid-State NMR of Functionalized SiO2 Coated Polycarbonate Membranes
- Molecular Dynamics Simulations of Water, Silica, and Aqueous Mixtures in Bulk and Confinement
- Monitoring the Process of Nanocavity Formation on a Monomolecular Level
- Elastin-like Peptide in Confinement: FT-IR and NMR T1 Relaxation Data
Articles in the same Issue
- Frontmatter
- Preface
- Editorial: Molecules in Prison
- Properties of Hydrogen-Bonded Liquids at Interfaces
- Ab-Initio Molecular Dynamics Simulations and Calculations of Spectroscopic Parameters in Hydrogen-Bonding Liquids in Confinement (Project 8)
- Liquid Water Confined in Cellulose with Variable Interfacial Hydrophilicity
- A Combined Solid-State NMR, Dielectric Spectroscopy and Calorimetric Study of Water in Lowly Hydrated MCM-41 Samples
- Triplet Solvation Dynamics of Hydrogen Bonding Liquids in Confinement
- 2H NMR Studies on Water Dynamics in Functionalized Mesoporous Silica
- 2H NMR Studies on the Dynamics of Pure and Mixed Hydrogen-Bonded Liquids in Confinement
- Water/PEG Mixtures: Phase Behavior, Dynamics and Soft Confinement
- Effects of Cosolvents and Macromolecular Crowding on the Phase Transitions and Temperature-Pressure Stability of Chiral and Racemic Poly-Lysine
- Chemically Modified Silica Materials as Model Systems for the Characterization of Water-Surface Interactions
- Nanoscale Structuring in Confined Geometries using Atomic Layer Deposition: Conformal Coating and Nanocavity Formation
- Surface Enhanced DNP Assisted Solid-State NMR of Functionalized SiO2 Coated Polycarbonate Membranes
- Molecular Dynamics Simulations of Water, Silica, and Aqueous Mixtures in Bulk and Confinement
- Monitoring the Process of Nanocavity Formation on a Monomolecular Level
- Elastin-like Peptide in Confinement: FT-IR and NMR T1 Relaxation Data