Photoredox-catalyzed three-component difluorobenzylation of quinoxalin-2(1H)-ones with unactivated vinylarenes and BrCF2CO2Et/HCF2CO2H
-
Lu Shen
, Bing Zhang
, Yong-Mei Xiao
and Ling-Bo Qu
Abstract
An environmentally friendly strategy for the photo-catalyzed three-component reaction between quinoxalin-2(1H)-ones, vinylarenes, with inexpensive and easily accessible ethyl bromodifluoroacetate/sodium difluoromethanesulfinate is described. This protocol exhibits mild conditions, high efficiency, and excellent functional group tolerance, providing a highly efficient approach for the synthesis of difluorobenzylated quinoxalin-2(1H)-ones by the formation of two carbon-carbon bonds. A radical mechanism is responsible for this three-component transformation.
Funding source: Innovative Funds Plan of Henan University of Technology
Award Identifier / Grant number: 2020ZKCJ29
Funding source: The special fund project of Zhengzhou basic and applied basic research
Award Identifier / Grant number: ZZSZX202001
Award Identifier / Grant number: ZZSZX202002
-
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This work was supported by the Innovative Funds Plan of Henan University of Technology (No. 2020ZKCJ29) and the special fund project of Zhengzhou basic and applied basic research (ZZSZX202001 and ZZSZX202002).
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. O’Hagan, D. Chem. Soc. Rev. 2008, 37, 308–319; https://doi.org/10.1039/b711844a.Search in Google Scholar PubMed
2. Ni, C., Hu, J. Chem. Soc. Rev. 2016, 45, 5441–5454; https://doi.org/10.1039/c6cs00351f.Search in Google Scholar PubMed
3. Yamamoto, K., Li, J., Garber, J. A. O., Rolfes, J. D., Boursalian, G. B., Borghs, J. C., Genicot, C., Jacq, J., van Gastel, M., Neese, F., Ritter, T. Nature 2018, 554, 511–514; https://doi.org/10.1038/nature25749.Search in Google Scholar PubMed
4. Boland, S., Alen, J., Bourin, A., Castermans, K., Boumans, N., Panitti, L., Vanormelingen, J., Leysen, D., Defert, O. Bioorg. Med. Chem. Lett. 2014, 24, 4594–4597; https://doi.org/10.1016/j.bmcl.2014.07.016.Search in Google Scholar PubMed
5. Meanwell, N. A. J. Med. Chem. 2011, 54, 2529–2591; https://doi.org/10.1021/jm1013693.Search in Google Scholar PubMed
6. Zafrani, Y., Yeffet, D., Sod-Moriah, G., Berliner, A., Amir, D., Marciano, D., Gershonov, E., Saphier, S. J. Med. Chem. 2017, 60, 797–804; https://doi.org/10.1021/acs.jmedchem.6b01691.Search in Google Scholar PubMed
7. Erickson, J. A., McLoughlin, J. I. J. Org. Chem. 1995, 60, 1626–1631; https://doi.org/10.1021/jo00111a021.Search in Google Scholar
8. Weïwer, M., Spoonamore, J., Wei, J., Guichard, B., Ross, N. T., Masson, K., Silkworth, W., Dandapani, S., Palmer, M., Scherer, C. A., Stern, A. M., Schreiber, S. L., Munoz, B. ACS Med. Chem. Lett. 2012, 3, 1034–1038; https://doi.org/10.1021/ml300246r.Search in Google Scholar PubMed PubMed Central
