Home Physical Sciences CaCu5-derived rare earth-transition metal-tetrelides with Kagome-like substructures
Article
Licensed
Unlicensed Requires Authentication

CaCu5-derived rare earth-transition metal-tetrelides with Kagome-like substructures

  • Daniel Voßwinkel , Lukas Heletta , Jasper Arne Baldauf , Theresa Block , Jutta Kösters and Rainer Pöttgen EMAIL logo
Published/Copyright: October 2, 2025
Become an author with De Gruyter Brill

Abstract

Nine new tetrelides RET3X2 (RE = rare earth element, T = Rh, Ir and X = Si, Ge, Sn) were synthesized from the elements by arc-melting and subsequent annealing between T = 870 and 1,170 K for 10 days. Several other members of the RET3X 2 series were reinvestigated by powder X-ray diffraction in order to assign the correct structure type. The structures of LaRh3Ge2, CeIr3Si2 and EuIr3Ge2 were refined from single-crystal X-ray diffractometer data of trillings. Their ErRh3Si2-type structure, space group Imma, is an orthorhombically distorted superstructure variant of CeCo3B2 which itself is a coloring variant of the CaCu5 type (space group P6/mmm). The symmetry reduction induces the trilling formation. Based on the powder and single-crystal diffraction data, most of the RET3X2 phases could be assigned to the ErRh3Si2 type. The RET3X2 phases show Kagome networks built up by the rhodium or iridium atoms and interconnected by the tetrel elements. The rare earth atoms fill cavities with coordination number 18 (orthorhombically distorted hexa-capped hexagonal prisms). The powder data for the stannides RERh3Sn2 (RE = La, Ce, Pr) showed only the CeCo3B2 subcell data. Preliminary single-crystal data indicate a slightly higher rare earth content RE 1+x Rh3Sn2 in the incommensurate composite structures. Temperature dependent magnetic susceptibility data of PrRh3Si2 and EuIr3Ge2 show stable trivalent praseodymium and divalent europium. PrRh3Si2 and EuIr3Ge2 show ferromagnetic ordering at TC = 4.9(5) and 33.3(5) K, respectively. The LaRh3Sn2 sample was characterized through its 119Sn Mössbauer spectrum, showing an isomer shift value of 1.71(1) mm s−1.


Corresponding author: Rainer Pöttgen, Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, 48149 Münster, Germany, E-mail:

Acknowledgements

We thank Dipl.-Ing. U. Ch. Rodewald for the intensity data collections.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contribution: All authors have accepted responsibility for the entire content of this submitted manuscript and approved the submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: Not relevant. Our group is able to think and act independently.

  5. Conflict of interest: The authors declare no conflicts of interest regarding this article.

  6. Research funding: This research was funded by Universität Münster and Deutsche Forschungsgemeinschaft (INST 211/1034-1).

  7. Data availability: Data is available from the corresponding author on well-founded request.

References

1. Shatruk, M.; Adams, M. Rare-earth Kagomé Lattice Materials. In Handbook on the Physics and Chemistry of Rare Earths; Bünzli, J. C. G.; Kauzlarich, S. M., Eds.; North-Holland, Elsevier: Amsterdam, Vol. 64, 2022; pp. 247–280. chapter 333.10.1016/bs.hpcre.2023.10.005Search in Google Scholar

2. Fazekas, P.; Anderson, P. W. Philos. Mag. 1974, 30, 423–440; https://doi.org/10.1080/14786439808206568.Search in Google Scholar

3. Kawamura, H. J. Phys. Soc. Jpn. 1987, 56, 474–491; https://doi.org/10.1143/jpsj.56.474.Search in Google Scholar

4. Ramirez, A. P. Annu. Rev. Mater. Sci. 1994, 24, 453–480; https://doi.org/10.1146/annurev.ms.24.080194.002321.Search in Google Scholar

5. Collins, M. F.; Petrenko, O. A. Can. J. Phys. 1997, 75, 605–655; https://doi.org/10.1139/p97-007.Search in Google Scholar

