Home Photoredox-catalyzed three-component difluorobenzylation of quinoxalin-2(1H)-ones with unactivated vinylarenes and BrCF2CO2Et/HCF2CO2H
Article
Licensed
Unlicensed Requires Authentication

Photoredox-catalyzed three-component difluorobenzylation of quinoxalin-2(1H)-ones with unactivated vinylarenes and BrCF2CO2Et/HCF2CO2H

  • Lu Shen , Jin-Wei Yuan EMAIL logo , Bing Zhang , Sai-Yi Song , Liang-Ru Yang EMAIL logo , Yong-Mei Xiao , Shou-Ren Zhang EMAIL logo and Ling-Bo Qu
Published/Copyright: February 7, 2023
Become an author with De Gruyter Brill

Abstract

An environmentally friendly strategy for the photo-catalyzed three-component reaction between quinoxalin-2(1H)-ones, vinylarenes, with inexpensive and easily accessible ethyl bromodifluoroacetate/sodium difluoromethanesulfinate is described. This protocol exhibits mild conditions, high efficiency, and excellent functional group tolerance, providing a highly efficient approach for the synthesis of difluorobenzylated quinoxalin-2(1H)-ones by the formation of two carbon-carbon bonds. A radical mechanism is responsible for this three-component transformation.


Corresponding authors: Jin-Wei Yuan and Liang-Ru Yang, School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China, E-mail: (J.-W. Yuan), (L.-R. Yang); and Shou-Ren Zhang, Henan Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, P. R. China, E-mail:

Funding source: Innovative Funds Plan of Henan University of Technology

Award Identifier / Grant number: 2020ZKCJ29

Funding source: The special fund project of Zhengzhou basic and applied basic research

Award Identifier / Grant number: ZZSZX202001

Award Identifier / Grant number: ZZSZX202002

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by the Innovative Funds Plan of Henan University of Technology (No. 2020ZKCJ29) and the special fund project of Zhengzhou basic and applied basic research (ZZSZX202001 and ZZSZX202002).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. O’Hagan, D. Chem. Soc. Rev. 2008, 37, 308–319; https://doi.org/10.1039/b711844a.Search in Google Scholar PubMed

2. Ni, C., Hu, J. Chem. Soc. Rev. 2016, 45, 5441–5454; https://doi.org/10.1039/c6cs00351f.Search in Google Scholar PubMed

3. Yamamoto, K., Li, J., Garber, J. A. O., Rolfes, J. D., Boursalian, G. B., Borghs, J. C., Genicot, C., Jacq, J., van Gastel, M., Neese, F., Ritter, T. Nature 2018, 554, 511–514; https://doi.org/10.1038/nature25749.Search in Google Scholar PubMed

4. Boland, S., Alen, J., Bourin, A., Castermans, K., Boumans, N., Panitti, L., Vanormelingen, J., Leysen, D., Defert, O. Bioorg. Med. Chem. Lett. 2014, 24, 4594–4597; https://doi.org/10.1016/j.bmcl.2014.07.016.Search in Google Scholar PubMed

5. Meanwell, N. A. J. Med. Chem. 2011, 54, 2529–2591; https://doi.org/10.1021/jm1013693.Search in Google Scholar PubMed

6. Zafrani, Y., Yeffet, D., Sod-Moriah, G., Berliner, A., Amir, D., Marciano, D., Gershonov, E., Saphier, S. J. Med. Chem. 2017, 60, 797–804; https://doi.org/10.1021/acs.jmedchem.6b01691.Search in Google Scholar PubMed

7. Erickson, J. A., McLoughlin, J. I. J. Org. Chem. 1995, 60, 1626–1631; https://doi.org/10.1021/jo00111a021.Search in Google Scholar

8. Weïwer, M., Spoonamore, J., Wei, J., Guichard, B., Ross, N. T., Masson, K., Silkworth, W., Dandapani, S., Palmer, M., Scherer, C. A., Stern, A. M., Schreiber, S. L., Munoz, B. ACS Med. Chem. Lett. 2012, 3, 1034–1038; https://doi.org/10.1021/ml300246r.Search in Google Scholar PubMed PubMed Central

9. Willardsen, J. A., Dudley, D. A., Cody, W. L., Chi, L., McClanahan, T. B., Mertz, T. E., Potoczak, R. E., Narasimhan, L. S., Holland, D. R., Rapundalo, S. T., Edmunds, J. J. J. Med. Chem. 2004, 47, 4089–4099; https://doi.org/10.1021/jm0497491.Search in Google Scholar PubMed

