Abstract
Seven new organoammonium 1,3-dimethylviolurates [R1R2R3NH][1,3-Me2Vio] R1 = R2 = H, R3 = t Bu (3), R3 = Cy (cyclohexyl) (4), R3 = Ad (adamantyl) (5), R3 = C6H2Me2-4,5-NH2-2 (6); R1 = H, R2 = R3 = Et (7), i Pr (8); R1 = H, R2 + R3 = (–CH2–)4 (9) have been prepared by treatment of 1,3-dimethylvioluric acid (2, = HMe2Vio) with different primary and secondary amines. All violurate salts form bright blue or red/purple, nicely crystalline solids. The compounds have been characterized by their solid-state IR and solution NMR (1H, 13C) and UV-spectroscopic data as well as elemental analyses. Structure determinations by single-crystal X-ray diffraction of compounds 4, 7 and 9 revealed supramolecular self-assembly into different one-dimensional substructures through cation–anion N–H⋯N and N–H⋯O hydrogen bonds. In addition, the molecular and crystal structure of anhydrous 1,3-dimethylvioluric acid (2) has also been determined.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission. The syntheses were performed by VL and LS. FTE conceived and supervised the research work and wrote the original manuscript. PK carried out the single-crystal X-ray analyses and wrote the respective part of the manuscript. LH measured and interpreted all spectra. RG provided the necessary infrastructure.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors declare no conflict of interest.
-
Research funding: General financial support of this work by the Otto-von-Guericke-Universität Magdeburg is gratefully acknowledged.
-
Data availability: The raw data can be obtained on well-founded request from the corresponding author.
References
1. Bamfield, P.; Hutchings, M. Chromic Phenomena; Technological Applications of Colour Chemistry, 3rd ed.; RSC Publishing: Cambridge, 2018.Search in Google Scholar
2. Hutchins, K. M.; Gutta, S.; Loren, B. P.; MacGillivray, L. R. Co-Crystals of a Salicylideneaniline: Photochromism Involving Planar Dihedral Angles. Chem. Mater. 2014, 26, 3042–3044. https://doi.org/10.1021/cm500823t.Search in Google Scholar
3. Bašnec, K.; Perše, L. S.; Šumiga, B.; Huskić, M.; Meden, A.; Hladnik, A.; Podgornik, B. B.; Gunde, M. K. Relation Between Colour- and Phase Changes of a Leuco Dye-Based Thermochromic Composite. Sci. Rep. 2018, 8, 5511. https://doi.org/10.1038/s41598-018-23789-2.Search in Google Scholar PubMed PubMed Central
4. Krikstopaitis, K.; Kulys, J. Electrochemical Properties of Violuric Acid and Oxidase Biosensor Preparation. Electrochem. Commun. 2000, 2, 119–123. https://doi.org/10.1016/s1388-2481(99)00158-7.Search in Google Scholar
5. Kim, H.-C.; Mickel, M.; Hampp, N. Molecular Origin of the Stability of Violuric Acid Radicals at High pH-Values. Chem. Phys. Lett. 2003, 371, 410–416. https://doi.org/10.1016/s0009-2614(03)00305-1.Search in Google Scholar
6. Kim, H.-C.; Mickel, M.; Bartling, S.; Hampp, N. Electrochemically Mediated Bleaching of Pulp Fibers. Electrochim. Acta 2001, 47, 799–805. https://doi.org/10.1016/s0013-4686(01)00760-5.Search in Google Scholar
7. Kim, H.-C.; Mickel, M.; Hampp, N. Origin of the Mediator Losses in Electrochemical Delignification Processes: Primary and Secondary Reactions of Violuric Acid and N,N′-Dimethylvioluric Acid Radicals with Lignin Model Compounds. Green Chem. 2003, 5, 8–14. https://doi.org/10.1039/b208812f.Search in Google Scholar
8. Kishioka, S. Spectroelectrochemical Study of Violurates Using Optically-Transparent Thin-Layer Electrochemical Method. Electrochem. Jap. 2023, 91, 112014. https://doi.org/10.5796/electrochemistry.23-67097.Search in Google Scholar
9. Baeyer, A. Untersuchungen über die Harnsäuregruppe. Liebigs Ann. Chem. 1863, 127, 1–27. https://doi.org/10.1002/jlac.18631270102.Search in Google Scholar
10. Baeyer, A. Untersuchungen über die Harnsäuregruppe. Liebigs Ann. Chem. 1864, 127, 199–175.10.1002/jlac.18631270214Search in Google Scholar
11. Baeyer, A. Untersuchungen über die Harnsäuregruppe. Liebigs Ann. Chem. 1864, 131, 291–302. https://doi.org/10.1002/jlac.18641310306.Search in Google Scholar
