Abstract
The dimeric complex [{Cu(μ-I)(A)}2] (12) has been isolated from the reaction of copper(I) iodide with the cyclic (alkyl)(amino)carbene (CAAC) containing a 1,1′-ferrocenylene (fc) backbone fc(CPh2–C–NMes) (A, Mes = mesityl), whereas analogous reactions with conventional CAACs have exclusively afforded monomeric complexes [CuI(CAAC)]. The reaction of tetracarbonylnickel(0) with A furnished the dicarbonyl complex [Ni(CO)2(A)] (2), whereas tricarbonyl complexes [Ni(CO)3(CAAC)] have always been obtained from analogous reactions with conventional CAACs. [{Cu(μ-I)(A)}2] (12) and [Ni(CO)2(A)] (2) have been structurally characterised by single-crystal X-ray diffraction.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors state no conflict of interest.
-
Research funding: This work was supported by the German Research Foundation (DFG grant number SI 429/23-1).
-
Data availability: The raw data can be obtained on request from the corresponding author.
References
1. Lavallo, V.; Canac, Y.; Präsang, C.; Donnadieu, B.; Bertrand, G. Angew. Chem., Int. Ed. 2005, 44, 5705–5709. https://doi.org/10.1002/anie.200501841.Search in Google Scholar PubMed PubMed Central
2. Kumar Kushvaha, S.; Mishra, A.; Roesky, H. W.; Chandra Mondal, K. Chem. Asian J. 2022, e202101301. https://doi.org/10.1002/asia.202101301.Search in Google Scholar PubMed PubMed Central
3. Breitwieser, K.; Munz, D. Adv. Organomet. Chem. 2022, 78, 79–132.Search in Google Scholar
4. Zhao, L.; Zeng, X. Chem 2022, 8, 2082–2113. https://doi.org/10.1016/j.chempr.2022.05.019.Search in Google Scholar
5. Morvan, J.; Mauduit, M.; Bertrand, G.; Jazzar, R. ACS Catal. 2021, 11, 1714–1748. https://doi.org/10.1021/acscatal.0c05508.Search in Google Scholar
6. Kumar Singh, R.; Khan, T. K.; Misra, S.; Singh, A. K. J. Organomet. Chem. 2021, 956, 122133. https://doi.org/10.1016/j.jorganchem.2021.122133.Search in Google Scholar
7. Jazzar, R.; Soleilhavoup, M.; Bertrand, G. Chem. Rev. 2020, 120, 4141–4168. https://doi.org/10.1021/acs.chemrev.0c00043.Search in Google Scholar PubMed
8. Nesterov, V.; Reiter, D.; Bag, P.; Frisch, P.; Holzner, R.; Porzelt, A.; Inoue, S. Chem. Rev. 2019, 119, 9678–9842.10.1021/acs.chemrev.8b00079Search in Google Scholar PubMed
9. Kundu, S.; Sinhababu, S.; Chandrasekhar, V.; Roesky, H. W. Chem. Sci. 2019, 10, 4727–4741. https://doi.org/10.1039/c9sc01351b.Search in Google Scholar PubMed PubMed Central
10. Huynh, H. V. Chem. Rev. 2018, 118, 9457–9492. https://doi.org/10.1021/acs.chemrev.8b00067.Search in Google Scholar PubMed
11. Melaimi, M.; Jazzar, R.; Soleilhavoup, M.; Bertrand, G. Angew. Chem., Int. Ed. 2017, 56, 10046–10068. https://doi.org/10.1002/anie.201702148.Search in Google Scholar PubMed
12. Paul, U. S. D.; Radius, U. Eur. J. Inorg. Chem. 2017, 3362–3375. https://doi.org/10.1002/ejic.201700397.Search in Google Scholar
13. Roy, S.; Chandra Mondal, K.; Roesky, H. W. Acc. Chem. Res. 2016, 49, 357–369. https://doi.org/10.1021/acs.accounts.5b00381.Search in Google Scholar PubMed
14. Song, H.; Kim, Y.; Park, J.; Kim, K.; Lee, E. Synlett 2016, 27, 477–485. https://doi.org/10.1055/s-0035-1560366.Search in Google Scholar
15. Soleilhavoup, M.; Bertrand, G. Acc. Chem. Res. 2015, 48, 256–266. https://doi.org/10.1021/ar5003494.Search in Google Scholar PubMed