9. Willardsen, J. A., Dudley, D. A., Cody, W. L., Chi, L., McClanahan, T. B., Mertz, T. E., Potoczak, R. E., Narasimhan, L. S., Holland, D. R., Rapundalo, S. T., Edmunds, J. J. J. Med. Chem. 2004, 47, 4089–4099; https://doi.org/10.1021/jm0497491.Search in Google Scholar PubMed
10. Galal, S. A., Khairat, S. H. M., Ragab, F. A. F., Abdelsamie, A. S., Ali, M. M., Sliman, S. M., Mortier, J., Wolber, G., El Diwani, H. Eur. J. Med. Chem. 2014, 86, 122–132; https://doi.org/10.1016/j.ejmech.2014.08.048.Search in Google Scholar PubMed
11. Ajani, O. O. Eur. J. Med. Chem. 2014, 85, 688–715; https://doi.org/10.1016/j.ejmech.2014.08.034.Search in Google Scholar PubMed
12. TenBrink, R. E., Im, W. B., Sethy, V. H., Tang, A. H., Carter, D. B. J. Med. Chem. 1994, 37, 758–768; https://doi.org/10.1021/jm00032a008.Search in Google Scholar PubMed
13. Monge, A., Martinez-Crespo, F. J., Cerai, A. L., Palop, J. A., Narro, S., Senador, V., Marin, A., Sainz, Y., Gonzalez, M., Hamilton, E., Barker, A. J. J. Med. Chem. 1995, 38, 4488–4494; https://doi.org/10.1021/jm00022a014.Search in Google Scholar PubMed
14. Badran, M. M., Abouzid, K. A. M., Hussein, M. H. M. Arch Pharm. Res. 2003, 26, 107–113; https://doi.org/10.1007/bf02976653.Search in Google Scholar
15. Yuan, J., Fu, J., Yin, J., Dong, Z., Xiao, Y., Mao, P., Qu, L. Org. Chem. Front. 2018, 5, 2820–2828; https://doi.org/10.1039/c8qo00731d.Search in Google Scholar
16. Fu, J., Yuan, J., Zhang, Y., Xiao, Y., Mao, P., Diao, X., Qu, L. Org. Chem. Front. 2018, 5, 3382–3390; https://doi.org/10.1039/c8qo00979a.Search in Google Scholar
17. Wei, W., Wang, L., Yue, H., Bao, P., Liu, W., Hu, C., Yang, D., Wang, H. ACS Sustainable Chem. Eng. 2018, 6, 17252–17257; https://doi.org/10.1021/acssuschemeng.8b04652.Search in Google Scholar
18. Gu, Y. R., Duan, X. H., Chen, L., Ma, Z. Y., Gao, P., Guo, L. N. Org. Lett. 2019, 21, 917–920; https://doi.org/10.1021/acs.orglett.8b03865.Search in Google Scholar PubMed
19. Xie, L. Y., Jiang, L. L., Tan, J. X., Wang, Y., Xu, X. Q., Zhang, B., Cao, Z., He, W. M. ACS Sustainable Chem. Eng. 2019, 7, 14153–14160; https://doi.org/10.1021/acssuschemeng.9b02822.Search in Google Scholar
20. Yuan, J. W., Fu, J. H., Liu, S. N., Xiao, Y. M., Mao, P., Qu, L. B. Org. Biomol. Chem. 2018, 16, 3203–3212; https://doi.org/10.1039/c8ob00206a.Search in Google Scholar PubMed
21. Yuan, J. W., Liu, S. N., Qu, L. B. Adv. Synth. Catal. 2017, 359, 4197–4207; https://doi.org/10.1002/adsc.201701058.Search in Google Scholar
22. Wei, W., Wang, L., Bao, P., Shao, Y., Yue, H., Yang, D., Yang, X., Zhao, X., Wang, H. Org. Lett. 2018, 20, 7125–7130; https://doi.org/10.1021/acs.orglett.8b03079.Search in Google Scholar PubMed
23. Xu, J., He, L., Liang, C., Yue, X., Ouyang, Y., Zhang, P. ACS Sustainable Chem. Eng. 2021, 9, 13663–13671; https://doi.org/10.1021/acssuschemeng.1c05237.Search in Google Scholar
24. Song, S., Shi, X., Zhu, Y., Ren, Q., Zhou, P., Zhou, J., Li, J. J. Org. Chem. 2022, 87, 4764–4776; https://doi.org/10.1021/acs.joc.2c00043.Search in Google Scholar PubMed
