CaCu5-derived rare earth-transition metal-tetrelides with Kagome-like substructures
-
Daniel Voßwinkel
Abstract
Nine new tetrelides RET3X2 (RE = rare earth element, T = Rh, Ir and X = Si, Ge, Sn) were synthesized from the elements by arc-melting and subsequent annealing between T = 870 and 1,170 K for 10 days. Several other members of the RET3X 2 series were reinvestigated by powder X-ray diffraction in order to assign the correct structure type. The structures of LaRh3Ge2, CeIr3Si2 and EuIr3Ge2 were refined from single-crystal X-ray diffractometer data of trillings. Their ErRh3Si2-type structure, space group Imma, is an orthorhombically distorted superstructure variant of CeCo3B2 which itself is a coloring variant of the CaCu5 type (space group P6/mmm). The symmetry reduction induces the trilling formation. Based on the powder and single-crystal diffraction data, most of the RET3X2 phases could be assigned to the ErRh3Si2 type. The RET3X2 phases show Kagome networks built up by the rhodium or iridium atoms and interconnected by the tetrel elements. The rare earth atoms fill cavities with coordination number 18 (orthorhombically distorted hexa-capped hexagonal prisms). The powder data for the stannides RERh3Sn2 (RE = La, Ce, Pr) showed only the CeCo3B2 subcell data. Preliminary single-crystal data indicate a slightly higher rare earth content RE 1+x Rh3Sn2 in the incommensurate composite structures. Temperature dependent magnetic susceptibility data of PrRh3Si2 and EuIr3Ge2 show stable trivalent praseodymium and divalent europium. PrRh3Si2 and EuIr3Ge2 show ferromagnetic ordering at TC = 4.9(5) and 33.3(5) K, respectively. The LaRh3Sn2 sample was characterized through its 119Sn Mössbauer spectrum, showing an isomer shift value of 1.71(1) mm s−1.
Acknowledgements
We thank Dipl.-Ing. U. Ch. Rodewald for the intensity data collections.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contribution: All authors have accepted responsibility for the entire content of this submitted manuscript and approved the submission.
-
Use of Large Language Models, AI and Machine Learning Tools: Not relevant. Our group is able to think and act independently.
-
Conflict of interest: The authors declare no conflicts of interest regarding this article.
-
Research funding: This research was funded by Universität Münster and Deutsche Forschungsgemeinschaft (INST 211/1034-1).
-
Data availability: Data is available from the corresponding author on well-founded request.
References
1. Shatruk, M.; Adams, M. Rare-earth Kagomé Lattice Materials. In Handbook on the Physics and Chemistry of Rare Earths; Bünzli, J. C. G.; Kauzlarich, S. M., Eds.; North-Holland, Elsevier: Amsterdam, Vol. 64, 2022; pp. 247–280. chapter 333.10.1016/bs.hpcre.2023.10.005Suche in Google Scholar
2. Fazekas, P.; Anderson, P. W. Philos. Mag. 1974, 30, 423–440; https://doi.org/10.1080/14786439808206568.Suche in Google Scholar