6. Pati, S. K.; Rao, C. N. R. Chem. Commun. 2008, 4683–4693; https://doi.org/10.1039/b807207h.Search in Google Scholar PubMed

7. Lacroix, C.; Mendels, P.; Mila, F., Eds. Introduction to frustrated magnetism – materials, experiment, theory; Springer-Verlag: Berlin, 2011.10.1007/978-3-642-10589-0Search in Google Scholar

8. Akagi, Y.; Motome, Y. Phys. Rev. B 2015, 91, 155132 (10 pages); https://doi.org/10.1103/physrevb.91.155132.Search in Google Scholar

9. Mendels, P.; Bert, F. C. R. Phys. 2016, 17, 455–470; https://doi.org/10.1016/j.crhy.2015.12.001.Search in Google Scholar

10. Grey, I. E. Mineral. Mag. 2020, 84, 640–652; https://doi.org/10.1180/mgm.2020.72.Search in Google Scholar

11. Nowotny, H. Z. Metallkd. 1942, 34, 247–253; https://doi.org/10.1515/ijmr-1942-341101.Search in Google Scholar

12. Kuz’ma, Y. U. B.; Krypyakevich, P. I.; Bilonizhko, N. S. Dopov. Akad. Nauk Ukr. RSR, Ser. A 1969, 939–941.Search in Google Scholar

13. Rykhal, R. M.; Zarechnyuk, O. S.; Kuten, J. I. Dopov. Akad. Nauk Ukr. RSR, Ser. A 1978, 1136–1138.Search in Google Scholar

14. Villars, P.; Cenzual, K. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (Release 2024/25); ASM International®: Materials Park: Ohio (USA), 2024.Search in Google Scholar

15. Yin, J.-X.; Lian, B.; Hasan, M. Z. Nature 2022, 612, 647–657; https://doi.org/10.1038/s41586-022-05516-0.Search in Google Scholar PubMed

16. Mielke, I. I. I. C.; Qin, Y.; Yin, J. X.; Nakamura, H.; Das, D.; Guo, K.; Khasanov, R.; Chang, J.; Wang, Z. Q.; Jia, S.; Nakatsuji, S.; Amato, A.; Luetkens, H.; Xu, G.; Hasan, M. Z.; Guguchia, Z. Phys. Rev. Mater. 2021, 5, 034803 (7 pages); https://doi.org/10.1103/physrevmaterials.5.034803.Search in Google Scholar

17. Ma, K. Y.; Plokhikh, I.; Graham, J. N.; Mielke, I. I. I. C.; Sazgari, V.; Nakamura, H.; Islam, S. S.; Shin, S.; Král, P.; Gerguri, O.; Luetkens, H.; von Rohr, F. O.; Yin, J.; Pomjakushina, E.; Felser, C.; Nakatsuji, S.; Wehinger, B.; Gawryluk, D. J.; Medvedev, S.; Guguchia, Z. Nature Commun. 2025, 16, 6149 (9 pages); https://doi.org/10.1038/s41467-025-61383-z.Search in Google Scholar PubMed PubMed Central

18. Eustermann, F.; Hoffmann, R. D.; Janka, O. Z. Kristallogr. 2017, 232, 573–581; https://doi.org/10.1515/zkri-2016-2023.Search in Google Scholar

19. Zarechnyuk, O. S.; Rykhal, Visn, R. M. Derzh, L. Univ. Ser. Khim. 1981, 23, 45–47.Search in Google Scholar

20. Senchuk, O.; Demchenko, G.; Demchenko, P. Y.; Gladyshevskii, R. E. V.; Derzh, L. Univ. Ser. Khim. 2013, 54, 77–83.Search in Google Scholar

21. Morozkin, A. V.; Knotko, A. V.; Yapaskurt, V. O.; Yuan, F.; Mozharivskyj, Y.; Nirmala, R. J. Solid State Chem. 2013, 208, 9–13; https://doi.org/10.1016/j.jssc.2013.09.036.Search in Google Scholar

22. Cenzual, K.; Chabot, B.; Parthé, E. Acta Crystallogr. C 1988, 44, 221–226.10.1107/S0108270187010357Search in Google Scholar

