Home Physical Sciences Synthesis and structural investigation of brightly colored organoammonium 1,3-dimethylviolurates
Article
Licensed
Unlicensed Requires Authentication

Synthesis and structural investigation of brightly colored organoammonium 1,3-dimethylviolurates

  • Volker Lorenz , Phil Köhler , Lea Schröder , Liane Hilfert , Rüdiger Goldhahn and Frank T. Edelmann EMAIL logo
Published/Copyright: September 12, 2025
Become an author with De Gruyter Brill

Abstract

Seven new organoammonium 1,3-dimethylviolurates [R1R2R3NH][1,3-Me2Vio] R1 = R2 = H, R3 =  t Bu (3), R3 = Cy (cyclohexyl) (4), R3 = Ad (adamantyl) (5), R3 = C6H2Me2-4,5-NH2-2 (6); R1 = H, R2 = R3 = Et (7), i Pr (8); R1 = H, R2 + R3 = (–CH2–)4 (9) have been prepared by treatment of 1,3-dimethylvioluric acid (2, = HMe2Vio) with different primary and secondary amines. All violurate salts form bright blue or red/purple, nicely crystalline solids. The compounds have been characterized by their solid-state IR and solution NMR (1H, 13C) and UV-spectroscopic data as well as elemental analyses. Structure determinations by single-crystal X-ray diffraction of compounds 4, 7 and 9 revealed supramolecular self-assembly into different one-dimensional substructures through cation–anion N–H⋯N and N–H⋯O hydrogen bonds. In addition, the molecular and crystal structure of anhydrous 1,3-dimethylvioluric acid (2) has also been determined.


Corresponding author: Frank T. Edelmann, Institut für Physik, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany, E-mail:
Dedicated to Professor Herbert W. Roesky on the Occasion of his 90th Birthday.
  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission. The syntheses were performed by VL and LS. FTE conceived and supervised the research work and wrote the original manuscript. PK carried out the single-crystal X-ray analyses and wrote the respective part of the manuscript. LH measured and interpreted all spectra. RG provided the necessary infrastructure.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors declare no conflict of interest.

  6. Research funding: General financial support of this work by the Otto-von-Guericke-Universität Magdeburg is gratefully acknowledged.

  7. Data availability: The raw data can be obtained on well-founded request from the corresponding author.

References

1. Bamfield, P.; Hutchings, M. Chromic Phenomena; Technological Applications of Colour Chemistry, 3rd ed.; RSC Publishing: Cambridge, 2018.Search in Google Scholar

2. Hutchins, K. M.; Gutta, S.; Loren, B. P.; MacGillivray, L. R. Co-Crystals of a Salicylideneaniline: Photochromism Involving Planar Dihedral Angles. Chem. Mater. 2014, 26, 3042–3044. https://doi.org/10.1021/cm500823t.Search in Google Scholar

3. Bašnec, K.; Perše, L. S.; Šumiga, B.; Huskić, M.; Meden, A.; Hladnik, A.; Podgornik, B. B.; Gunde, M. K. Relation Between Colour- and Phase Changes of a Leuco Dye-Based Thermochromic Composite. Sci. Rep. 2018, 8, 5511. https://doi.org/10.1038/s41598-018-23789-2.Search in Google Scholar PubMed PubMed Central

4. Krikstopaitis, K.; Kulys, J. Electrochemical Properties of Violuric Acid and Oxidase Biosensor Preparation. Electrochem. Commun. 2000, 2, 119–123. https://doi.org/10.1016/s1388-2481(99)00158-7.Search in Google Scholar

5. Kim, H.-C.; Mickel, M.; Hampp, N. Molecular Origin of the Stability of Violuric Acid Radicals at High pH-Values. Chem. Phys. Lett. 2003, 371, 410–416. https://doi.org/10.1016/s0009-2614(03)00305-1.Search in Google Scholar

6. Kim, H.-C.; Mickel, M.; Bartling, S.; Hampp, N. Electrochemically Mediated Bleaching of Pulp Fibers. Electrochim. Acta 2001, 47, 799–805. https://doi.org/10.1016/s0013-4686(01)00760-5.Search in Google Scholar

7. Kim, H.-C.; Mickel, M.; Hampp, N. Origin of the Mediator Losses in Electrochemical Delignification Processes: Primary and Secondary Reactions of Violuric Acid and N,N′-Dimethylvioluric Acid Radicals with Lignin Model Compounds. Green Chem. 2003, 5, 8–14. https://doi.org/10.1039/b208812f.Search in Google Scholar