3. Kawamura, H. J. Phys. Soc. Jpn. 1987, 56, 474–491; https://doi.org/10.1143/jpsj.56.474.Suche in Google Scholar
4. Ramirez, A. P. Annu. Rev. Mater. Sci. 1994, 24, 453–480; https://doi.org/10.1146/annurev.ms.24.080194.002321.Suche in Google Scholar
5. Collins, M. F.; Petrenko, O. A. Can. J. Phys. 1997, 75, 605–655; https://doi.org/10.1139/p97-007.Suche in Google Scholar
6. Pati, S. K.; Rao, C. N. R. Chem. Commun. 2008, 4683–4693; https://doi.org/10.1039/b807207h.Suche in Google Scholar PubMed
7. Lacroix, C.; Mendels, P.; Mila, F., Eds. Introduction to frustrated magnetism – materials, experiment, theory; Springer-Verlag: Berlin, 2011.10.1007/978-3-642-10589-0Suche in Google Scholar
8. Akagi, Y.; Motome, Y. Phys. Rev. B 2015, 91, 155132 (10 pages); https://doi.org/10.1103/physrevb.91.155132.Suche in Google Scholar
9. Mendels, P.; Bert, F. C. R. Phys. 2016, 17, 455–470; https://doi.org/10.1016/j.crhy.2015.12.001.Suche in Google Scholar
10. Grey, I. E. Mineral. Mag. 2020, 84, 640–652; https://doi.org/10.1180/mgm.2020.72.Suche in Google Scholar
11. Nowotny, H. Z. Metallkd. 1942, 34, 247–253; https://doi.org/10.1515/ijmr-1942-341101.Suche in Google Scholar
12. Kuz’ma, Y. U. B.; Krypyakevich, P. I.; Bilonizhko, N. S. Dopov. Akad. Nauk Ukr. RSR, Ser. A 1969, 939–941.Suche in Google Scholar
13. Rykhal, R. M.; Zarechnyuk, O. S.; Kuten, J. I. Dopov. Akad. Nauk Ukr. RSR, Ser. A 1978, 1136–1138.Suche in Google Scholar
14. Villars, P.; Cenzual, K. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (Release 2024/25); ASM International®: Materials Park: Ohio (USA), 2024.Suche in Google Scholar
15. Yin, J.-X.; Lian, B.; Hasan, M. Z. Nature 2022, 612, 647–657; https://doi.org/10.1038/s41586-022-05516-0.Suche in Google Scholar PubMed
16. Mielke, I. I. I. C.; Qin, Y.; Yin, J. X.; Nakamura, H.; Das, D.; Guo, K.; Khasanov, R.; Chang, J.; Wang, Z. Q.; Jia, S.; Nakatsuji, S.; Amato, A.; Luetkens, H.; Xu, G.; Hasan, M. Z.; Guguchia, Z. Phys. Rev. Mater. 2021, 5, 034803 (7 pages); https://doi.org/10.1103/physrevmaterials.5.034803.Suche in Google Scholar
17. Ma, K. Y.; Plokhikh, I.; Graham, J. N.; Mielke, I. I. I. C.; Sazgari, V.; Nakamura, H.; Islam, S. S.; Shin, S.; Král, P.; Gerguri, O.; Luetkens, H.; von Rohr, F. O.; Yin, J.; Pomjakushina, E.; Felser, C.; Nakatsuji, S.; Wehinger, B.; Gawryluk, D. J.; Medvedev, S.; Guguchia, Z. Nature Commun. 2025, 16, 6149 (9 pages); https://doi.org/10.1038/s41467-025-61383-z.Suche in Google Scholar PubMed PubMed Central
18. Eustermann, F.; Hoffmann, R. D.; Janka, O. Z. Kristallogr. 2017, 232, 573–581; https://doi.org/10.1515/zkri-2016-2023.Suche in Google Scholar
19. Zarechnyuk, O. S.; Rykhal, Visn, R. M. Derzh, L. Univ. Ser. Khim. 1981, 23, 45–47.Suche in Google Scholar
20. Senchuk, O.; Demchenko, G.; Demchenko, P. Y.; Gladyshevskii, R. E. V.; Derzh, L. Univ. Ser. Khim. 2013, 54, 77–83.Suche in Google Scholar