16. Martin, D.; Soleilhavoup, M.; Bertrand, G. Chem. Sci. 2011, 2, 389–399. https://doi.org/10.1039/c0sc00388c.Search in Google Scholar PubMed PubMed Central
17. Melaimi, M.; Soleilhavoup, M.; Bertrand, G. Angew. Chem., Int. Ed. 2010, 49, 8810–8849. https://doi.org/10.1002/anie.201000165.Search in Google Scholar PubMed PubMed Central
18. Volk, J.; Heinz, M.; Leibold, M.; Bruhn, C.; Bens, T.; Sarkar, B.; Holthausen, M. C.; Siemeling, U. Chem. Commun. 2022, 58, 10396–10399. https://doi.org/10.1039/d2cc03871d.Search in Google Scholar PubMed
19. Danopoulos, A. A.; Simler, T.; Braunstein, P. Chem. Rev. 2019, 119, 3730–3961. https://doi.org/10.1021/acs.chemrev.8b00505.Search in Google Scholar PubMed
20. Díez-González, S.; Escudero-Adán, E. C.; Benet-Buchholz, J.; Stevens, E. D.; Slawin, A. M. Z.; Nolan, S. P. Dalton Trans. 2010, 39, 7595–7606. https://doi.org/10.1039/c0dt00218f.Search in Google Scholar PubMed
21. Romanov, A. S.; Becker, C. R.; James, C. E.; Di, D.; Credgington, D.; Linnolahti, M.; Bochmann, M. Chem. Eur. J. 2017, 23, 4625–4637. https://doi.org/10.1002/chem.201605891.Search in Google Scholar PubMed
22. Das, A.; Elvers, B. J.; Kumar Nayak, M.; Chrysokos, N.; Anga, S.; Kumar, A.; Rao, D. K.; Narayanan, T. N.; Schulzke, C.; Yildiz, C. B.; Jana, A. Angew. Chem., Int. Ed. 2022, 61, e202202637. https://doi.org/10.1002/anie.202202637.Search in Google Scholar PubMed PubMed Central
23. Romanov, A. S.; Di, D.; Yang, L.; Fernandez-Cestau, J.; Becker, C. R.; James, C. E.; Zhu, B.; Linnolahti, M.; Credgington, D.; Bochmann, M. Chem. Commun. 2016, 52, 6379–6382. https://doi.org/10.1039/c6cc02349e.Search in Google Scholar PubMed PubMed Central
24. Kaur, H.; Kauer Zinn, F.; Stevens, E. D.; Nolan, S. P. Organometallics 2004, 23, 1157–1160. https://doi.org/10.1021/om034285a.Search in Google Scholar
25. Kumar Banjare, S.; Afreen, S.; Gaurav, K.; Kumar Sahoo, A.; Das, B.; Jyoti Panda, S.; Sekhar Purohit, C.; Doddi, A.; Ravikumar, P. C. J. Org. Chem. 2024, 89, 9255–9264. https://doi.org/10.1021/acs.joc.4c00199.Search in Google Scholar PubMed
26. Kim, H.; Kim, H.; Kim, K.; Lee, E. Inorg. Chem. 2021, 60, 18687–18697. https://doi.org/10.1021/acs.inorgchem.1c02070.Search in Google Scholar PubMed
27. Hölzel, T.; Belyaev, A.; Terzi, M.; Stenzel, L.; Gernert, M.; Marian, C. M.; Steffen, A.; Ganter, C. Inorg. Chem. 2021, 60, 18529–18543. https://doi.org/10.1021/acs.inorgchem.1c03082.Search in Google Scholar PubMed
28. Hall, J. W.; Bouchet, D.; Mahon, M. F.; Whittlesey, M. K.; Cazin, C. S. J. Organometallics 2021, 40, 1252–1261. https://doi.org/10.1021/acs.organomet.1c00039.Search in Google Scholar
29. Roy, M. M. D.; Lummis, P. A.; Ferguson, M. J.; McDonald, R.; Rivard, E. Chem. Eur. J. 2017, 23, 11249–11252. https://doi.org/10.1002/chem.201703215.Search in Google Scholar PubMed
30. Garcés, K.; Fernández-Alvarez, F. J.; García-Orduña, P.; Lahoz, F. J.; Pérez-Torrente, J. J.; Oro, L. A. ChemCatChem 2015, 7, 2501–2507. https://doi.org/10.1002/cctc.201500508.Search in Google Scholar
31. Holtz-Mulholland, M.; Collins, S. K. Synthesis 2014, 46, 375–380. https://doi.org/10.1055/s-0033-1338564.Search in Google Scholar