25. Wang, L., Bao, P., Liu, W., Liu, S., Hu, C., Yue, H., Yang, D., Wei, W. Chin. J. Org. Chem. 2018, 38, 3189–3196; https://doi.org/10.6023/cjoc201807014.Search in Google Scholar
26. Sun, Y., Li, X., Yuan, J., Yu, J., Liu, S. Chin. J. Org. Chem. 2022, 42, 631–640.10.6023/cjoc202108050Search in Google Scholar
27. Mao, P., Zhu, J., Yuan, J., Yang, L., Xiao, Y., Zhang, C. Chin. J. Org. Chem. 2019, 39, 1529–1547; https://doi.org/10.6023/cjoc201904025.Search in Google Scholar
28. Wei, Z., Qi, S., Xu, Y., Liu, H., Wu, J., Li, H., Xia, C., Duan, G. Adv. Synth. Catal. 2019, 361, 5490–5498; https://doi.org/10.1002/adsc.201900885.Search in Google Scholar
29. Wang, L., Zhang, Y., Li, F., Hao, X., Zhang, H. Y., Zhao, J. Adv. Synth. Catal. 2018, 360, 3969–3977; https://doi.org/10.1002/adsc.201800863.Search in Google Scholar
30. Xue, W., Su, Y., Wang, K. H., Cao, L., Feng, Y., Zhang, W., Huang, D., Hu, Y. Asian J. Org. Chem. 2019, 8, 887–892; https://doi.org/10.1002/ajoc.201900118.Search in Google Scholar
31. Liu, S., Huang, Y., Qing, F. L., Xu, X. H. Org. Lett. 2018, 20, 5497–5501; https://doi.org/10.1021/acs.orglett.8b02451.Search in Google Scholar PubMed
32. Jin, C., Zhuang, X., Sun, B., Li, D., Zhu, R. Asian J. Org. Chem. 2019, 8, 1490–1494; https://doi.org/10.1002/ajoc.201900369.Search in Google Scholar
33. Wang, L., Liu, H., Li, F., Zhao, J., Zhang, H. Y., Zhang, Y. Adv. Synth. Catal. 2019, 361, 2354–2359; https://doi.org/10.1002/adsc.201900066.Search in Google Scholar
34. Hong, G. F., Yuan, J. W., Fu, J. H., Pan, G. Y., Wang, Z. W., Yang, L. R., Xiao, Y. M., Mao, P., Zhang, X. M. Org. Chem. Front. 2019, 6, 1173–1182; https://doi.org/10.1039/c9qo00105k.Search in Google Scholar
35. Ye, Z. P., Liu, F., Duan, X. Y., Gao, J., Guan, J. P., Xiao, J. A., Xiang, H. Y., Chen, K., Yang, H. J. Org. Chem. 2021, 86, 17173–17183; https://doi.org/10.1021/acs.joc.1c02285.Search in Google Scholar PubMed
36. Dai, P., Li, Y., Chen, Y., Jiao, J., Wang, Q., Li, C., Gu, Y., Zhang, Y., Xia, Q., Zhang, W. H. Org. Lett. 2022, 24, 1357–1361; https://doi.org/10.1021/acs.orglett.2c00048.Search in Google Scholar PubMed
37. Li, Y. Q., Wu, D., Cheng, H. G., Yin, G. Y. Angew. Chem. Int. Ed. 2020, 59, 7990–8003; https://doi.org/10.1002/anie.201913382.Search in Google Scholar PubMed
38. McDonald, R. I., Liu, G. S., Stahl, S. S. Chem. Rev. 2011, 111, 2981–3019; https://doi.org/10.1021/cr100371y.Search in Google Scholar PubMed PubMed Central
39. Jiang, H., Studer, A. Chem. Soc. Rev. 2020, 49, 1790–1811; https://doi.org/10.1039/c9cs00692c.Search in Google Scholar PubMed
40. Dutta, H. S., Ahmad, A., Khan, A. A., Kumar, M., Koley, D. Adv. Synth. Catal. 2019, 361, 5534–5539; https://doi.org/10.1002/adsc.201901212.Search in Google Scholar
41. Shen, J., Xu, J., Huang, L., Zhu, Q., Zhang, P. Adv. Synth. Catal. 2020, 362, 230–241; https://doi.org/10.1002/adsc.201901314.Search in Google Scholar
42. Meng, N., Wang, L., Liu, Q., Li, Q., Lv, Y., Yue, H., Wang, X., Wei, W. J. Org. Chem. 2020, 85, 6888–6896; https://doi.org/10.1021/acs.joc.9b03505.Search in Google Scholar PubMed