23. Ku, H. C.; Meisner, G. P. J. Less-Common Met. 1981, 78, 99–107; https://doi.org/10.1016/0022-5088(81)90118-1.Search in Google Scholar

24. Eustermann, F.; Gausebeck, S.; Dosche, C.; Haensch, M.; Wittstock, G.; Janka, O. Crystals 2018, 8, 169 (20 pages); https://doi.org/10.3390/cryst8040169.Search in Google Scholar

25. Pöttgen, R. Z. Anorg. Allg. Chem. 2014, 640, 869–891.10.1002/zaac.201400023Search in Google Scholar

26. Seidel, S.; Hoffmann, R. D.; Pöttgen, R. Z. Anorg. Allg. Chem. 2015, 641, 1400–1403.10.1002/zaac.201500059Search in Google Scholar

27. Chevalier, B.; Cole, A.; Lejay, P.; Etourneau, J. Mater. Res. Bull. 1981, 16, 1067–1075; https://doi.org/10.1016/0025-5408(81)90281-6.Search in Google Scholar

28. Gribanov, A.; Yatsenko, A.; Seropegin, J.; Kurenbaeva, J.; Kocherov, N.; Bodak, O. V. Lviv. Derzh. Univ. Ser. Khim. 2000, 39, 96–100.Search in Google Scholar

29. Vernière, A.; Lejay, P.; Bordet, P.; Chenavas, J.; Tholence, J. L.; Boucherle, J. X.; Keller, N. J. Alloys Compd. 1995, 218, 197–203.10.1016/0925-8388(94)01400-0Search in Google Scholar

30. Umarji, A. M.; Dhar, S. K.; Malik, S. K.; Vijayaraghavan, R. Phys. Rev. B 1987, 36, 8929–8932; https://doi.org/10.1103/physrevb.36.8929.Search in Google Scholar PubMed

31. Yarema, M.; Zaremba, O.; Hlukhyy, V.; Fässler, T.; Gladyshevskii, R. A. 10th Int. Conf. Crystal Chem. Intermet. Compd. 2007, 127.Search in Google Scholar

32. Yarema, M.; Zaremba, O.; Gladyshevskii, R.; Hlukhyy, V.; Fässler, T. F. J. Solid State Chem. 2012, 196, 72–78; https://doi.org/10.1016/j.jssc.2012.07.055.Search in Google Scholar

33. Pöttgen, R.; Gulden, T. H.; Simon, A. GIT Labor-Fachzeitschrift 1999, 43, 133–136.Search in Google Scholar

34. Yvon, K.; Jeitschko, W.; Parthé, E. J. Appl. Crystallogr. 1977, 10, 73–74.10.1107/S0021889877012898Search in Google Scholar

35. OriginPro 2024 (Version 10.1.0.170), OriginLab Corp, Northampton: Massachusetts (USA), 2024.Search in Google Scholar

36. CorelDRAW Graphics Suite 2023 (Version 24.5.0.731), Corel Corporation: Ottawa, Ontario (Canada), 2023.Search in Google Scholar

37. Wissoft 2003 (Version 1.0.1.14), Wissenschaftliche Elektronik GmbH: Starnberg (Germany), 2003.Search in Google Scholar

38. Brand, R. A. WinNormos for Igor6 (Version for Igor 6.2 or above: 22/02/2017); Universität Duisburg: Duisburg (Germany), 2017.Search in Google Scholar

39. Petříček, V.; Dušek, M.; Palatinus, L. Z. Kristallogr. 2014, 229, 345–352.10.1515/zkri-2014-1737Search in Google Scholar

40. Petříček, V.; Palatinus, L.; Plášil, J.; Dušek, M. Z. Kristallogr. 2023, 238, 271–282.10.1515/zkri-2023-0005Search in Google Scholar

