Home Physical Sciences 2H NMR Studies on Water Dynamics in Functionalized Mesoporous Silica
Article
Licensed
Unlicensed Requires Authentication

2H NMR Studies on Water Dynamics in Functionalized Mesoporous Silica

  • Max Weigler , Martin Brodrecht , Hergen Breitzke , Felix Dietrich , Matthias Sattig , Gerd Buntkowsky EMAIL logo and Michael Vogel EMAIL logo
Published/Copyright: January 5, 2018

Abstract

Mesoporous silica MCM-41 is prepared, for which the inner surfaces are modified by 3-(aminopropyl)triethoxysilane (APTES) in a controlled manner. Nitrogen gas adsorpition yields a pore diameter of 2.2 nm for the APTES functionalized MCM-41. 2H nuclear magnetic resonance (NMR) and broadband dielectric spectroscopy (BDS) provide detailed and consistent insights into the temperature-dependent reorientation dynamics of water in this confinement. We find that a liquid water species becomes accompanied by a solid water species when cooling through ~210 K, as indicated by an onset of bimodal 2H spin-lattice relaxation. The reorientation of the liquid water species is governed by pronounced dynamical heterogeneity in the whole temperature range. Its temperature dependence shows a mild dynamic crossover when the solid water species emerges and, hence, the volume accessible to the liquid water species further shrinks. Therefore, we attribute this variation in the temperature dependence to a change from bulk-like behavior towards interface-dominated dynamics. Below this dynamic crossover, 2H line-shape and stimulted-echo studies show that water reorientation becomes anisotropic upon cooling, suggesting that these NMR approaches, but also BDS measurements do no longer probe the structural (α) relaxation, but rather a secondary (β) relaxation of water at sufficiently low temperatures. Then, another dynamic crossover at ~180 K can be rationalized in terms of a change of the temperature dependence of the β relaxation in response to a glassy freezing of the α relaxation of confined water. Comparing these results for APTES modied MCM-41 with previous findings for mesoporous silica with various pore diameters, we obtain valuable information about the dependence of water dynamics in restricted geometries on the size of the nanoscopic confinements and the properties of the inner surfaces.

Acknowledgement

Financial support of the Deutsche Forschungsgemeinschaft (DFG) in the framework of Forschergruppe FOR 1583 through grants Bu-911/18-1/2 and Vo-905/8-1/2 is gratefully acknowledged.

References

1. M. Alcoutlabi, G. B. McKenna, J. Phys.: Condens. Matter 17 (2005) R461.10.1088/0953-8984/17/15/R01Search in Google Scholar

2. R. Richert, Annu. Rev. Phys. Chem. 62 (2011) 65.10.1146/annurev-physchem-032210-103343Search in Google Scholar PubMed

3. M. Vogel, Eur. Phys. J. Special Topics 189 (2010) 47.10.1140/epjst/e2010-01309-9Search in Google Scholar

4. S. Cerveny, F. Mallamace, J. Swenson, M. Vogel, L. Xu, Chem. Rev. 116 (2016) 7608.10.1021/acs.chemrev.5b00609Search in Google Scholar PubMed

5. S. Kittaka, S. Ishimaru, M. Kuranishi, T. Matsuda, T. Yamaguchi, Phys. Chem. Chem. Phy. 8 (2006) 3223.10.1039/b518365kSearch in Google Scholar PubMed

6. S. Jähnert, F. V. Chavez, G. E. Schaumann, A. Schreiber, M. Schönhoff, G. H. Findenegg, Phys. Chem. Chem. Phys. 10 (2008) 6039.10.1039/b809438cSearch in Google Scholar PubMed

7. J. Deschamps, F. Audonnet, N. Brodie-Linder, M. Schoeffel, C. Alba-Simionesco, Phys. Chem. Chem. Phys. 12 (2010) 1440.10.1039/B920816JSearch in Google Scholar PubMed

8. P. Ball, Chem. Rev. 108 (2008) 74.10.1021/cr068037aSearch in Google Scholar PubMed

9. L. Liu, S.-H. Chen, A. Faraone, C.-W. Yen, C.-Y. Mou, Phys. Rev. Lett. 95 (2005) 117802.10.1103/PhysRevLett.95.117802Search in Google Scholar PubMed

10. P. H. Poole, F. Sciortino, U. Essmann, H. E. Stanley, Nature 360 (1992) 324.10.1038/360324a0Search in Google Scholar

11. J. Swenson, H. Jansson, R. Bergman, Phys. Rev. Lett. 96 (2006) 247802.10.1103/PhysRevLett.96.247802Search in Google Scholar PubMed

12. J. Swenson, S. Cerveny, J. Phys.: Condens. Matter 27 (2015) 033102.10.1088/0953-8984/27/3/033102Search in Google Scholar PubMed