12. Magnanini, G. Über die Hypothese der Farben der Ionen. Z. Phys. Chem. 1893, 12, 56–62.10.1515/zpch-1893-1204Search in Google Scholar
13. Euler, H. Zur Kenntniss der Pseudosäuren. Ber. Dtsch. Chem. Ges. 1906, 39, 1607–1613.10.1002/cber.19060390283Search in Google Scholar
14. Hantzsch, A. Über Pantochromie und Chromoisomerie von Violuraten und verwandten Oximidoketon-Salzen. Ber. Dtsch. Chem. Ges. 1909, 42, 966–983.10.1002/cber.190904201157Search in Google Scholar
15. Hantzsch, A.; Isherwood, P. C. C. Über Salze und Ester der Violursäure-Gruppe. Ber. Dtsch. Chem. Ges. 1909, 42, 986–1000. https://doi.org/10.1002/cber.190904201158.Search in Google Scholar
16. Hantzsch, A.; Issaias, B. Über polychrome und chromotrope Violurate. Ber. Dtsch. Chem. Ges. 1909, 42, 1000–1007. https://doi.org/10.1002/cber.190904201159.Search in Google Scholar
17. Liebing, P.; Stein, F.; Hilfert, L.; Lorenz, V.; Oliynyk, K.; Edelmann, F. T. Synthesis and Structural Investigation of Brightly Colored Organoammonium Violurates. Z. Anorg. Allg. Chem. 2019, 645, 36–43. https://doi.org/10.1002/zaac.201800439.Search in Google Scholar
18. Bonacin, J. A.; Formiga, A. L. B.; de Melo, V. H. S.; Toma, H. E. Vibrational Spectra and Theoretical Studies of Tautomerism and Hydrogen Bonding in the Violuric Acid and 6-Amino-5-Nitrosouracil System. Vib. Spectrosc. 2007, 44, 133–141. https://doi.org/10.1016/j.vibspec.2006.10.007.Search in Google Scholar
19. Nichol, G. S.; Clegg, W. Ammonium Violurate: A Compact Structure with Extensive Hydrogen Bonding in Three Dimensions. Acta Crystallogr. 2007, C63, o609–o612. https://doi.org/10.1107/s0108270107044241.Search in Google Scholar
20. Kolev, T.; Koleva, B. B.; Seidel, R. W.; Spiteller, M.; Sheldrick, W. S. New Aspects on the Origin of Color in the Solid State. Coherently Shifting of the Protons in Violurate Crystals. Cryst. Growth Des. 2009, 9, 3348–3352. https://doi.org/10.1021/cg900188k.Search in Google Scholar
21. Gryl, M.; Rydz, A.; Wojnarska, J.; Krawczuk, A.; Kozieł, M.; Seidler, T.; Ostrowsky, K.; Marzec, M.; Stadnicka, K. M. Origin of Chromic Effects and Crystal-to-Crystal Phase Transition in the Polymorphs of Tyraminium Violurate. IUCrJ 2019, 6, 226–237. https://doi.org/10.1107/s2052252518017037.Search in Google Scholar
22. Awadallah, R. M.; Belal, A. A. M.; Issa, R. M.; Peacock, R. D. The Colours of Simple Salts of the Violurate Anion. Spectrochim. Acta, Part A 1991, 47, 1541–1546. https://doi.org/10.1016/0584-8539(91)80248-h.Search in Google Scholar
23. Lorenz, V.; Liebing, P.; Engelhardt, F.; Stein, F.; Kühling, M.; Schröder, K.; Edelmann, F. T. Review: The Multicolored Coordination Chemistry of Violurate Anions. J. Coord. Chem. 2019, 72, 1–34, and references therein. https://doi.org/10.1080/00958972.2018.1560431.Search in Google Scholar
24. Techow, W. Ueber die Verwandlungen des Dimethylalloxans. Ber. Dtsch. Chem. Ges. 1894, 27, 3082–3089. https://doi.org/10.1002/cber.18940270384.Search in Google Scholar
25. Fischer, E.; Ach, L. Synthese des Caffeïns. Ber. Dtsch. Chem. Ges. 1895, 28, 3135–3143. https://doi.org/10.1002/cber.189502803156.Search in Google Scholar
26. Andreasch, R. Über Dimethylviolursäure und Dimethyldilitursäure. Monatsh. Chem. 1895, 16, 17–33. https://doi.org/10.1007/bf01518991.Search in Google Scholar
27. Lorenz, V.; Liebing, P.; Hilfert, L.; Schröder, L.; Edelmann, F. T. Synthesis and Structural Investigation of a Complete Series of Brightly Colored Alkali Metal 1,3-Dimethylviolurates. Z. Anorg. Allg. Chem. 2020, 646, 1854–1860. https://doi.org/10.1002/zaac.202000356.Search in Google Scholar
28. Lorenz, V.; Liebing, P.; Müller, M.; Hilfert, L.; Feneberg, M.; Kluth, E.; Kühling, M.; Buchner, M. R.; Goldhahn, R.; Edelmann, F. T. Small Compound – Big Colors: Synthesis and Structural Investigation of Brightly Colored Alkaline Earth Metal 1,3-Dimethylviolurates. Dalton Trans. 2022, 51, 7975–7985. https://doi.org/10.1039/d2dt00606e.Search in Google Scholar PubMed
