Home Cadmium(II) and zinc(II) complexes based on 2-morpholine-pyridine-4-carboxylic acid: syntheses and structures
Article
Licensed
Unlicensed Requires Authentication

Cadmium(II) and zinc(II) complexes based on 2-morpholine-pyridine-4-carboxylic acid: syntheses and structures

  • Hong-Hong Lan and Shao-Bin Miao EMAIL logo
Published/Copyright: September 5, 2025
Become an author with De Gruyter Brill

Abstract

The complexes [Cd(mpca·H)Cl2] · H2O (1) and [Zn(mpca·H)Cl2] (2) have been synthesized and characterized by single-crystal and IR spectroscopya (mpcaH = 2-morpholine-pyridine-4-carboxylic acid). Both complexes crystallize in the triclinic space group P 1 , and the cadmium and zinc ions exhibit distorted trigonal bipyramidal and tetrahedral coordination geometries, respectively. In compound 1, the carboxylate moieties show different μ1-η1:η1 and μ1-η1:η0 coordination modes, while in 2, only the μ1-η1:η0 mode is observed.


Corresponding author: Shao-Bin Miao, Henan Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, Henan Province, 471934, P.R. China, E-mail:

Acknowledgments

The authors thank Dr. J.-G. Wang for recording the single-crystal data.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: The authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors declare no conflicts of interest regarding this article.

  6. Research funding: None declared.

  7. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Du, M.; Zou, R.-Q.; Zhong, R.-Q.; Xu, Q. Inorg. Chem. Commun. 2007, 10, 1437–1439; https://doi.org/10.1016/j.inoche.2007.09.002.Search in Google Scholar

2. Kan, W.-Q.; Liu, B.; Yang, J.; Liu, Y.-Y.; Ma, J.-F. Cryst. Growth Des. 2012, 12, 2288–2298; https://doi.org/10.1021/cg2015644.Search in Google Scholar

3. Li, J.-R.; Kuppler, R. J.; Zhou, H.-C. Chem. Soc. Rev. 2009, 38, 1477–1504; https://doi.org/10.1039/b802426j.Search in Google Scholar PubMed

4. McHugh, L. N.; Cordes, D. B.; Wheatley, P. S.; Slawin, A. M. Z.; Morris, R. E. Cryst. Growth Des. 2020, 20, 39–42; https://doi.org/10.1021/acs.cgd.9b01369.Search in Google Scholar

5. Barnes, T. J.; Payne, J.; Pike, S. D. Chem. Commun. 2023, 59, 59–62; https://doi.org/10.1039/d2cc05478g.Search in Google Scholar PubMed

6. Qin, J.-H.; Huang, Y.-D.; Zhao, Y.; Yang, X.-G.; Li, F.-F.; Wang, C.; Ma, L.-F. Inorg. Chem. 2019, 58, 15013–15016; https://doi.org/10.1021/acs.inorgchem.9b02203.Search in Google Scholar PubMed

7. Miao, S.; Sun, X.; Wang, K.; Xu, C.; Li, Z.; Wang, Z. Crystals 2018, 8, 312 (8 pages); https://doi.org/10.3390/cryst8080312.Search in Google Scholar

8. Ju, F.-Y.; Li, Y.-P.; Li, G.-L.; Liu, G.-Z. Chin. J. Struct. Chem. 2016, 35, 404–412.Search in Google Scholar

9. Xue, L.-P.; Lei, X.-D.; Liu, S.-R.; Li, Z.-H. J. Alloys Compd. 2023, 965, 171464 (7 pages); https://doi.org/10.1016/j.jallcom.2023.171464.Search in Google Scholar

10. Ohtsu, H.; Takaoka, M.; Tezuka, Y.; Tsuge, K.; Tanaka, K. Chem. Commun. 2021, 57, 13574–13577; https://doi.org/10.1039/d1cc04665a.Search in Google Scholar PubMed

11. Miao, S.; Li, Z.; Xu, C.; Deng, D.; Ji, B. Crystals 2019, 9, 592 (7 pages); https://doi.org/10.3390/cryst9110592.Search in Google Scholar

12. Li, J.-L.; Yao, S.-L.; Zheng, T.-F.; Xu, H.; Li, J.-Y.; Peng, Y.; Chen, J.-L.; Liu, S.-J.; Wen, H.-R. Dalton Trans. 2022, 51, 5983–5988; https://doi.org/10.1039/d2dt00390b.Search in Google Scholar PubMed

13. Binacchi, F.; Giorgi, E.; Salvadori, G.; Cirri, D.; Stifano, M.; Donati, A.; Garzella, L.; Busto, N.; Garcia, B.; Pratesi, A.; Biver, T. Dalton Trans. 2024, 53, 9700–9714; https://doi.org/10.1039/d4dt00851k.Search in Google Scholar PubMed

14. Shmakova, A. A.; Berezin, A. S.; Abramov, P. A.; Sokolov, M. N. Inorg. Chem. 2020, 59, 1853–1862; https://doi.org/10.1021/acs.inorgchem.9b03064.Search in Google Scholar PubMed

15. Banerjee, D.; Parise, J. B. Cryst. Growth Des. 2011, 11, 4704–4720; https://doi.org/10.1021/cg2008304.Search in Google Scholar

16. Wang, Y.-F.; Wang, L.-Y. Chin. J. Struct. Chem. 2019, 38, 1329–1336.Search in Google Scholar

17. Wan, X.-Y.; Jiang, F.-L.; Chen, L.; Pan, J.; Zhou, K.; Su, K.-Z.; Pang, J.-D.; Lyu, G.-X.; Hong, M.-C. CrystEngComm 2015, 17, 3829–3837; https://doi.org/10.1039/c5ce00420a.Search in Google Scholar

18. Bai, S.-Q.; Jiang, L.; Sun, B.; Young, D. J.; Hor, T. S. A. CrystEngComm 2015, 17, 3305–3311; https://doi.org/10.1039/c4ce02282c.Search in Google Scholar

19. Xin, L.-Y.; Liu, G.-Z.; Li, X.-L.; Wang, L.-Y. Cryst. Growth Des. 2012, 12, 147–157; https://doi.org/10.1021/cg200903k.Search in Google Scholar

20. Wang, Y.; Li, S.; Wang, L. Transition Met. Chem. 2020, 45, 561–568; https://doi.org/10.1007/s11243-020-00408-6.Search in Google Scholar

21. Sheldrick, G. M. Acta Crystallogr. 2015, A71, 3–8.10.1107/S2053273314026370Search in Google Scholar PubMed PubMed Central

22. Sheldrick, G. M. Acta Crystallogr. 2015, C71, 3–8.Search in Google Scholar

Received: 2025-03-20
Accepted: 2025-07-15
Published Online: 2025-09-05

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 26.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/znb-2025-0026/html
Scroll to top button