21. Morozkin, A. V.; Knotko, A. V.; Yapaskurt, V. O.; Yuan, F.; Mozharivskyj, Y.; Nirmala, R. J. Solid State Chem. 2013, 208, 9–13; https://doi.org/10.1016/j.jssc.2013.09.036.Suche in Google Scholar
22. Cenzual, K.; Chabot, B.; Parthé, E. Acta Crystallogr. C 1988, 44, 221–226.10.1107/S0108270187010357Suche in Google Scholar
23. Ku, H. C.; Meisner, G. P. J. Less-Common Met. 1981, 78, 99–107; https://doi.org/10.1016/0022-5088(81)90118-1.Suche in Google Scholar
24. Eustermann, F.; Gausebeck, S.; Dosche, C.; Haensch, M.; Wittstock, G.; Janka, O. Crystals 2018, 8, 169 (20 pages); https://doi.org/10.3390/cryst8040169.Suche in Google Scholar
25. Pöttgen, R. Z. Anorg. Allg. Chem. 2014, 640, 869–891.10.1002/zaac.201400023Suche in Google Scholar
26. Seidel, S.; Hoffmann, R. D.; Pöttgen, R. Z. Anorg. Allg. Chem. 2015, 641, 1400–1403.10.1002/zaac.201500059Suche in Google Scholar
27. Chevalier, B.; Cole, A.; Lejay, P.; Etourneau, J. Mater. Res. Bull. 1981, 16, 1067–1075; https://doi.org/10.1016/0025-5408(81)90281-6.Suche in Google Scholar
28. Gribanov, A.; Yatsenko, A.; Seropegin, J.; Kurenbaeva, J.; Kocherov, N.; Bodak, O. V. Lviv. Derzh. Univ. Ser. Khim. 2000, 39, 96–100.Suche in Google Scholar
29. Vernière, A.; Lejay, P.; Bordet, P.; Chenavas, J.; Tholence, J. L.; Boucherle, J. X.; Keller, N. J. Alloys Compd. 1995, 218, 197–203.10.1016/0925-8388(94)01400-0Suche in Google Scholar
30. Umarji, A. M.; Dhar, S. K.; Malik, S. K.; Vijayaraghavan, R. Phys. Rev. B 1987, 36, 8929–8932; https://doi.org/10.1103/physrevb.36.8929.Suche in Google Scholar PubMed
31. Yarema, M.; Zaremba, O.; Hlukhyy, V.; Fässler, T.; Gladyshevskii, R. A. 10th Int. Conf. Crystal Chem. Intermet. Compd. 2007, 127.Suche in Google Scholar
32. Yarema, M.; Zaremba, O.; Gladyshevskii, R.; Hlukhyy, V.; Fässler, T. F. J. Solid State Chem. 2012, 196, 72–78; https://doi.org/10.1016/j.jssc.2012.07.055.Suche in Google Scholar
33. Pöttgen, R.; Gulden, T. H.; Simon, A. GIT Labor-Fachzeitschrift 1999, 43, 133–136.Suche in Google Scholar
34. Yvon, K.; Jeitschko, W.; Parthé, E. J. Appl. Crystallogr. 1977, 10, 73–74.10.1107/S0021889877012898Suche in Google Scholar
35. OriginPro 2024 (Version 10.1.0.170), OriginLab Corp, Northampton: Massachusetts (USA), 2024.Suche in Google Scholar
36. CorelDRAW Graphics Suite 2023 (Version 24.5.0.731), Corel Corporation: Ottawa, Ontario (Canada), 2023.Suche in Google Scholar
37. Wissoft 2003 (Version 1.0.1.14), Wissenschaftliche Elektronik GmbH: Starnberg (Germany), 2003.Suche in Google Scholar
38. Brand, R. A. WinNormos for Igor6 (Version for Igor 6.2 or above: 22/02/2017); Universität Duisburg: Duisburg (Germany), 2017.Suche in Google Scholar
39. Petříček, V.; Dušek, M.; Palatinus, L. Z. Kristallogr. 2014, 229, 345–352.10.1515/zkri-2014-1737Suche in Google Scholar
40. Petříček, V.; Palatinus, L.; Plášil, J.; Dušek, M. Z. Kristallogr. 2023, 238, 271–282.10.1515/zkri-2023-0005Suche in Google Scholar