8. Kishioka, S. Spectroelectrochemical Study of Violurates Using Optically-Transparent Thin-Layer Electrochemical Method. Electrochem. Jap. 2023, 91, 112014. https://doi.org/10.5796/electrochemistry.23-67097.Search in Google Scholar

9. Baeyer, A. Untersuchungen über die Harnsäuregruppe. Liebigs Ann. Chem. 1863, 127, 1–27. https://doi.org/10.1002/jlac.18631270102.Search in Google Scholar

10. Baeyer, A. Untersuchungen über die Harnsäuregruppe. Liebigs Ann. Chem. 1864, 127, 199–175.10.1002/jlac.18631270214Search in Google Scholar

11. Baeyer, A. Untersuchungen über die Harnsäuregruppe. Liebigs Ann. Chem. 1864, 131, 291–302. https://doi.org/10.1002/jlac.18641310306.Search in Google Scholar

12. Magnanini, G. Über die Hypothese der Farben der Ionen. Z. Phys. Chem. 1893, 12, 56–62.10.1515/zpch-1893-1204Search in Google Scholar

13. Euler, H. Zur Kenntniss der Pseudosäuren. Ber. Dtsch. Chem. Ges. 1906, 39, 1607–1613.10.1002/cber.19060390283Search in Google Scholar

14. Hantzsch, A. Über Pantochromie und Chromoisomerie von Violuraten und verwandten Oximidoketon-Salzen. Ber. Dtsch. Chem. Ges. 1909, 42, 966–983.10.1002/cber.190904201157Search in Google Scholar

15. Hantzsch, A.; Isherwood, P. C. C. Über Salze und Ester der Violursäure-Gruppe. Ber. Dtsch. Chem. Ges. 1909, 42, 986–1000. https://doi.org/10.1002/cber.190904201158.Search in Google Scholar

16. Hantzsch, A.; Issaias, B. Über polychrome und chromotrope Violurate. Ber. Dtsch. Chem. Ges. 1909, 42, 1000–1007. https://doi.org/10.1002/cber.190904201159.Search in Google Scholar

17. Liebing, P.; Stein, F.; Hilfert, L.; Lorenz, V.; Oliynyk, K.; Edelmann, F. T. Synthesis and Structural Investigation of Brightly Colored Organoammonium Violurates. Z. Anorg. Allg. Chem. 2019, 645, 36–43. https://doi.org/10.1002/zaac.201800439.Search in Google Scholar

18. Bonacin, J. A.; Formiga, A. L. B.; de Melo, V. H. S.; Toma, H. E. Vibrational Spectra and Theoretical Studies of Tautomerism and Hydrogen Bonding in the Violuric Acid and 6-Amino-5-Nitrosouracil System. Vib. Spectrosc. 2007, 44, 133–141. https://doi.org/10.1016/j.vibspec.2006.10.007.Search in Google Scholar

19. Nichol, G. S.; Clegg, W. Ammonium Violurate: A Compact Structure with Extensive Hydrogen Bonding in Three Dimensions. Acta Crystallogr. 2007, C63, o609–o612. https://doi.org/10.1107/s0108270107044241.Search in Google Scholar

20. Kolev, T.; Koleva, B. B.; Seidel, R. W.; Spiteller, M.; Sheldrick, W. S. New Aspects on the Origin of Color in the Solid State. Coherently Shifting of the Protons in Violurate Crystals. Cryst. Growth Des. 2009, 9, 3348–3352. https://doi.org/10.1021/cg900188k.Search in Google Scholar

21. Gryl, M.; Rydz, A.; Wojnarska, J.; Krawczuk, A.; Kozieł, M.; Seidler, T.; Ostrowsky, K.; Marzec, M.; Stadnicka, K. M. Origin of Chromic Effects and Crystal-to-Crystal Phase Transition in the Polymorphs of Tyraminium Violurate. IUCrJ 2019, 6, 226–237. https://doi.org/10.1107/s2052252518017037.Search in Google Scholar

22. Awadallah, R. M.; Belal, A. A. M.; Issa, R. M.; Peacock, R. D. The Colours of Simple Salts of the Violurate Anion. Spectrochim. Acta, Part A 1991, 47, 1541–1546. https://doi.org/10.1016/0584-8539(91)80248-h.Search in Google Scholar

23. Lorenz, V.; Liebing, P.; Engelhardt, F.; Stein, F.; Kühling, M.; Schröder, K.; Edelmann, F. T. Review: The Multicolored Coordination Chemistry of Violurate Anions. J. Coord. Chem. 2019, 72, 1–34, and references therein. https://doi.org/10.1080/00958972.2018.1560431.Search in Google Scholar