32. Lohre, C.; Nimphius, C.; Steinmetz, M.; Würtz, S.; Fröhlich, R.; Daniliuc, C. G.; Grimme, S.; Glorius, F. Tetrahedron 2012, 68, 7636–7644. https://doi.org/10.1016/j.tet.2012.06.039.Search in Google Scholar
33. Al Taghfi, J.; Dastgir, S.; Lough, A. J.; Lavoie, G. G. Organometallics 2010, 29, 3133–3138. https://doi.org/10.1021/om100321n.Search in Google Scholar
34. Kumar, A.; Yuan, D.; Huynh, H. V. Inorg. Chem. 2019, 58, 7545–7553. https://doi.org/10.1021/acs.inorgchem.9b00786.Search in Google Scholar PubMed
35. Gómez-Suárez, A.; Nelson, D. J.; Nolan, S. P. Chem. Commun. 2017, 53, 2650–2660. https://doi.org/10.1039/c7cc00255f.Search in Google Scholar PubMed
36. Alvarez, S. Dalton Trans. 2013, 42, 8617–8636. https://doi.org/10.1039/c3dt50599e.Search in Google Scholar PubMed
37. Hu, S. Z.; Zhou, Z.-H.; Xie, Z.-X.; Robertson, B. E. Z. Kristallogr. 2014, 229, 517–523. https://doi.org/10.1515/zkri-2014-1726.Search in Google Scholar
38. Pauling, L. The Nature of the Chemical Bond, 3rd ed.; Cornell University Press: Ithaca, NY, 1960; p. 227.Search in Google Scholar
39. Pauling, L.; Kamb, B. Proc. Natl. Acad. Sci. U. S. A. 1986, 83, 3569–3571. https://doi.org/10.1073/pnas.83.11.3569.Search in Google Scholar PubMed PubMed Central
40. Cordero, B.; Gómez, V.; Platero-Prats, A. E.; Revés, M.; Echeverría, J.; Cremades, E.; Barragán, F.; Alvarez, S. Dalton Trans. 2008, 2832–2838. https://doi.org/10.1039/b801115j.Search in Google Scholar PubMed
41. Pyykkö, P.; Tatsumi, M. Chem. Eur. J. 2009, 15, 186–197.10.1002/chem.200800987Search in Google Scholar PubMed
42. Dorta, R.; Stevens, E. D.; Scott, N. M.; Costabile, C.; Cavallo, L.; Hoff, C. D.; Nolan, S. P. J. Am. Chem. Soc. 2005, 127, 2485–2495. https://doi.org/10.1021/ja0438821.Search in Google Scholar PubMed
43. Paul, U. S. D.; Sieck, C.; Haehnel, M.; Hammond, K.; Marder, T. D.; Radius, U. Chem. Eur. J. 2016, 22, 11005–11014. https://doi.org/10.1002/chem.201601406.Search in Google Scholar PubMed
44. Paul, U. S. D.; Radius, U. Organometallics 2017, 36, 1398–1407. https://doi.org/10.1021/acs.organomet.7b00109.Search in Google Scholar
45. Marín, M.; Moreno, J. J.; Navarro-Gilabert, C.; Álvarez, E.; Maya, C.; Peloso, R.; Nicasio, M. C.; Carmona, E. Chem. Eur. J. 2019, 25, 260–272.10.1002/chem.201803598Search in Google Scholar PubMed
46. Müller, C.; Andrada, D. M.; Bischoff, I.-A.; Zimmer, M.; Huch, V.; Steinbrück, N.; Schäfer, A. Organometallics 2019, 38, 1052–1061. https://doi.org/10.1021/acs.organomet.8b00861.Search in Google Scholar
47. Farkas, V.; Csókás, D.; Erdélyi, Á.; Turczel, G.; Bényei, A.; Nagy, T.; Kéki, S.; Pápai, I.; Tuba, R. Adv. Sci. 2024, 11, 2400118. https://doi.org/10.1002/advs.202400118.Search in Google Scholar PubMed PubMed Central
48. Madron du Vigné, A.; Cramer, N. Organometallics 2022, 41, 2731–2741. https://doi.org/10.1021/acs.organomet.2c00351.Search in Google Scholar
49. Scherpf, T.; Rodstein, I.; Paaßen, M.; Gessner, V. H. Inorg. Chem. 2019, 58, 8151–8161. https://doi.org/10.1021/acs.inorgchem.9b00948.Search in Google Scholar PubMed PubMed Central
50. Sheldrick, G. M. Acta Crystallogr. 2008, A64, 112–122.10.1107/S0108767307043930Search in Google Scholar PubMed
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/znb-2025-0051).
© 2025 Walter de Gruyter GmbH, Berlin/Boston