Abstract
Samples of YPdCd, Y2Pd2Cd and Y2Cu2Cd were synthesized from the elements by induction melting. The three cadmium phases were characterized through their Guinier powder patterns. YPdCd crystallizes with the hexagonal ZrNiAl-type structure (space group P
Acknowledgements
We thank Dipl.-Ing. U. C. Rodewald for the intensity data collection.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contribution: All authors have accepted responsibility for the entire content of this submitted manuscript and approved the submission.
-
Use of Large Language Models, AI and Machine Learning Tools: Not relevant. Our group is able to think and act independently.
-
Conflict of interest: The authors declare no conflicts of interest regarding this article.
-
Research funding: This research was funded by Universität Münster.
-
Data availability: Data is available from the corresponding author on well-founded request.
References
1. Tappe, F.; Pöttgen, R. Rev. Inorg. Chem. 2011, 31, 5–25.10.1515/revic.2011.007Suche in Google Scholar
2. Kalychak, Y. M.; Zaremba, V. I.; Pöttgen, R.; Lukachuk, M.; Hoffmann, R.-D. Rare Earth–Transition Metal–Indides. In Handbook on the Physics and Chemistry of Rare Earths; Gschneider, K. A.Jr.; Pecharsky, V. K.; Bünzli, J.-C., Eds.; Elsevier: Amsterdam, Vol. 34, 2005; pp. 1–133. chapter 218.10.1016/S0168-1273(04)34001-8Suche in Google Scholar
3. Emsley, J. The Elements; Oxford University Press: Oxford, 1999.Suche in Google Scholar
4. Pöttgen, R.; Lukachuk, M.; Hoffmann, R. D. Z. Kristallogr. 2006, 221, 435–444.10.1524/zkri.2006.221.5-7.435Suche in Google Scholar
5. Klenner, S.; Bönnighausen, J.; Pöttgen, R. Z. Anorg. Allg. Chem. 2020, 646, 1359–1364.10.1002/zaac.202000075Suche in Google Scholar
6. Pöttgen, R.; Janka, O. Rev. Inorg. Chem. 2023, 43, 357–383.10.1515/revic-2023-0012Suche in Google Scholar
7. Schumacher, L.; Schreiner, F.; Koldemir, A.; Janka, O.; Hansen, M. R.; Pöttgen, R. Dalton Trans. 2025, 54, 8100–8112; https://doi.org/10.1039/d4dt03523b.Suche in Google Scholar
8. Block, T.; Johnscher, M.; Baldauf, J. A.; Wiethölter, J.; Pöttgen, R. Z. Naturforsch. 2025. to be submitted.Suche in Google Scholar
9. Iandelli, A. J. Alloys Compd. 1992, 182, 87–90; https://doi.org/10.1016/0925-8388(92)90577-v.Suche in Google Scholar
10. Fickenscher, T.; Hoffmann, R. D.; Mishra, R.; Pöttgen, R. Z. Naturforsch. 2002, 57b, 275–279.10.1515/znb-2002-0303Suche in Google Scholar
11. Schappacher, F. M.; Hermes, W.; Pöttgen, R. J. Solid State Chem. 2009, 182, 265–272.10.1016/j.jssc.2008.10.033Suche in Google Scholar
12. Pöttgen, R.; Gulden, T. H.; Simon, A. GIT Labor-Fachz. 1999, 43, 133–136.Suche in Google Scholar
13. Kußmann, D.; Hoffmann, R. D.; Pöttgen, R. Z. Anorg. Allg. Chem. 1998, 624, 1727–1735.10.1002/(SICI)1521-3749(1998110)624:11<1727::AID-ZAAC1727>3.3.CO;2-SSuche in Google Scholar
14. Yvon, K.; Jeitschko, W.; Parthé, E. J. Appl. Crystallogr. 1977, 10, 73–74.10.1107/S0021889877012898Suche in Google Scholar
15. Bruker Corp., Topspin. (version 2.1). Karlsruhe (Germany), 2008.Suche in Google Scholar
16. Massiot, D.; Fayon, F.; Capron, M.; King, I.; Le Calvé, S.; Alonso, B.; Durand, J. O.; Bujoli, B.; Gan, Z.; Hoatson, G. Magn. Reson. Chem. 2002, 40, 70–76; https://doi.org/10.1002/mrc.984.Suche in Google Scholar
17. Palatinus, L. Acta Crystallogr. 2013, B69, 1–16.10.1107/S0108768112051361Suche in Google Scholar PubMed
18. Palatinus, L.; Chapuis, G. J. Appl. Crystallogr. 2007, 40, 786–790; https://doi.org/10.1107/s0021889807029238.Suche in Google Scholar
19. Petříček, V.; Dušek, M.; Palatinus, L. Z. Kristallogr. 2014, 229, 345–352.10.1515/zkri-2014-1737Suche in Google Scholar
20. Petříček, V.; Palatinus, L.; Plášil, J.; Dušek, M. Z. Kristallogr. 2023, 238, 271–282.10.1515/zkri-2023-0005Suche in Google Scholar
21. Villars, P.; Cenzual, K. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (release 2024/25); ASM International®; Materials Park: Ohio (USA), 2024.Suche in Google Scholar
22. Johnscher, M.; Tappe, F.; Niehaus, O.; Pöttgen, R. Z. Naturforsch. 2015, 70b, 197–202.10.1515/znb-2014-0255Suche in Google Scholar
