Startseite Eu2Ru3Si5 and Eu2Ir3Ga5 – first europium compounds with U2Mn3Si5-type structure but different europium valence
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Eu2Ru3Si5 and Eu2Ir3Ga5 – first europium compounds with U2Mn3Si5-type structure but different europium valence

  • Stefan Seidel , Thomas Harmening , Jutta Kösters , Aylin Koldemir , Wilma Pröbsting , Simon Engelbert und Rainer Pöttgen EMAIL logo
Veröffentlicht/Copyright: 30. März 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The silicide Eu2Ru3Si5 was synthesized from the elements in a sealed tantalum tube in a high-frequency furnace, while the gallide Eu2Ir3Ga5 was obtained by arc-melting. Both structures were refined from single-crystal X-ray diffractometer data: P4/mnc, a = 1072.69(8), c = 569.55(5) pm, wR = 0.0453, 617 F2 values, 31 variables for Eu2Ru3Si5 and a = 1122.18(7), c = 583.17(4) pm, wR = 0.0546, 729 F2 values, 31 variables for Eu2Ir3Ga4.95(1). The gallide shows small defects on one 8h site. The transition metal atoms in Eu2Ru3Si5 and Eu2Ir3Ga5 have octahedral p element coordination. These Ru@Si6 respectively Ir@Ga6 polyhedra are condensed to three-dimensional [Ru3Si5]6− respectively [Ir3Ga5]4− polyanionic networks. The ground states of Eu(III) in Eu2Ru3Si5 and Eu(II) in Eu2Ir3Ga5 were determined by 151Eu Mössbauer spectroscopy.


Corresponding author: Rainer Pöttgen, Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, 48149 Münster, Germany, E-mail:

Acknowledgements

We thank Dipl.-Ing. U. Ch. Rodewald for the intensity data collections.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Yarmolyuk, Ya. P., Aksel’rud, L. G., Gladyshevskii, E. I. Kristallografiya 1977, 22, 627–629.Suche in Google Scholar

2. Villars, P., Cenzual, K. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (release 2022/23); ASM International®: Materials Park, Ohio (USA), 2022.Suche in Google Scholar

3. Bugaris, D. E., Malliakas, C. D., Han, F., Calta, N. P., Sturza, M., Krogstad, M. J., Osborn, R., Rosenkranz, S., Ruff, J. P. C., Trimarchi, G., Bud’ko, S. L., Balasubramanian, M., Chung, D. Y., Kanatzidis, M. G. J. Am. Chem. Soc. 2017, 139, 4130–4143; https://doi.org/10.1021/jacs.7b00284.Suche in Google Scholar PubMed

4. Myakush, O. R., Fedorchuk, A. A., Oleksyn, O. Ya., Schollmeyer, D. Kristallografiya 1999, 44, 822–823.10.1097/00006123-199904000-00074Suche in Google Scholar

5. Myakush, O., Fedorchuk, A. Visn. Lviv. Derzh. Univ., Ser. Khim. 2001, 40, 32–35.Suche in Google Scholar

6. Jeitschko, W., Schlüter, M. Z. Anorg. Allg. Chem. 2010, 636, 1100–1105; https://doi.org/10.1002/zaac.200900530.Suche in Google Scholar

7. Wastin, F., Rebizant, J., Sanchez, J. P., Blaise, A., Goffart, J., Spirlet, J. C., Walker, C. T., Fuger, J. J. Alloys Compd. 1994, 210, 83–89; https://doi.org/10.1016/0925-8388(94)90119-8.Suche in Google Scholar

8. Leithe-Jasper, A., Rogl, P., Potter, P. E. J. Nucl. Mater. 1996, 230, 302–305; https://doi.org/10.1016/0022-3115(96)00125-0.Suche in Google Scholar

9. Braun, H. F. Phys. Lett. A 1980, 75, 386–388; https://doi.org/10.1016/0375-9601(80)90849-x.Suche in Google Scholar

10. Umarji, A. M., Malik, S. K., Shenoy, G. K. J. Appl. Phys. 1985, 57, 3118–3120; https://doi.org/10.1063/1.335177.Suche in Google Scholar

11. Mielke, A., Kim, W. W., Rieger, J. J., Fraunberger, G., Scheidt, E.-W., Stewart, G. R. Phys. Rev. B 1994, 50, 16522–16527; https://doi.org/10.1103/physrevb.50.16522.Suche in Google Scholar PubMed

12. Muro, Y., Wada, T., Fukuhara, T., Kuwa, T. JPS Conf. Proc. 2014, 3, 011004.Suche in Google Scholar

13. Méot-Meyer, M., Venturini, G., Malaman, B., Mc Rae, E., Roques, B. Mater. Res. Bull. 1985, 20, 1009–1014; https://doi.org/10.1016/0025-5408(85)90198-9.Suche in Google Scholar