24. Techow, W. Ueber die Verwandlungen des Dimethylalloxans. Ber. Dtsch. Chem. Ges. 1894, 27, 3082–3089. https://doi.org/10.1002/cber.18940270384.Search in Google Scholar

25. Fischer, E.; Ach, L. Synthese des Caffeïns. Ber. Dtsch. Chem. Ges. 1895, 28, 3135–3143. https://doi.org/10.1002/cber.189502803156.Search in Google Scholar

26. Andreasch, R. Über Dimethylviolursäure und Dimethyldilitursäure. Monatsh. Chem. 1895, 16, 17–33. https://doi.org/10.1007/bf01518991.Search in Google Scholar

27. Lorenz, V.; Liebing, P.; Hilfert, L.; Schröder, L.; Edelmann, F. T. Synthesis and Structural Investigation of a Complete Series of Brightly Colored Alkali Metal 1,3-Dimethylviolurates. Z. Anorg. Allg. Chem. 2020, 646, 1854–1860. https://doi.org/10.1002/zaac.202000356.Search in Google Scholar

28. Lorenz, V.; Liebing, P.; Müller, M.; Hilfert, L.; Feneberg, M.; Kluth, E.; Kühling, M.; Buchner, M. R.; Goldhahn, R.; Edelmann, F. T. Small Compound – Big Colors: Synthesis and Structural Investigation of Brightly Colored Alkaline Earth Metal 1,3-Dimethylviolurates. Dalton Trans. 2022, 51, 7975–7985. https://doi.org/10.1039/d2dt00606e.Search in Google Scholar PubMed

29. Leermakers, P. A.; Hoffman, W. A. Chelates of Violuric Acid. J. Am. Chem. Soc. 1958, 80, 5663–5667; https://doi.org/10.1021/ja01554a021.Search in Google Scholar

30. Sheldrick, G. M. Shelxt – Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. 2015, A71, 3–8. https://doi.org/10.1107/s2053273314026370.Search in Google Scholar

31. Sheldrick, G. M. Crystal Structure Refinement with Shelxl. Acta Crystallogr. 2015, C71, 3–8. https://doi.org/10.1107/s2053229614024218.Search in Google Scholar PubMed PubMed Central

32. Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. Olex2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341. https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

33. Bruker AXS. Apex4, Sadabs; Bruker AXS Inc.: Madison, Wisconsin, USA, 2001.Search in Google Scholar

34. STOE & Cie. X-Area, X-Red; STOE & Cie GmbH: Darmstadt, Germany, 2002.Search in Google Scholar

35. Banik, R.; Roy, S.; Bauza, A.; Frontera, A.; Das, S. Cadmium(II) Complexes Containing N,N’-Dimethylviolurate as Ligand or Counteranion: Synthesis, Characterization, Crystal Structures and DFT Study. RSC Adv. 2015, 5, 10826–10836. https://doi.org/10.1039/c4ra10251g.Search in Google Scholar

36. Nichol, G. S.; Clegg, W. Violuric Acid Monohydrate: A Definitive Redetermination at 150 K. Acta Crystallogr. 2005, E61, o3788–o3790. https://doi.org/10.1107/s160053680503343x.Search in Google Scholar

37. Nichol, G. S.; Clegg, W. Hydrogen-Bonding and Carbonyl–Carbonyl Interactions in Violuric Acid Methanol Solvate. Acta Crystallogr. 2005, C61, o718–o721. https://doi.org/10.1107/s010827010503605x.Search in Google Scholar PubMed

38. Guille, K.; Harrington, R. W.; Clegg, W. Violuric Acid Monohydrate: A Second Polymorph with More Extensive Hydrogen Bonding. Acta Crystallogr. 2007, C63, o327–o329. https://doi.org/10.1107/s010827010701743x.Search in Google Scholar PubMed

39. Seidel, R. W.; Kolev, T. M. Crystal Structure of 1,10-Phenanthrolinium Violurate Violuric Acid Pentahydrate. Acta Crystallogr. 2024, E80, 1288–1292. https://doi.org/10.1107/s205698902401065x.Search in Google Scholar PubMed PubMed Central

40. Rydz, A.; Gryl, M.; Ostrowska, K.; Stadnicka, K. M. Deciphering Colour Mechanisms in Co-Crystals and Salts Containing Violuric Acid and Chosen L-Amino Acids. J. Mater. Chem. 2024, 12, 16322–16331. https://doi.org/10.1039/d4tc03209h.Search in Google Scholar

Received: 2025-07-14
Accepted: 2025-07-24
Published Online: 2025-09-12
Published in Print: 2025-10-27

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 12.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/znb-2025-0049/html
Scroll to top button