43. Meng, N., Lv, Y., Liu, Q., Liu, R., Zhao, X., Wei, W. Chin. Chem. Lett. 2021, 32, 258–262; https://doi.org/10.1016/j.cclet.2020.11.034.Search in Google Scholar
44. Zheng, D., Studer, A. Org. Lett. 2019, 21, 325–329; https://doi.org/10.1021/acs.orglett.8b03849.Search in Google Scholar PubMed PubMed Central
45. Zhu, N., Liu, R., Zhang, C., Wang, K., Feng, J., Zhao, X., Lu, K. Org. Lett. 2022, 24, 3576–3581; https://doi.org/10.1021/acs.orglett.2c01358.Search in Google Scholar PubMed
46. Yuan, Y. R., Li, L., Bu, X., Wang, X., Sun, R., Zhou, M. D., Wang, H. Asian J. Org. Chem. 2022, 11, e202200139.10.1002/ajoc.202200139Search in Google Scholar
47. Lawrence, D. S., Copper, J. E., Smith, C. D. J. Med. Chem. 2001, 44, 594–601; https://doi.org/10.1021/jm000282d.Search in Google Scholar PubMed
48. Wu, B., Yang, Y., Qin, X., Zhang, S., Jing, C., Zhu, C., Ma, B. ChemMedChem 2013, 8, 1913–1917; https://doi.org/10.1002/cmdc.201300324.Search in Google Scholar PubMed
49. Khattab, S. N., Abdel Moneim, S. A. H., Bekhit, A. A., El Massry, A. M., Hassan, S. Y., El-Faham, A., Ahmed, H. E. A., Amer, A. Eur. J. Med. Chem. 2015, 93, 308–320; https://doi.org/10.1016/j.ejmech.2015.02.020.Search in Google Scholar PubMed
50. Hu, L., Yuan, J., Fu, J., Zhang, T., Gao, L., Xiao, Y., Mao, P., Qu, L. Eur. J. Org. Chem. 2018, 2018, 4113–4120; https://doi.org/10.1002/ejoc.201800697.Search in Google Scholar
51. He, X. K., Lu, J., Zhang, A. J., Zhang, Q. Q., Xu, G. Y., Xuan, J. Org. Lett. 2020, 22, 5984–5989; https://doi.org/10.1021/acs.orglett.0c02080.Search in Google Scholar PubMed
52. Yuan, J. W., Shen, L., Ma, M. Y., Feng, S., Yang, W., Yang, L. R., Xiao, Y. M., Zhang, S. R., Qu, L. B. New J. Chem. 2022, 46, 4470–4482; https://doi.org/10.1039/d2nj00131d.Search in Google Scholar
53. Wu, W. Y., Ao, G. Z., Liu, F. Org. Chem. Front. 2018, 5, 2061–2064; https://doi.org/10.1039/c8qo00428e.Search in Google Scholar
54. Hu, J., Zhang, W., Wang, F. Chem. Commun. 2009, 45, 7465–7478; https://doi.org/10.1039/b916463d.Search in Google Scholar PubMed
55. Zhang, D., Fang, Z., Cai, J., Liu, C., He, W., Duan, J., Qin, N., Yang, Z., Guo, K. Chem. Commun. 2020, 56, 8119–8122; https://doi.org/10.1039/d0cc03345f.Search in Google Scholar PubMed
56. Zhang, D., Cai, J., Du, J., Wang, Q., Yang, J., Geng, R., Fang, Z., Guo, K. Org. Lett. 2022, 24, 1434–1438; https://doi.org/10.1021/acs.orglett.1c04241.Search in Google Scholar PubMed
57. Fu, W., Zhu, M., Zou, G., Xu, C., Wang, Z., Ji, B. J. Org. Chem. 2015, 80, 4766–4770; https://doi.org/10.1021/acs.joc.5b00305.Search in Google Scholar PubMed
58. Jiang, X., Jiang, Y., Liu, Q., Li, B., Shi, D. Q., Zhao, Y. J. Org. Chem. 2022, 87, 3546–3554; https://doi.org/10.1021/acs.joc.1c03095.Search in Google Scholar PubMed
59. Sun, X., Yu, S. Org. Lett. 2014, 16, 2938–2941; https://doi.org/10.1021/ol501081h.Search in Google Scholar PubMed
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/znb-2022-0126).