14. Nirmala, R., Sankaranarayanan, V., Sethupathi, K., Morozkin, A. V., Chu, Z., Yelon, W. B., Malik, S. K., Yamamoto, Y., Hori, H. J. Alloys Compd. 2002, 347, 9–13; https://doi.org/10.1016/s0925-8388(02)00679-5.Suche in Google Scholar

15. Moodenbaugh, A. R., Cox, D. E., Braun, H. F. Phys. Rev. B 1982, 25, 4702–4710; https://doi.org/10.1103/physrevb.25.4702.Suche in Google Scholar

16. Moodenbaugh, A. R., Cox, D. E., Vining, C. B., Segre, C. U. Phys. Rev. B 1984, 29, 271–277; https://doi.org/10.1103/physrevb.29.271.Suche in Google Scholar

17. Moodenbaugh, A. R., Cox, D. E., Vining, C. B. Phys. Rev. B 1985, 32, 3103–3106; https://doi.org/10.1103/physrevb.32.3103.Suche in Google Scholar PubMed

18. Pöttgen, R., Gulden, Th., Simon, A. GIT Labor-Fachzeitschrift 1999, 43, 133–136.Suche in Google Scholar

19. Pöttgen, R., Lang, A., Hoffmann, R.-D., Künnen, B., Kotzyba, G., Müllmann, R., Mosel, B. D., Rosenhahn, C. Z. Kristallogr. 1999, 214, 143–150.10.1524/zkri.1999.214.3.143Suche in Google Scholar

20. Sichevych, O., Prots, Yu., Schnelle, W., Schmidt, M., Grin, Yu. Z. Kristallogr. NCS 2006, 221, 263–264; https://doi.org/10.1524/ncrs.2006.0066.Suche in Google Scholar

21. Sichevych, O., Schnelle, W., Prots, Yu., Burkhardt, U., Grin, Yu. Z. Naturforsch. 2006, 61b, 904–911.10.1515/znb-2006-0719Suche in Google Scholar

22. Yvon, K., Jeitschko, W., Parthé, E. J. Appl. Crystallogr. 1977, 10, 73–74; https://doi.org/10.1107/s0021889877012898.Suche in Google Scholar

23. Palatinus, L. Acta Crystallogr. 2013, B69, 1–16.10.1107/S0108768112051361Suche in Google Scholar PubMed

24. Palatinus, L., Chapuis, G. J. Appl. Crystallogr. 2007, 40, 786–790; https://doi.org/10.1107/s0021889807029238.Suche in Google Scholar

25. Petříček, V., Dušek, M., Palatinus, L. Z. Kristallogr. 2014, 229, 345–352; https://doi.org/10.1515/zkri-2014-1737.Suche in Google Scholar

26. Long, G. J., Cranshaw, T. E., Longworth, G. Moessbauer Eff. Ref. Data J. 1983, 6, 42–49.Suche in Google Scholar

27. Brand, R. A. WinNormos for Igor6 (Version for Igor 6.2 or above: 22/02/2017); Universität Duisburg: Duisburg (Germany), 2017.Suche in Google Scholar

28. CorelDRAW Graphics Suite 2017 (Version 19.0.0.328); Corel Corporation: Ottawa, Ontario (Canada), 2017.Suche in Google Scholar

29. Bodak, O. I., Kotur, B. Ya., Yarovets, V. I., Gladyshevskii, E. I. Kristallografiya 1977, 22, 385–388.Suche in Google Scholar

30. Paccard, D., Paccard, L. J. Less-Common Met. 1990, 163, L13–L17; https://doi.org/10.1016/0022-5088(90)90606-k.Suche in Google Scholar

31. Morozkin, A. V., Seropegin, Yu. D. J. Alloys Compd. 1996, 237, 124–138; https://doi.org/10.1016/0925-8388(95)02055-1.Suche in Google Scholar

32. Morozkin, A. V., Sviridov, I. A. J. Alloys Compd. 2000, 296. L4–L5.10.1016/S0925-8388(99)00516-2Suche in Google Scholar

33. Salamakha, P., Sologub, O., Bocelli, G., Righi, L. J. Alloys Compd. 2000, 299. L6–L8; https://doi.org/10.1016/s0925-8388(99)00690-8.Suche in Google Scholar

34. Emsley, J. The Elements; Oxford University Press: Oxford, 1999.Suche in Google Scholar

35. Donohue, J. The Structures of the Elements; Wiley: New York, 1974.Suche in Google Scholar

36. Seidel, S., Schubert, L., Hoffmann, R.-D., Pöttgen, R. Z. Anorg. Allg. Chem. 2015, 641, 1749–1754; https://doi.org/10.1002/zaac.201500221.Suche in Google Scholar