10. Galal, S. A., Khairat, S. H. M., Ragab, F. A. F., Abdelsamie, A. S., Ali, M. M., Sliman, S. M., Mortier, J., Wolber, G., El Diwani, H. Eur. J. Med. Chem. 2014, 86, 122–132; https://doi.org/10.1016/j.ejmech.2014.08.048.Search in Google Scholar PubMed

11. Ajani, O. O. Eur. J. Med. Chem. 2014, 85, 688–715; https://doi.org/10.1016/j.ejmech.2014.08.034.Search in Google Scholar PubMed

12. TenBrink, R. E., Im, W. B., Sethy, V. H., Tang, A. H., Carter, D. B. J. Med. Chem. 1994, 37, 758–768; https://doi.org/10.1021/jm00032a008.Search in Google Scholar PubMed

13. Monge, A., Martinez-Crespo, F. J., Cerai, A. L., Palop, J. A., Narro, S., Senador, V., Marin, A., Sainz, Y., Gonzalez, M., Hamilton, E., Barker, A. J. J. Med. Chem. 1995, 38, 4488–4494; https://doi.org/10.1021/jm00022a014.Search in Google Scholar PubMed

14. Badran, M. M., Abouzid, K. A. M., Hussein, M. H. M. Arch Pharm. Res. 2003, 26, 107–113; https://doi.org/10.1007/bf02976653.Search in Google Scholar

15. Yuan, J., Fu, J., Yin, J., Dong, Z., Xiao, Y., Mao, P., Qu, L. Org. Chem. Front. 2018, 5, 2820–2828; https://doi.org/10.1039/c8qo00731d.Search in Google Scholar

16. Fu, J., Yuan, J., Zhang, Y., Xiao, Y., Mao, P., Diao, X., Qu, L. Org. Chem. Front. 2018, 5, 3382–3390; https://doi.org/10.1039/c8qo00979a.Search in Google Scholar

17. Wei, W., Wang, L., Yue, H., Bao, P., Liu, W., Hu, C., Yang, D., Wang, H. ACS Sustainable Chem. Eng. 2018, 6, 17252–17257; https://doi.org/10.1021/acssuschemeng.8b04652.Search in Google Scholar

18. Gu, Y. R., Duan, X. H., Chen, L., Ma, Z. Y., Gao, P., Guo, L. N. Org. Lett. 2019, 21, 917–920; https://doi.org/10.1021/acs.orglett.8b03865.Search in Google Scholar PubMed

19. Xie, L. Y., Jiang, L. L., Tan, J. X., Wang, Y., Xu, X. Q., Zhang, B., Cao, Z., He, W. M. ACS Sustainable Chem. Eng. 2019, 7, 14153–14160; https://doi.org/10.1021/acssuschemeng.9b02822.Search in Google Scholar

20. Yuan, J. W., Fu, J. H., Liu, S. N., Xiao, Y. M., Mao, P., Qu, L. B. Org. Biomol. Chem. 2018, 16, 3203–3212; https://doi.org/10.1039/c8ob00206a.Search in Google Scholar PubMed

21. Yuan, J. W., Liu, S. N., Qu, L. B. Adv. Synth. Catal. 2017, 359, 4197–4207; https://doi.org/10.1002/adsc.201701058.Search in Google Scholar

22. Wei, W., Wang, L., Bao, P., Shao, Y., Yue, H., Yang, D., Yang, X., Zhao, X., Wang, H. Org. Lett. 2018, 20, 7125–7130; https://doi.org/10.1021/acs.orglett.8b03079.Search in Google Scholar PubMed

23. Xu, J., He, L., Liang, C., Yue, X., Ouyang, Y., Zhang, P. ACS Sustainable Chem. Eng. 2021, 9, 13663–13671; https://doi.org/10.1021/acssuschemeng.1c05237.Search in Google Scholar

24. Song, S., Shi, X., Zhu, Y., Ren, Q., Zhou, P., Zhou, J., Li, J. J. Org. Chem. 2022, 87, 4764–4776; https://doi.org/10.1021/acs.joc.2c00043.Search in Google Scholar PubMed

25. Wang, L., Bao, P., Liu, W., Liu, S., Hu, C., Yue, H., Yang, D., Wei, W. Chin. J. Org. Chem. 2018, 38, 3189–3196; https://doi.org/10.6023/cjoc201807014.Search in Google Scholar