29. Leermakers, P. A.; Hoffman, W. A. Chelates of Violuric Acid. J. Am. Chem. Soc. 1958, 80, 5663–5667; https://doi.org/10.1021/ja01554a021.Search in Google Scholar
30. Sheldrick, G. M. Shelxt – Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. 2015, A71, 3–8. https://doi.org/10.1107/s2053273314026370.Search in Google Scholar
31. Sheldrick, G. M. Crystal Structure Refinement with Shelxl. Acta Crystallogr. 2015, C71, 3–8. https://doi.org/10.1107/s2053229614024218.Search in Google Scholar PubMed PubMed Central
32. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. Olex2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341. https://doi.org/10.1107/s0021889808042726.Search in Google Scholar
33. Bruker AXS. Apex4, Sadabs; Bruker AXS Inc.: Madison, Wisconsin, USA, 2001.Search in Google Scholar
34. STOE & Cie. X-Area, X-Red; STOE & Cie GmbH: Darmstadt, Germany, 2002.Search in Google Scholar
35. Banik, R.; Roy, S.; Bauza, A.; Frontera, A.; Das, S. Cadmium(II) Complexes Containing N,N’-Dimethylviolurate as Ligand or Counteranion: Synthesis, Characterization, Crystal Structures and DFT Study. RSC Adv. 2015, 5, 10826–10836. https://doi.org/10.1039/c4ra10251g.Search in Google Scholar
36. Nichol, G. S.; Clegg, W. Violuric Acid Monohydrate: A Definitive Redetermination at 150 K. Acta Crystallogr. 2005, E61, o3788–o3790. https://doi.org/10.1107/s160053680503343x.Search in Google Scholar
37. Nichol, G. S.; Clegg, W. Hydrogen-Bonding and Carbonyl–Carbonyl Interactions in Violuric Acid Methanol Solvate. Acta Crystallogr. 2005, C61, o718–o721. https://doi.org/10.1107/s010827010503605x.Search in Google Scholar PubMed
38. Guille, K.; Harrington, R. W.; Clegg, W. Violuric Acid Monohydrate: A Second Polymorph with More Extensive Hydrogen Bonding. Acta Crystallogr. 2007, C63, o327–o329. https://doi.org/10.1107/s010827010701743x.Search in Google Scholar PubMed
39. Seidel, R. W.; Kolev, T. M. Crystal Structure of 1,10-Phenanthrolinium Violurate Violuric Acid Pentahydrate. Acta Crystallogr. 2024, E80, 1288–1292. https://doi.org/10.1107/s205698902401065x.Search in Google Scholar PubMed PubMed Central
40. Rydz, A.; Gryl, M.; Ostrowska, K.; Stadnicka, K. M. Deciphering Colour Mechanisms in Co-Crystals and Salts Containing Violuric Acid and Chosen L-Amino Acids. J. Mater. Chem. 2024, 12, 16322–16331. https://doi.org/10.1039/d4tc03209h.Search in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- In this issue
- Research Articles
- Synthesis and structural investigation of brightly colored organoammonium 1,3-dimethylviolurates
- Crystal structure, X-ray emission properties and 57Fe Mössbauer spectra of TaFeP
- 113Cd NMR-spectroscopic characterization of Y2Cu2Cd and Y2Pd2Cd
- CaCu5-derived rare earth-transition metal-tetrelides with Kagome-like substructures
- CuI and Ni0 complexes of a ferrocene-based cyclic (alkyl)(amino)carbene with unexpected structures
- Cadmium(II) and zinc(II) complexes based on 2-morpholine-pyridine-4-carboxylic acid: syntheses and structures
- Transforming agricultural waste into cement additives for durable and eco-friendly construction materials: rheological and mechanical properties
Articles in the same Issue
- Frontmatter
- In this issue
- Research Articles
- Synthesis and structural investigation of brightly colored organoammonium 1,3-dimethylviolurates
- Crystal structure, X-ray emission properties and 57Fe Mössbauer spectra of TaFeP
- 113Cd NMR-spectroscopic characterization of Y2Cu2Cd and Y2Pd2Cd
- CaCu5-derived rare earth-transition metal-tetrelides with Kagome-like substructures
- CuI and Ni0 complexes of a ferrocene-based cyclic (alkyl)(amino)carbene with unexpected structures
- Cadmium(II) and zinc(II) complexes based on 2-morpholine-pyridine-4-carboxylic acid: syntheses and structures
- Transforming agricultural waste into cement additives for durable and eco-friendly construction materials: rheological and mechanical properties