Home Crystal structure, photophysical properties, and DFT calculations of a boron difluoride curcumin complex
Article
Licensed
Unlicensed Requires Authentication

Crystal structure, photophysical properties, and DFT calculations of a boron difluoride curcumin complex

  • Hui Guo , Ziyong Li EMAIL logo and Xiao-Gang Yang
Published/Copyright: February 22, 2023
Become an author with De Gruyter Brill

Abstract

The crystal structure of a curcumin-BF2 complex has been successfully refined from single-crystal X-ray diffraction data of crystals with one molecule of co-crystallized dichloromethane. The complex has a nearly coplanar structure. The molecules form a mesh structure by intermolecular multiple hydrogen bonds, as well as weak hydrogen bonds with CH2Cl2 molecules. An investigation of the photo-physical properties has indicated that the curcumin-BF2 complex possesses a wide absorption band and an intense red emission in the solid state due to a strong electron-withdrawing effect of the BF2 groups. DFT calculations of a single molecule verify the relationships between the photo-physical properties and its intrinsic electronic features, but neglect the role of hydrogen bonding.


Corresponding author: Ziyong Li, College of Chemistry and Chemical Engineering, College of Food and Drug, Luoyang Normal University, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang, Henan Province, 471934, P. R. China, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The author(s) disclose and acknowledge financial support from the National Natural Science Foundation of China (No. 21971100), Project for Science & Technology Innovation Talents in Universities of Henan Province (No. 21HASTIT006). Scientific Research Projects of Henan Province (Grants 212102210638 and 2019GGJS198).

  3. Conflict of interest statement: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

References

1. Aggarwal, B. B., Sundaram, C., Malani, N., Ichikawa, H. Adv. Exp. Med. Biol. 2007, 595, 1–75; https://doi.org/10.1007/978-0-387-46401-5_1.Search in Google Scholar PubMed

2. Almoshari, Y., Iqbal, H., Razzaq, A., Ahmad, K. A., Khan, M. K., Alqahtani, S. S., Sultan, M. H., Khan, B. A. Drug Deliv. 2022, 29, 2633–2643; https://doi.org/10.1080/10717544.2022.2108938.Search in Google Scholar PubMed PubMed Central

3. Rajendran, J. V., Thomas, S., Jafari, Z., Fariborzi, N., Khorasani, S., Mofrad, Z. K., Katouzian, I., Mozafari, M. R. Biointerface Res. Appl. Chem. 2022, 12, 7863–7885.10.33263/BRIAC126.78637885Search in Google Scholar

4. Chakraborti, S., Das, L., Kapoor, N., Das, A., Dwivedi, V., Poddar, A., Chakraborti, G., Janik, M., Basu, G., Panda, D., Chakrabarti, P., Surolia, A., Bhattacharyya, B. J. Med. Chem. 2011, 54, 6183–6196; https://doi.org/10.1021/jm2004046.Search in Google Scholar PubMed

5. Ghosh, S., Hayden, M. S. Nat. Rev. Immunol. 2008, 8, 837–848; https://doi.org/10.1038/nri2423.Search in Google Scholar PubMed

6. Esatbeyoglu, T., Huebbe, P., Ernst, I. M. A., Chin, D., Wagner, A. E., Rimbach, G. Angew. Chem. Int. Ed. 2012, 51, 5308–5332; https://doi.org/10.1002/anie.201107724.Search in Google Scholar PubMed

7. Richhariya, G., Kumar, A., Tekasakul, P., Gupta, B. Renew. Sustain. Energy Rev. 2017, 69, 705–718; https://doi.org/10.1016/j.rser.2016.11.198.Search in Google Scholar

8. Faisal, A. G., Hassan, Q. M. A., Alsalim, T. A., Sultan, H. A., Kamounah, F. S., Emshary, C. A. J. Phys. Org. Chem. 2022, 35, e4401 (16 pages).10.1002/poc.4401Search in Google Scholar

9. Zare, I., Yaraki, M. T., Speranza, G., Najafabadi, A. H., Shourangiz-Haghighi, A., Nik, A. B., Manshian, B. B., Saraiva, C., Soenen, S. J., Kogan, M. J., Lee, J. W., Apollo, N. V., Bernardino, L., Araya, E., Mayer, D., Mao, G., Hamblin, M. R. Chem. Soc. Rev. 2022, 51, 2601–2680; https://doi.org/10.1039/d1cs01111a.Search in Google Scholar PubMed