23. Pöttgen, R.; Fugmann, A.; Hoffmann, R. D.; Rodewald, U. C H.; Niepmann, D. Z. Naturforsch. 2000, 55b, 155–161.10.1515/znb-2000-0204Suche in Google Scholar
24. Rayaprol, S.; Doğan, A.; Pöttgen, R. J. Phys.: Condens. Matter 2006, 18, 5473–5492.10.1088/0953-8984/18/23/018Suche in Google Scholar
25. Doğan, A.; Rayaprol, S.; Pöttgen, R. J. Phys.: Condens. Matter 2007, 19, 026209 (17 pages).10.1088/0953-8984/19/2/026209Suche in Google Scholar
26. Rieger, W.; Nowotny, H.; Benesovsky, F. Monatsh. Chem. 1964, 95, 1502–1503; https://doi.org/10.1007/bf00901704.Suche in Google Scholar
27. Zachariasen, W. H. Acta Crystallogr. 1949, 2, 94–99; https://doi.org/10.1107/s0365110x49000217.Suche in Google Scholar
28. Remschnig, K.; Le Bihan, T.; Noël, H.; Rogl, P. J. Solid State Chem. 1992, 97, 391–399.10.1016/0022-4596(92)90048-ZSuche in Google Scholar
29. Lukachuk, M.; Pöttgen, R. Z. Kristallogr. 2003, 218, 767–787.10.1524/zkri.218.12.767.20545Suche in Google Scholar
30. Bruzzone, G.; Ruggiero, A. F.; Bonino, G. B. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Nat. Rend. 1962, 33, 312–314.Suche in Google Scholar
31. Donohue, J. The Structures of the Elements; Wiley: New York, 1974.Suche in Google Scholar
32. Hoffmann, R. D.; Pöttgen, R.; Fickenscher, T. H.; Felser, C.; Łątka, K.; Kmieć, R. Solid State Sci. 2002, 4, 609–617.10.1016/S1293-2558(02)01304-3Suche in Google Scholar
33. Matar, S. F.; Pöttgen, R.; Chevalier, B. Intermetallics 2014, 51, 18–23.10.1016/j.intermet.2014.02.018Suche in Google Scholar
34. Block, T.; Pöttgen, R. Z. Kristallogr. 2020, 235, 423–431.10.1515/zkri-2020-0060Suche in Google Scholar
35. Reimann, M. K.; Kösters, J.; Bieliauskas, T.; Pöttgen, R. Z. Naturforsch. 2024, 79b, 349–355.10.1515/znb-2024-0014Suche in Google Scholar
36. Kösters, J.; Pöttgen, R. Z. Kristallogr. 2024, 239, 1–6.10.1515/zkri-2023-0043Suche in Google Scholar
37. Johnscher, M.; Stein, S.; Niehaus, O.; Benndorf, C.; Heletta, L.; Kersting, M.; Höting, C.; Eckert, H.; Pöttgen, R. Solid State Sci. 2016, 52, 57–64; https://doi.org/10.1016/j.solidstatesciences.2015.12.004.Suche in Google Scholar
38. Benndorf, C.; Niehaus, O.; Eckert, H.; Janka, O. Z. Anorg. Allg. Chem. 2015, 641, 168–175; https://doi.org/10.1002/zaac.201400509.Suche in Google Scholar
39. Benndorf, C.; Stein, S.; Heletta, L.; Kersting, M.; Eckert, H.; Pöttgen, R. Dalton Trans. 2017, 46, 250–259; https://doi.org/10.1039/c6dt04097g.Suche in Google Scholar PubMed
© 2025 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- In this issue
- Research Articles
- Synthesis and structural investigation of brightly colored organoammonium 1,3-dimethylviolurates
- Crystal structure, X-ray emission properties and 57Fe Mössbauer spectra of TaFeP
- 113Cd NMR-spectroscopic characterization of Y2Cu2Cd and Y2Pd2Cd
- CaCu5-derived rare earth-transition metal-tetrelides with Kagome-like substructures
- CuI and Ni0 complexes of a ferrocene-based cyclic (alkyl)(amino)carbene with unexpected structures
- Cadmium(II) and zinc(II) complexes based on 2-morpholine-pyridine-4-carboxylic acid: syntheses and structures
- Transforming agricultural waste into cement additives for durable and eco-friendly construction materials: rheological and mechanical properties
Artikel in diesem Heft
- Frontmatter
- In this issue
- Research Articles
- Synthesis and structural investigation of brightly colored organoammonium 1,3-dimethylviolurates
- Crystal structure, X-ray emission properties and 57Fe Mössbauer spectra of TaFeP
- 113Cd NMR-spectroscopic characterization of Y2Cu2Cd and Y2Pd2Cd
- CaCu5-derived rare earth-transition metal-tetrelides with Kagome-like substructures
- CuI and Ni0 complexes of a ferrocene-based cyclic (alkyl)(amino)carbene with unexpected structures
- Cadmium(II) and zinc(II) complexes based on 2-morpholine-pyridine-4-carboxylic acid: syntheses and structures
- Transforming agricultural waste into cement additives for durable and eco-friendly construction materials: rheological and mechanical properties