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- In this issue
- Research Articles
- Photoredox-catalyzed three-component difluorobenzylation of quinoxalin-2(1H)-ones with unactivated vinylarenes and BrCF2CO2Et/HCF2CO2H
- Catalyst-free direct synthesis of indeno[1,2-b]indol-5(4bH)-yl benzimidamides
- Crystal structure of three chloridocuprate(I, II) complexes with methylene blue (MB) counterions
- Crystal structure, photophysical properties, and DFT calculations of a boron difluoride curcumin complex
- The double cluster compound [Nb6Cl14(MeCN)4][Nb6Cl14(pyz)4]·6MeCN (Me: methyl, pyz: pyrazine) with a layered structure resulting from weak intermolecular interactions
- Expanding transition metal borate chemistry to include main group elements: high-pressure synthesis and structural relation of β-MgB4O7
- Eu2Ru3Si5 and Eu2Ir3Ga5 – first europium compounds with U2Mn3Si5-type structure but different europium valence
- Mössbauer-spectroscopic characterization of the stannides Sr2Pd2Sn and Eu2Pd2Sn
- Orthoamide und Iminiumsalze, CVIII. Umsetzungen von Orthoamiden der Alkincarbonsäuren mit CH/NH-aciden, tautomeriefähigen Verbindungen
- Book Review
- Thomas J. Meade (Guest Editor), Astrid Sigel, Helmut Sigel, Eva Freisinger, Roland K. O. Sigel (Series Editors): Molecular Bio-Sensors and the Role of Metal Ions
Articles in the same Issue
- Frontmatter
- In this issue
- Research Articles
- Photoredox-catalyzed three-component difluorobenzylation of quinoxalin-2(1H)-ones with unactivated vinylarenes and BrCF2CO2Et/HCF2CO2H
- Catalyst-free direct synthesis of indeno[1,2-b]indol-5(4bH)-yl benzimidamides
- Crystal structure of three chloridocuprate(I, II) complexes with methylene blue (MB) counterions
- Crystal structure, photophysical properties, and DFT calculations of a boron difluoride curcumin complex
- The double cluster compound [Nb6Cl14(MeCN)4][Nb6Cl14(pyz)4]·6MeCN (Me: methyl, pyz: pyrazine) with a layered structure resulting from weak intermolecular interactions
- Expanding transition metal borate chemistry to include main group elements: high-pressure synthesis and structural relation of β-MgB4O7
- Eu2Ru3Si5 and Eu2Ir3Ga5 – first europium compounds with U2Mn3Si5-type structure but different europium valence
- Mössbauer-spectroscopic characterization of the stannides Sr2Pd2Sn and Eu2Pd2Sn
- Orthoamide und Iminiumsalze, CVIII. Umsetzungen von Orthoamiden der Alkincarbonsäuren mit CH/NH-aciden, tautomeriefähigen Verbindungen
- Book Review
- Thomas J. Meade (Guest Editor), Astrid Sigel, Helmut Sigel, Eva Freisinger, Roland K. O. Sigel (Series Editors): Molecular Bio-Sensors and the Role of Metal Ions