26. Sun, Y., Li, X., Yuan, J., Yu, J., Liu, S. Chin. J. Org. Chem. 2022, 42, 631–640.10.6023/cjoc202108050Search in Google Scholar

27. Mao, P., Zhu, J., Yuan, J., Yang, L., Xiao, Y., Zhang, C. Chin. J. Org. Chem. 2019, 39, 1529–1547; https://doi.org/10.6023/cjoc201904025.Search in Google Scholar

28. Wei, Z., Qi, S., Xu, Y., Liu, H., Wu, J., Li, H., Xia, C., Duan, G. Adv. Synth. Catal. 2019, 361, 5490–5498; https://doi.org/10.1002/adsc.201900885.Search in Google Scholar

29. Wang, L., Zhang, Y., Li, F., Hao, X., Zhang, H. Y., Zhao, J. Adv. Synth. Catal. 2018, 360, 3969–3977; https://doi.org/10.1002/adsc.201800863.Search in Google Scholar

30. Xue, W., Su, Y., Wang, K. H., Cao, L., Feng, Y., Zhang, W., Huang, D., Hu, Y. Asian J. Org. Chem. 2019, 8, 887–892; https://doi.org/10.1002/ajoc.201900118.Search in Google Scholar

31. Liu, S., Huang, Y., Qing, F. L., Xu, X. H. Org. Lett. 2018, 20, 5497–5501; https://doi.org/10.1021/acs.orglett.8b02451.Search in Google Scholar PubMed

32. Jin, C., Zhuang, X., Sun, B., Li, D., Zhu, R. Asian J. Org. Chem. 2019, 8, 1490–1494; https://doi.org/10.1002/ajoc.201900369.Search in Google Scholar

33. Wang, L., Liu, H., Li, F., Zhao, J., Zhang, H. Y., Zhang, Y. Adv. Synth. Catal. 2019, 361, 2354–2359; https://doi.org/10.1002/adsc.201900066.Search in Google Scholar

34. Hong, G. F., Yuan, J. W., Fu, J. H., Pan, G. Y., Wang, Z. W., Yang, L. R., Xiao, Y. M., Mao, P., Zhang, X. M. Org. Chem. Front. 2019, 6, 1173–1182; https://doi.org/10.1039/c9qo00105k.Search in Google Scholar

35. Ye, Z. P., Liu, F., Duan, X. Y., Gao, J., Guan, J. P., Xiao, J. A., Xiang, H. Y., Chen, K., Yang, H. J. Org. Chem. 2021, 86, 17173–17183; https://doi.org/10.1021/acs.joc.1c02285.Search in Google Scholar PubMed

36. Dai, P., Li, Y., Chen, Y., Jiao, J., Wang, Q., Li, C., Gu, Y., Zhang, Y., Xia, Q., Zhang, W. H. Org. Lett. 2022, 24, 1357–1361; https://doi.org/10.1021/acs.orglett.2c00048.Search in Google Scholar PubMed

37. Li, Y. Q., Wu, D., Cheng, H. G., Yin, G. Y. Angew. Chem. Int. Ed. 2020, 59, 7990–8003; https://doi.org/10.1002/anie.201913382.Search in Google Scholar PubMed

38. McDonald, R. I., Liu, G. S., Stahl, S. S. Chem. Rev. 2011, 111, 2981–3019; https://doi.org/10.1021/cr100371y.Search in Google Scholar PubMed PubMed Central

39. Jiang, H., Studer, A. Chem. Soc. Rev. 2020, 49, 1790–1811; https://doi.org/10.1039/c9cs00692c.Search in Google Scholar PubMed

40. Dutta, H. S., Ahmad, A., Khan, A. A., Kumar, M., Koley, D. Adv. Synth. Catal. 2019, 361, 5534–5539; https://doi.org/10.1002/adsc.201901212.Search in Google Scholar

41. Shen, J., Xu, J., Huang, L., Zhu, Q., Zhang, P. Adv. Synth. Catal. 2020, 362, 230–241; https://doi.org/10.1002/adsc.201901314.Search in Google Scholar

42. Meng, N., Wang, L., Liu, Q., Li, Q., Lv, Y., Yue, H., Wang, X., Wei, W. J. Org. Chem. 2020, 85, 6888–6896; https://doi.org/10.1021/acs.joc.9b03505.Search in Google Scholar PubMed