13. M. Sattig, M. Vogel, J. Phys. Chem. Lett. 5 (2014) 174.10.1021/jz402539rSearch in Google Scholar PubMed

14. M. Sattig, S. Reutter, F. Fujara, M. Werner, G. Buntkowsky, M. Vogel, Phys. Chem. Chem. Phys. 16 (2014) 19229.10.1039/C4CP02057JSearch in Google Scholar PubMed

15. M. Rosenstihl, K. Kämpf, F. Klameth, M. Sattig, M. Vogel, J. Non-Cryst. Solids 407 (2015) 449.10.1016/j.jnoncrysol.2014.08.040Search in Google Scholar

16. J. Sjöström, J. Swenson, R. Bergman, S. Kittaka, J. Chem. Phys. 128 (2008) 154503.10.1063/1.2902283Search in Google Scholar PubMed

17. K. Schmidt-Rohr, H. W. Spiess, Multidimensional Solid-State NMR and Polymers, Academic Press, London (1994).Search in Google Scholar

18. N. Bloembergen, E. M. Purcell, R. V. Pound, Phys. Rev. 730 (1948) 679.10.1103/PhysRev.73.679Search in Google Scholar

19. P. A. Beckmann, Phys. Rep. 171 (1988) 85.10.1016/0370-1573(88)90073-7Search in Google Scholar

20. R. Böhmer, G. Diezemann, G. Hinze, E. Rössler, Prog. Nucl. Magn. Reson. Spectrosc. 39 (2001) 191.10.1016/S0079-6565(01)00036-XSearch in Google Scholar

21. G. Fleischer, F. Fujara, NMR, Basic Principles and Progress, volume 30 of NMR, Springer Berlin Heidelberg, 1 edition (1994), P. 159.10.1007/978-3-642-78483-5_4Search in Google Scholar

22. D. Demuth, M. Sattig, E. Steinücken, M. Weigler, M. Vogel, Z. Phys. Chem. 232 (2018) 1059.10.1515/zpch-2017-1027Search in Google Scholar

23. B. Grünberg, T. Emmler, E. Gedat, I. Shenderovich, G. H. Findenegg, H.-H. Limbach, G. Buntkowsky, Chem. – Eur. J. 10 (2004) 5689.10.1002/chem.200400351Search in Google Scholar PubMed

24. A. Adamczyk, Y. Xu, B. Walaszek, F. Roelofs, T. Pery, K. Pelzer, K. Philippot, B. Chaudret, H.-H. Limbach, H. Breitzke, G. Buntkowsky, Chem. Eur. J. 10 (2004) 5689.10.1002/chem.200400351Search in Google Scholar

25. M. Brodrecht, E. Klotz, C. Lederle, H. Breitzke, B. Stühn, M. Vogel, G. Buntkowsky, Z. Phys. Chem. 232 (2018) 1003.10.1515/zpch-2017-1030Search in Google Scholar

26. D. Schaefer, J. Leisen, H. W. Spiess, J. Magn. Reson. A 115 (1995) 60.10.1006/jmra.1995.1149Search in Google Scholar

27. M. Vogel, Phys. Rev. Lett. 101 (2008) 225701.10.1103/PhysRevLett.101.225701Search in Google Scholar PubMed

28. S. A. Lusceac, M. R. Vogel, C. R. Herbers, BBA-Proteins Proteom. 1804 (2010) 41.10.1016/j.bbapap.2009.06.009Search in Google Scholar PubMed

29. S. A. Lusceac, M. Vogel, J. Phys. Chem. B 114 (2010) 10209.10.1021/jp103663tSearch in Google Scholar PubMed

30. M. Sattig, K. Elamin, M. Reuhl, J. Swenson, M. Vogel, J. Phys. Chem. C 121 (2017) 6796.10.1021/acs.jpcc.7b00655Search in Google Scholar

31. W. Schnauss, F. Fujara, H. Sillescu, J. Chem Phys. 970 (1992) 1378.10.1063/1.463264Search in Google Scholar

32. S. A. Lusceac, C. Koplin, P. Medick, M. Vogel, N. Brodie-Linder, C. LeQuellec, C. Alba-Simionesco, E. A. Rössler, J. Phys. Chem. B 108 (2004) 16601.10.1021/jp040376pSearch in Google Scholar

33. K. L. Ngai, S. Capaccioli, A. Paciaroni, Chem. Phys. 424 (2013) 37.10.1016/j.chemphys.2013.05.018Search in Google Scholar

34. N. Roussenova, M. A. Alam, S. Townrow, D. Kilburn, P. E. Sokol, R. Guillet-Nicolas, F. Kleitz, New J. Phys. 16 (2014) 103030.10.1088/1367-2630/16/10/103030Search in Google Scholar

Received: 2017-09-14
Accepted: 2017-11-09
Published Online: 2018-01-05
Published in Print: 2018-07-26

©2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 8.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zpch-2017-1034/html?lang=en
Scroll to top button