41. Bärnighausen, H. Commun. Math. Chem. 1980, 9, 139–175.10.1007/BF01674443Search in Google Scholar

42. Müller, U. Z. Anorg. Allg. Chem. 2004, 630, 1519–1537.10.1002/zaac.200400250Search in Google Scholar

43. Block, T.; Seidel, S.; Pöttgen, R. Z. Kristallogr. 2022, 237, 215–218.10.1515/zkri-2022-0021Search in Google Scholar

44. Müller, U. Symmetriebeziehungen zwischen verwandten Kristallstrukturen, 2nd ed.; Springer Spektrum: Berlin, Heidelberg, 2023.10.1007/978-3-662-67166-5_12Search in Google Scholar

45. Parthé, E.; Chabot, B. Crystal Structures and Crystal Chemistry of Ternary Rare Earth-Transition Metal Borides, Silicides and Homologues. In Handbook on the Physics and Chemistry of Rare Earths; Gschneidner, K. A. Jr.; Eyring, L.; Eds. Vol. 6, North-Holland: Amsterdam, 1984, pp. 113–332.10.1016/S0168-1273(84)06005-0Search in Google Scholar

46. Hoffmann, R.-D.; Pöttgen, R. Z. Kristallogr. 2001, 216, 127–145.10.1524/zkri.216.3.127.20327Search in Google Scholar

47. Emsley, J. The Elements; Oxford University Press: Oxford, 1999.Search in Google Scholar

48. Voßwinkel, D.; Niehaus, O.; Rodewald, U.Ch.; Pöttgen, R. Z. Naturforsch. 2012, 67b, 1241–1247.10.5560/znb.2012-0265Search in Google Scholar

49. Svitlyk, V.; Hermes, W.; Chevalier, B.; Matar, S. F.; Gaudin, E.; Voßwinkel, D.; Chernyshov, D.; Hoffmann, R.-D.; Pöttgen, R. Solid State Sci. 2013, 21, 6–10; https://doi.org/10.1016/j.solidstatesciences.2013.04.002.Search in Google Scholar

50. Ning, Y. T.; Zhou, X. M.; Zhen, Y.; Chen, N. Y.; Xu, H.; Zhu, J. Z. J. Less-Common Met. 1989, 147, 167–173; https://doi.org/10.1016/0022-5088(89)90190-2.Search in Google Scholar

51. Manni, S.; Thamizhavel, A.; Dhar, S. K. AIP Adv. 2019, 9, 035021 (4 pages); https://doi.org/10.1063/1.5079847.Search in Google Scholar

52. Wendorff, M.; Röhr, C. Z. Naturforsch. 2007, 62b, 1549–1562.10.1515/znb-2007-1213Search in Google Scholar

53. Johnscher, M.; Gerke, B.; Kösters, J.; Block, T.; Niehaus, O.; Reimann, M. K.; Pöttgen, R. Z. Kristallogr. 2023, 238, 311–319.Search in Google Scholar

54. Esmaeilzadeh, S.; Zaremba, V. I.; Kalychak, Y. A. M.; Hoffmann, R. D.; Pöttgen, R. Solid State Sci. 2002, 4, 93–102; https://doi.org/10.1016/s1293-2558(01)01207-9.Search in Google Scholar

55. Lueken, H. Magnetochemie; Teubner: Stuttgart, 1999.10.1007/978-3-322-80118-0Search in Google Scholar

56. Engelbert, S.; Klenner, S.; Reimann, M. K.; Pöttgen, R. Z. Anorg. Allg. Chem. 2021, 647, 1685–1694; https://doi.org/10.1002/zaac.202100069.Search in Google Scholar

57. Engelbert, S.; Janka, O.; Klenner, S.; Pöttgen, R. Z. Anorg. Allg. Chem. 2020, 646, 1508–1516; https://doi.org/10.1002/zaac.201900329.Search in Google Scholar

58. Pöttgen, R.; Johrendt, D. Chem. Mater. 2000, 12, 875–897; https://doi.org/10.1021/cm991183v.Search in Google Scholar

59. Pöttgen, R. Z. Naturforsch. 2006, 61b, 677–698.10.1515/znb-2006-0607Search in Google Scholar

Received: 2025-07-31
Accepted: 2025-08-25
Published Online: 2025-10-02
Published in Print: 2025-10-27

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 17.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/znb-2025-0053/html
Scroll to top button