43. Meng, N., Lv, Y., Liu, Q., Liu, R., Zhao, X., Wei, W. Chin. Chem. Lett. 2021, 32, 258–262; https://doi.org/10.1016/j.cclet.2020.11.034.Search in Google Scholar

44. Zheng, D., Studer, A. Org. Lett. 2019, 21, 325–329; https://doi.org/10.1021/acs.orglett.8b03849.Search in Google Scholar PubMed PubMed Central

45. Zhu, N., Liu, R., Zhang, C., Wang, K., Feng, J., Zhao, X., Lu, K. Org. Lett. 2022, 24, 3576–3581; https://doi.org/10.1021/acs.orglett.2c01358.Search in Google Scholar PubMed

46. Yuan, Y. R., Li, L., Bu, X., Wang, X., Sun, R., Zhou, M. D., Wang, H. Asian J. Org. Chem. 2022, 11, e202200139.10.1002/ajoc.202200139Search in Google Scholar

47. Lawrence, D. S., Copper, J. E., Smith, C. D. J. Med. Chem. 2001, 44, 594–601; https://doi.org/10.1021/jm000282d.Search in Google Scholar PubMed

48. Wu, B., Yang, Y., Qin, X., Zhang, S., Jing, C., Zhu, C., Ma, B. ChemMedChem 2013, 8, 1913–1917; https://doi.org/10.1002/cmdc.201300324.Search in Google Scholar PubMed

49. Khattab, S. N., Abdel Moneim, S. A. H., Bekhit, A. A., El Massry, A. M., Hassan, S. Y., El-Faham, A., Ahmed, H. E. A., Amer, A. Eur. J. Med. Chem. 2015, 93, 308–320; https://doi.org/10.1016/j.ejmech.2015.02.020.Search in Google Scholar PubMed

50. Hu, L., Yuan, J., Fu, J., Zhang, T., Gao, L., Xiao, Y., Mao, P., Qu, L. Eur. J. Org. Chem. 2018, 2018, 4113–4120; https://doi.org/10.1002/ejoc.201800697.Search in Google Scholar

51. He, X. K., Lu, J., Zhang, A. J., Zhang, Q. Q., Xu, G. Y., Xuan, J. Org. Lett. 2020, 22, 5984–5989; https://doi.org/10.1021/acs.orglett.0c02080.Search in Google Scholar PubMed

52. Yuan, J. W., Shen, L., Ma, M. Y., Feng, S., Yang, W., Yang, L. R., Xiao, Y. M., Zhang, S. R., Qu, L. B. New J. Chem. 2022, 46, 4470–4482; https://doi.org/10.1039/d2nj00131d.Search in Google Scholar

53. Wu, W. Y., Ao, G. Z., Liu, F. Org. Chem. Front. 2018, 5, 2061–2064; https://doi.org/10.1039/c8qo00428e.Search in Google Scholar

54. Hu, J., Zhang, W., Wang, F. Chem. Commun. 2009, 45, 7465–7478; https://doi.org/10.1039/b916463d.Search in Google Scholar PubMed

55. Zhang, D., Fang, Z., Cai, J., Liu, C., He, W., Duan, J., Qin, N., Yang, Z., Guo, K. Chem. Commun. 2020, 56, 8119–8122; https://doi.org/10.1039/d0cc03345f.Search in Google Scholar PubMed

56. Zhang, D., Cai, J., Du, J., Wang, Q., Yang, J., Geng, R., Fang, Z., Guo, K. Org. Lett. 2022, 24, 1434–1438; https://doi.org/10.1021/acs.orglett.1c04241.Search in Google Scholar PubMed

57. Fu, W., Zhu, M., Zou, G., Xu, C., Wang, Z., Ji, B. J. Org. Chem. 2015, 80, 4766–4770; https://doi.org/10.1021/acs.joc.5b00305.Search in Google Scholar PubMed

58. Jiang, X., Jiang, Y., Liu, Q., Li, B., Shi, D. Q., Zhao, Y. J. Org. Chem. 2022, 87, 3546–3554; https://doi.org/10.1021/acs.joc.1c03095.Search in Google Scholar PubMed

59. Sun, X., Yu, S. Org. Lett. 2014, 16, 2938–2941; https://doi.org/10.1021/ol501081h.Search in Google Scholar PubMed


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/znb-2022-0126).


Received: 2022-09-22
Accepted: 2022-12-30
Published Online: 2023-02-07
Published in Print: 2023-05-25

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/znb-2022-0126/html
Scroll to top button