10. Huo, J., Jia, Q., Huang, H., Zhang, J., Li, P., Dong, X., Huang, W. Chem. Soc. Rev. 2021, 50, 8762–8789; https://doi.org/10.1039/d1cs00074h.Search in Google Scholar PubMed

11. Choi, G., Rejinold, N. S., Piao, H., Choy, J.-H. Chem. Sci. 2021, 12, 5044–5063; https://doi.org/10.1039/d0sc06724e.Search in Google Scholar PubMed PubMed Central

12. Ammon, H. P. T., Wahl, M. A. Planta Med. 1991, 57, 1–7; https://doi.org/10.1055/s-2006-960004.Search in Google Scholar PubMed

13. Winter, S., Tortik, N., Kubin, A., Krammer, B., Plaeter, K. Photochem. Photobiol. Sci. 2013, 12, 1795–1802; https://doi.org/10.1039/c3pp50095k.Search in Google Scholar PubMed

14. Murali, A. C., Nayak, P., Venkatasubbaiah, K. Dalton Trans. 2022, 51, 5751–5771; https://doi.org/10.1039/d2dt00160h.Search in Google Scholar PubMed

15. Chen, P.-Z., Niu, L.-Y., Chen, Y.-Z., Yang, Q.-Z. Coord. Chem. Rev. 2017, 350, 196–216; https://doi.org/10.1016/j.ccr.2017.06.026.Search in Google Scholar

16. Li, Z., Pei, Y., Wang, Y., Lu, Z., Dai, Y., Duan, Y., Ma, Y., Guo, H. J. Org. Chem. 2019, 84, 13364–13373; https://doi.org/10.1021/acs.joc.9b01508.Search in Google Scholar PubMed

17. Li, Z., Gao, X., Hu, X., Zhang, X., Jia, C., Liu, C., Shen, L., Zhu, H., Cui, M., Lu, Z., Guo, H. Dyes Pigments 2021, 192, 109422 (10 pages); https://doi.org/10.1016/j.dyepig.2021.109422.Search in Google Scholar

18. Li, Z., Pei, Y., Hou, S., Dai, Y., Liu, D., Zhu, J., Zhu, Y.-P., Liu, X. Dyes Pigments 2020, 179, 108419; https://doi.org/10.1016/j.dyepig.2020.108419.Search in Google Scholar

19. Ran, C., Xu, X., Raymond, S. B., Ferrara, B. J., Neal, K., Bacskai, B. J., Medarova, Z., Moore, A. J. Am. Chem. Soc. 2009, 131, 15257–15261; https://doi.org/10.1021/ja9047043.Search in Google Scholar PubMed PubMed Central

20. Bai, G., Yu, C., Cheng, C., Hao, E., Wei, Y., Mu, X., Jiao, L. Org. Biomol. Chem. 2014, 12, 1618–1626; https://doi.org/10.1039/c3ob42201a.Search in Google Scholar PubMed

21. Weiss, H., Reichel, J., Görls, H., Schneider, K. R. A., Micheel, M., Pröhl, M., Gottschaldt, M., Dietzek, B., Weigand, W. Beilstein J. Org. Chem. 2017, 13, 2264–2272; https://doi.org/10.3762/bjoc.13.223.Search in Google Scholar PubMed PubMed Central

22. Park, K. S., Kim, M. K., Seo, Y., Ha, T., Yoo, K., Hyeon, S. J., Hwang, Y. J., Lee, J., Ryu, H., Choo, H., Chong, Y. ACS Chem. Neurosci. 2017, 8, 2124–2131; https://doi.org/10.1021/acschemneuro.7b00224.Search in Google Scholar PubMed

23. Bai, B., Yan, C., Zhang, Y., Guo, Z., Zhu, W. H. Chem. Commun. 2018, 54, 12393–12396; https://doi.org/10.1039/c8cc07376g.Search in Google Scholar PubMed

24. Zhang, P., Guo, Z.-Q., Yan, C.-X., Zhu, W.-H. Chin. Chem. Lett. 2017, 28, 1952–1956; https://doi.org/10.1016/j.cclet.2017.08.038.Search in Google Scholar