37. Rizzoli, C., Sologub, O. L., Salamakha, P. S. J. Alloys Compd. 2002, 337. L4–L7; https://doi.org/10.1016/s0925-8388(01)01937-5.Suche in Google Scholar

38. Chabot, B. J. Less-Common Met. 1984, 102, L23–L25; https://doi.org/10.1016/0022-5088(84)90404-1.Suche in Google Scholar

39. Felner, I., Nowik, I. J. Phys. Chem. Solids 1984, 45, 419–426; https://doi.org/10.1016/0022-3697(84)90149-5.Suche in Google Scholar

40. Grandjean, F., Long, G. J. Mössbauer spectroscopy of europium-containing compounds. In Mössbauer Spectroscopy Applied to Inorganic Chemistry. Modern Inorganic Chemistry; Long, G. J., Grandjean, F., Eds. Springer: Boston, MA, Vol. 3, 1989; pp. 513–597.10.1007/978-1-4899-2289-2_11Suche in Google Scholar

41. Harmening, T., Pöttgen, R. Z. Naturforsch. 2010, 65b, 90–94.10.1515/znb-2010-0116Suche in Google Scholar

42. Stegemann, F., Block, T., Klenner, S., Janka, O. Chem. Eur J. 2019, 25, 3505–3509; https://doi.org/10.1002/chem.201806297.Suche in Google Scholar PubMed

43. Müllmann, R., Ernet, U., Mosel, B. D., Eckert, H., Kremer, R. K., Hoffmann, R.-D., Pöttgen, R. J. Mater. Chem. 2001, 11, 1133–1140; https://doi.org/10.1039/b100055l.Suche in Google Scholar

44. Müllmann, R., Mosel, B. D., Eckert, H., Kotzyba, G., Pöttgen, R. J. Solid State Chem. 1998, 137, 174–180; https://doi.org/10.1006/jssc.1998.7750.Suche in Google Scholar

45. Pöttgen, R., Johrendt, D. Chem. Mater. 2000, 12, 875–897; https://doi.org/10.1021/cm991183v.Suche in Google Scholar

46. De Vries, J. W. C., Thiel, R. C., Buschow, K. H. J. Physica B 1984, 124, 291–298; https://doi.org/10.1016/0378-4363(84)90088-3.Suche in Google Scholar

47. Maślankiewicz, P., Szade, J. J. Alloys Compd. 2006, 423, 69–73; https://doi.org/10.1016/j.jallcom.2005.12.045.Suche in Google Scholar

48. Seiro, S., Kummer, K., Vyalikh, D., Caroca-Canales, N., Geibel, C. Phys. Status Solidi B 2013, 250, 621–625; https://doi.org/10.1002/pssb.201200892.Suche in Google Scholar

49. Mayer, I., Felner, I. J. Phys. Chem. Solids 1977, 38, 1031–1034; https://doi.org/10.1016/0022-3697(77)90206-2.Suche in Google Scholar

50. Hesse, H.-J., Wortmann, G. Hyperfine Interact. 1994, 93, 1499–1504; https://doi.org/10.1007/bf02072899.Suche in Google Scholar

51. Mörsen, E., Mosel, B. D., Müller-Warmuth, W., Reehuis, M., Jeitschko, W. J. Phys. C: Solid State Phys. 1988, 21, 3133–3140; https://doi.org/10.1088/0022-3719/21/16/023.Suche in Google Scholar

52. Hermes, W., Harmening, T., Pöttgen, R. Chem. Mater. 2009, 21, 3325–3331; https://doi.org/10.1021/cm900841t.Suche in Google Scholar

53. Stein, S., Heletta, L., Block, T., Gerke, B., Pöttgen, R. Solid State Sci. 2017, 67, 64–67.10.1016/j.solidstatesciences.2017.03.006Suche in Google Scholar

54. Pöttgen, R., Hoffmann, R.-D., Möller, M. H., Kotzyba, G., Künnen, B., Rosenhahn, C., Mosel, B. D. J. Solid State Chem. 1999, 145, 174–181; https://doi.org/10.1006/jssc.1999.8236.Suche in Google Scholar

55. Engel, S., Gießelmann, E., Pöttgen, R., Janka, O. Rev. Inorg. Chem. 2023, 43, https://doi.org/10.1515/REVIC-2023-0003, in press.Suche in Google Scholar

Received: 2023-03-02
Accepted: 2023-03-11
Published Online: 2023-03-30
Published in Print: 2023-05-25

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 1.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/znb-2023-0009/html?lang=de
Button zum nach oben scrollen