Abstract
The crystal structure of a curcumin-BF2 complex has been successfully refined from single-crystal X-ray diffraction data of crystals with one molecule of co-crystallized dichloromethane. The complex has a nearly coplanar structure. The molecules form a mesh structure by intermolecular multiple hydrogen bonds, as well as weak hydrogen bonds with CH2Cl2 molecules. An investigation of the photo-physical properties has indicated that the curcumin-BF2 complex possesses a wide absorption band and an intense red emission in the solid state due to a strong electron-withdrawing effect of the BF2 groups. DFT calculations of a single molecule verify the relationships between the photo-physical properties and its intrinsic electronic features, but neglect the role of hydrogen bonding.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: The author(s) disclose and acknowledge financial support from the National Natural Science Foundation of China (No. 21971100), Project for Science & Technology Innovation Talents in Universities of Henan Province (No. 21HASTIT006). Scientific Research Projects of Henan Province (Grants 212102210638 and 2019GGJS198).
-
Conflict of interest statement: The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.
References
1. Aggarwal, B. B., Sundaram, C., Malani, N., Ichikawa, H. Adv. Exp. Med. Biol. 2007, 595, 1–75; https://doi.org/10.1007/978-0-387-46401-5_1.Search in Google Scholar PubMed
2. Almoshari, Y., Iqbal, H., Razzaq, A., Ahmad, K. A., Khan, M. K., Alqahtani, S. S., Sultan, M. H., Khan, B. A. Drug Deliv. 2022, 29, 2633–2643; https://doi.org/10.1080/10717544.2022.2108938.Search in Google Scholar PubMed PubMed Central
3. Rajendran, J. V., Thomas, S., Jafari, Z., Fariborzi, N., Khorasani, S., Mofrad, Z. K., Katouzian, I., Mozafari, M. R. Biointerface Res. Appl. Chem. 2022, 12, 7863–7885.10.33263/BRIAC126.78637885Search in Google Scholar
4. Chakraborti, S., Das, L., Kapoor, N., Das, A., Dwivedi, V., Poddar, A., Chakraborti, G., Janik, M., Basu, G., Panda, D., Chakrabarti, P., Surolia, A., Bhattacharyya, B. J. Med. Chem. 2011, 54, 6183–6196; https://doi.org/10.1021/jm2004046.Search in Google Scholar PubMed
5. Ghosh, S., Hayden, M. S. Nat. Rev. Immunol. 2008, 8, 837–848; https://doi.org/10.1038/nri2423.Search in Google Scholar PubMed
6. Esatbeyoglu, T., Huebbe, P., Ernst, I. M. A., Chin, D., Wagner, A. E., Rimbach, G. Angew. Chem. Int. Ed. 2012, 51, 5308–5332; https://doi.org/10.1002/anie.201107724.Search in Google Scholar PubMed
7. Richhariya, G., Kumar, A., Tekasakul, P., Gupta, B. Renew. Sustain. Energy Rev. 2017, 69, 705–718; https://doi.org/10.1016/j.rser.2016.11.198.Search in Google Scholar
8. Faisal, A. G., Hassan, Q. M. A., Alsalim, T. A., Sultan, H. A., Kamounah, F. S., Emshary, C. A. J. Phys. Org. Chem. 2022, 35, e4401 (16 pages).10.1002/poc.4401Search in Google Scholar
9. Zare, I., Yaraki, M. T., Speranza, G., Najafabadi, A. H., Shourangiz-Haghighi, A., Nik, A. B., Manshian, B. B., Saraiva, C., Soenen, S. J., Kogan, M. J., Lee, J. W., Apollo, N. V., Bernardino, L., Araya, E., Mayer, D., Mao, G., Hamblin, M. R. Chem. Soc. Rev. 2022, 51, 2601–2680; https://doi.org/10.1039/d1cs01111a.Search in Google Scholar PubMed
10. Huo, J., Jia, Q., Huang, H., Zhang, J., Li, P., Dong, X., Huang, W. Chem. Soc. Rev. 2021, 50, 8762–8789; https://doi.org/10.1039/d1cs00074h.Search in Google Scholar PubMed
11. Choi, G., Rejinold, N. S., Piao, H., Choy, J.-H. Chem. Sci. 2021, 12, 5044–5063; https://doi.org/10.1039/d0sc06724e.Search in Google Scholar PubMed PubMed Central
12. Ammon, H. P. T., Wahl, M. A. Planta Med. 1991, 57, 1–7; https://doi.org/10.1055/s-2006-960004.Search in Google Scholar PubMed
13. Winter, S., Tortik, N., Kubin, A., Krammer, B., Plaeter, K. Photochem. Photobiol. Sci. 2013, 12, 1795–1802; https://doi.org/10.1039/c3pp50095k.Search in Google Scholar PubMed
14. Murali, A. C., Nayak, P., Venkatasubbaiah, K. Dalton Trans. 2022, 51, 5751–5771; https://doi.org/10.1039/d2dt00160h.Search in Google Scholar PubMed
15. Chen, P.-Z., Niu, L.-Y., Chen, Y.-Z., Yang, Q.-Z. Coord. Chem. Rev. 2017, 350, 196–216; https://doi.org/10.1016/j.ccr.2017.06.026.Search in Google Scholar
16. Li, Z., Pei, Y., Wang, Y., Lu, Z., Dai, Y., Duan, Y., Ma, Y., Guo, H. J. Org. Chem. 2019, 84, 13364–13373; https://doi.org/10.1021/acs.joc.9b01508.Search in Google Scholar PubMed
17. Li, Z., Gao, X., Hu, X., Zhang, X., Jia, C., Liu, C., Shen, L., Zhu, H., Cui, M., Lu, Z., Guo, H. Dyes Pigments 2021, 192, 109422 (10 pages); https://doi.org/10.1016/j.dyepig.2021.109422.Search in Google Scholar
18. Li, Z., Pei, Y., Hou, S., Dai, Y., Liu, D., Zhu, J., Zhu, Y.-P., Liu, X. Dyes Pigments 2020, 179, 108419; https://doi.org/10.1016/j.dyepig.2020.108419.Search in Google Scholar
19. Ran, C., Xu, X., Raymond, S. B., Ferrara, B. J., Neal, K., Bacskai, B. J., Medarova, Z., Moore, A. J. Am. Chem. Soc. 2009, 131, 15257–15261; https://doi.org/10.1021/ja9047043.Search in Google Scholar PubMed PubMed Central
20. Bai, G., Yu, C., Cheng, C., Hao, E., Wei, Y., Mu, X., Jiao, L. Org. Biomol. Chem. 2014, 12, 1618–1626; https://doi.org/10.1039/c3ob42201a.Search in Google Scholar PubMed
21. Weiss, H., Reichel, J., Görls, H., Schneider, K. R. A., Micheel, M., Pröhl, M., Gottschaldt, M., Dietzek, B., Weigand, W. Beilstein J. Org. Chem. 2017, 13, 2264–2272; https://doi.org/10.3762/bjoc.13.223.Search in Google Scholar PubMed PubMed Central
22. Park, K. S., Kim, M. K., Seo, Y., Ha, T., Yoo, K., Hyeon, S. J., Hwang, Y. J., Lee, J., Ryu, H., Choo, H., Chong, Y. ACS Chem. Neurosci. 2017, 8, 2124–2131; https://doi.org/10.1021/acschemneuro.7b00224.Search in Google Scholar PubMed
23. Bai, B., Yan, C., Zhang, Y., Guo, Z., Zhu, W. H. Chem. Commun. 2018, 54, 12393–12396; https://doi.org/10.1039/c8cc07376g.Search in Google Scholar PubMed
24. Zhang, P., Guo, Z.-Q., Yan, C.-X., Zhu, W.-H. Chin. Chem. Lett. 2017, 28, 1952–1956; https://doi.org/10.1016/j.cclet.2017.08.038.Search in Google Scholar
25. Li, Z., Song, Y., Lu, Z., Li, Z., Li, R., Li, Y., Hou, S., Zhu, Y.-P., Guo, H. Dyes Pigments 2020, 179, 108406 (9 pages); https://doi.org/10.1016/j.dyepig.2020.108406.Search in Google Scholar
26. Bellinger, S., Hatamimoslehabadi, M., Borg, R. E., La, J., Catsoulis, P., Mithila, F., Yelleswarapu, C., Rochford, J. Chem. Commun. 2018, 54, 6352–6355; https://doi.org/10.1039/c8cc03727b.Search in Google Scholar PubMed PubMed Central
27. Bellinger, S., Hatamimoslehabadi, M., Bag, S., Mithila, F., La, J., Frenette, M., Laoui, S., Szalda, D. J., Yelleswarapu, C., Rochford, J. Chem. Eur J. 2018, 24, 906–917; https://doi.org/10.1002/chem.201704423.Search in Google Scholar PubMed
28. Li, Z., Yang, X.-G., Zhang, H., Zhang, J.-R., Tian, X.-K., Qin, J.-H., Ma, L.-F., Yan, D. Inorg. Chem. Front. 2022, 9, 4281–4287; https://doi.org/10.1039/d2qi01112c.Search in Google Scholar
29. Li, Z., Zhang, J.-R., Tian, X.-K., Yang, S., Chen, S., Zhou, H., Yang, X.-G. Chem. Sci. 2022, 13, 9381–9386; https://doi.org/10.1039/d2sc02662g.Search in Google Scholar PubMed PubMed Central
30. Li, Z., Dai, Y., Lu, Z., Pei, Y., Chen, H., Zhang, L., Duan, Y., Guo, H. Chem. Commun. 2019, 55, 13430–13433; https://doi.org/10.1039/c9cc06838d.Search in Google Scholar PubMed
31. Li, Z., Hou, S., Zhang, H., Song, Q., Wang, S., Guo, H. Adv. AgroChem. 2023; https://doi.org/10.1016/j.aac.2023.02.001.Search in Google Scholar
32. Li, Z., Gao, X., Zhang, H., Ma, X., Liu, Y., Guo, H., Yin, J. Chin. Chem. Lett. 2023, 34, 107645 (4 pages); https://doi.org/10.1016/j.cclet.2022.06.068.Search in Google Scholar
33. Li, Z., He, C., Lu, Z., Li, P., Zhu, Y.-P. Dyes Pigments 2020, 182, 108623; https://doi.org/10.1016/j.dyepig.2020.108623.Search in Google Scholar
34. Li, Z., Chen, S., Huang, Y., Zhou, H., Yang, S., Zhang, H., Wang, M., Guo, H., Yin, J. Chem. Eng. J. 2022, 450, 138087 (10 pages); https://doi.org/10.1016/j.cej.2022.138087.Search in Google Scholar
35. Weber, W. M., Hunsaker, L. A., Abcouwer, S. F., Deck, L. M., Vander Jagt, D. L. Bioorg. Med. Chem. 2005, 13, 3811–3820; https://doi.org/10.1016/j.bmc.2005.03.035.Search in Google Scholar PubMed
36. Liu, K., Chen, J., Chojnacki, J., Zhang, S. Tetrahedron Lett. 2013, 54, 2070–2073; https://doi.org/10.1016/j.tetlet.2013.02.015.Search in Google Scholar PubMed PubMed Central
37. CrysAlis Pro Software System (version 1.171.39.6a). Intelligent Data Collection and Processing Software for Small Molecule and Protein Crystallography; Rigaku Oxford Diffraction: Yarnton, Oxfordshire (U. K.), 2015.Search in Google Scholar
38. Sheldrick, G. M. Acta Crystallogr. 2015, A71, 3–8.10.1107/S2053273314026370Search in Google Scholar PubMed PubMed Central
39. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A.Jr., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J., Fox, D. J. Gaussian 09, (revision B.01); Gaussian, Inc.: Wallingford, CT (USA), 2009.Search in Google Scholar
40. Dennington, R., Keith, T., Millam, J. Gaussview (version 5.0); Semichem Inc.: Shawnee Mission, KS (USA), 2009.Search in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- In this issue
- Research Articles
- Photoredox-catalyzed three-component difluorobenzylation of quinoxalin-2(1H)-ones with unactivated vinylarenes and BrCF2CO2Et/HCF2CO2H
- Catalyst-free direct synthesis of indeno[1,2-b]indol-5(4bH)-yl benzimidamides
- Crystal structure of three chloridocuprate(I, II) complexes with methylene blue (MB) counterions
- Crystal structure, photophysical properties, and DFT calculations of a boron difluoride curcumin complex
- The double cluster compound [Nb6Cl14(MeCN)4][Nb6Cl14(pyz)4]·6MeCN (Me: methyl, pyz: pyrazine) with a layered structure resulting from weak intermolecular interactions
- Expanding transition metal borate chemistry to include main group elements: high-pressure synthesis and structural relation of β-MgB4O7
- Eu2Ru3Si5 and Eu2Ir3Ga5 – first europium compounds with U2Mn3Si5-type structure but different europium valence
- Mössbauer-spectroscopic characterization of the stannides Sr2Pd2Sn and Eu2Pd2Sn
- Orthoamide und Iminiumsalze, CVIII. Umsetzungen von Orthoamiden der Alkincarbonsäuren mit CH/NH-aciden, tautomeriefähigen Verbindungen
- Book Review
- Thomas J. Meade (Guest Editor), Astrid Sigel, Helmut Sigel, Eva Freisinger, Roland K. O. Sigel (Series Editors): Molecular Bio-Sensors and the Role of Metal Ions
Articles in the same Issue
- Frontmatter
- In this issue
- Research Articles
- Photoredox-catalyzed three-component difluorobenzylation of quinoxalin-2(1H)-ones with unactivated vinylarenes and BrCF2CO2Et/HCF2CO2H
- Catalyst-free direct synthesis of indeno[1,2-b]indol-5(4bH)-yl benzimidamides
- Crystal structure of three chloridocuprate(I, II) complexes with methylene blue (MB) counterions
- Crystal structure, photophysical properties, and DFT calculations of a boron difluoride curcumin complex
- The double cluster compound [Nb6Cl14(MeCN)4][Nb6Cl14(pyz)4]·6MeCN (Me: methyl, pyz: pyrazine) with a layered structure resulting from weak intermolecular interactions
- Expanding transition metal borate chemistry to include main group elements: high-pressure synthesis and structural relation of β-MgB4O7
- Eu2Ru3Si5 and Eu2Ir3Ga5 – first europium compounds with U2Mn3Si5-type structure but different europium valence
- Mössbauer-spectroscopic characterization of the stannides Sr2Pd2Sn and Eu2Pd2Sn
- Orthoamide und Iminiumsalze, CVIII. Umsetzungen von Orthoamiden der Alkincarbonsäuren mit CH/NH-aciden, tautomeriefähigen Verbindungen
- Book Review
- Thomas J. Meade (Guest Editor), Astrid Sigel, Helmut Sigel, Eva Freisinger, Roland K. O. Sigel (Series Editors): Molecular Bio-Sensors and the Role of Metal Ions