25. Li, Z., Song, Y., Lu, Z., Li, Z., Li, R., Li, Y., Hou, S., Zhu, Y.-P., Guo, H. Dyes Pigments 2020, 179, 108406 (9 pages); https://doi.org/10.1016/j.dyepig.2020.108406.Search in Google Scholar

26. Bellinger, S., Hatamimoslehabadi, M., Borg, R. E., La, J., Catsoulis, P., Mithila, F., Yelleswarapu, C., Rochford, J. Chem. Commun. 2018, 54, 6352–6355; https://doi.org/10.1039/c8cc03727b.Search in Google Scholar PubMed PubMed Central

27. Bellinger, S., Hatamimoslehabadi, M., Bag, S., Mithila, F., La, J., Frenette, M., Laoui, S., Szalda, D. J., Yelleswarapu, C., Rochford, J. Chem. Eur J. 2018, 24, 906–917; https://doi.org/10.1002/chem.201704423.Search in Google Scholar PubMed

28. Li, Z., Yang, X.-G., Zhang, H., Zhang, J.-R., Tian, X.-K., Qin, J.-H., Ma, L.-F., Yan, D. Inorg. Chem. Front. 2022, 9, 4281–4287; https://doi.org/10.1039/d2qi01112c.Search in Google Scholar

29. Li, Z., Zhang, J.-R., Tian, X.-K., Yang, S., Chen, S., Zhou, H., Yang, X.-G. Chem. Sci. 2022, 13, 9381–9386; https://doi.org/10.1039/d2sc02662g.Search in Google Scholar PubMed PubMed Central

30. Li, Z., Dai, Y., Lu, Z., Pei, Y., Chen, H., Zhang, L., Duan, Y., Guo, H. Chem. Commun. 2019, 55, 13430–13433; https://doi.org/10.1039/c9cc06838d.Search in Google Scholar PubMed

31. Li, Z., Hou, S., Zhang, H., Song, Q., Wang, S., Guo, H. Adv. AgroChem. 2023; https://doi.org/10.1016/j.aac.2023.02.001.Search in Google Scholar

32. Li, Z., Gao, X., Zhang, H., Ma, X., Liu, Y., Guo, H., Yin, J. Chin. Chem. Lett. 2023, 34, 107645 (4 pages); https://doi.org/10.1016/j.cclet.2022.06.068.Search in Google Scholar

33. Li, Z., He, C., Lu, Z., Li, P., Zhu, Y.-P. Dyes Pigments 2020, 182, 108623; https://doi.org/10.1016/j.dyepig.2020.108623.Search in Google Scholar

34. Li, Z., Chen, S., Huang, Y., Zhou, H., Yang, S., Zhang, H., Wang, M., Guo, H., Yin, J. Chem. Eng. J. 2022, 450, 138087 (10 pages); https://doi.org/10.1016/j.cej.2022.138087.Search in Google Scholar

35. Weber, W. M., Hunsaker, L. A., Abcouwer, S. F., Deck, L. M., Vander Jagt, D. L. Bioorg. Med. Chem. 2005, 13, 3811–3820; https://doi.org/10.1016/j.bmc.2005.03.035.Search in Google Scholar PubMed

36. Liu, K., Chen, J., Chojnacki, J., Zhang, S. Tetrahedron Lett. 2013, 54, 2070–2073; https://doi.org/10.1016/j.tetlet.2013.02.015.Search in Google Scholar PubMed PubMed Central

37. CrysAlis Pro Software System (version 1.171.39.6a). Intelligent Data Collection and Processing Software for Small Molecule and Protein Crystallography; Rigaku Oxford Diffraction: Yarnton, Oxfordshire (U. K.), 2015.Search in Google Scholar

38. Sheldrick, G. M. Acta Crystallogr. 2015, A71, 3–8.10.1107/S2053273314026370Search in Google Scholar PubMed PubMed Central

39. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A.Jr., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J., Fox, D. J. Gaussian 09, (revision B.01); Gaussian, Inc.: Wallingford, CT (USA), 2009.Search in Google Scholar

40. Dennington, R., Keith, T., Millam, J. Gaussview (version 5.0); Semichem Inc.: Shawnee Mission, KS (USA), 2009.Search in Google Scholar

Received: 2022-12-06
Accepted: 2023-01-31
Published Online: 2023-02-22
Published in Print: 2023-05-25

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/znb-2022-0147/html
Scroll to top button