41. Bärnighausen, H. Commun. Math. Chem. 1980, 9, 139–175.10.1007/BF01674443Suche in Google Scholar
42. Müller, U. Z. Anorg. Allg. Chem. 2004, 630, 1519–1537.10.1002/zaac.200400250Suche in Google Scholar
43. Block, T.; Seidel, S.; Pöttgen, R. Z. Kristallogr. 2022, 237, 215–218.10.1515/zkri-2022-0021Suche in Google Scholar
44. Müller, U. Symmetriebeziehungen zwischen verwandten Kristallstrukturen, 2nd ed.; Springer Spektrum: Berlin, Heidelberg, 2023.10.1007/978-3-662-67166-5_12Suche in Google Scholar
45. Parthé, E.; Chabot, B. Crystal Structures and Crystal Chemistry of Ternary Rare Earth-Transition Metal Borides, Silicides and Homologues. In Handbook on the Physics and Chemistry of Rare Earths; Gschneidner, K. A. Jr.; Eyring, L.; Eds. Vol. 6, North-Holland: Amsterdam, 1984, pp. 113–332.10.1016/S0168-1273(84)06005-0Suche in Google Scholar
46. Hoffmann, R.-D.; Pöttgen, R. Z. Kristallogr. 2001, 216, 127–145.10.1524/zkri.216.3.127.20327Suche in Google Scholar
47. Emsley, J. The Elements; Oxford University Press: Oxford, 1999.Suche in Google Scholar
48. Voßwinkel, D.; Niehaus, O.; Rodewald, U.Ch.; Pöttgen, R. Z. Naturforsch. 2012, 67b, 1241–1247.10.5560/znb.2012-0265Suche in Google Scholar
49. Svitlyk, V.; Hermes, W.; Chevalier, B.; Matar, S. F.; Gaudin, E.; Voßwinkel, D.; Chernyshov, D.; Hoffmann, R.-D.; Pöttgen, R. Solid State Sci. 2013, 21, 6–10; https://doi.org/10.1016/j.solidstatesciences.2013.04.002.Suche in Google Scholar
50. Ning, Y. T.; Zhou, X. M.; Zhen, Y.; Chen, N. Y.; Xu, H.; Zhu, J. Z. J. Less-Common Met. 1989, 147, 167–173; https://doi.org/10.1016/0022-5088(89)90190-2.Suche in Google Scholar
51. Manni, S.; Thamizhavel, A.; Dhar, S. K. AIP Adv. 2019, 9, 035021 (4 pages); https://doi.org/10.1063/1.5079847.Suche in Google Scholar
52. Wendorff, M.; Röhr, C. Z. Naturforsch. 2007, 62b, 1549–1562.10.1515/znb-2007-1213Suche in Google Scholar
53. Johnscher, M.; Gerke, B.; Kösters, J.; Block, T.; Niehaus, O.; Reimann, M. K.; Pöttgen, R. Z. Kristallogr. 2023, 238, 311–319.Suche in Google Scholar
54. Esmaeilzadeh, S.; Zaremba, V. I.; Kalychak, Y. A. M.; Hoffmann, R. D.; Pöttgen, R. Solid State Sci. 2002, 4, 93–102; https://doi.org/10.1016/s1293-2558(01)01207-9.Suche in Google Scholar
55. Lueken, H. Magnetochemie; Teubner: Stuttgart, 1999.10.1007/978-3-322-80118-0Suche in Google Scholar
56. Engelbert, S.; Klenner, S.; Reimann, M. K.; Pöttgen, R. Z. Anorg. Allg. Chem. 2021, 647, 1685–1694; https://doi.org/10.1002/zaac.202100069.Suche in Google Scholar
57. Engelbert, S.; Janka, O.; Klenner, S.; Pöttgen, R. Z. Anorg. Allg. Chem. 2020, 646, 1508–1516; https://doi.org/10.1002/zaac.201900329.Suche in Google Scholar
58. Pöttgen, R.; Johrendt, D. Chem. Mater. 2000, 12, 875–897; https://doi.org/10.1021/cm991183v.Suche in Google Scholar
59. Pöttgen, R. Z. Naturforsch. 2006, 61b, 677–698.10.1515/znb-2006-0607Suche in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston