Abstract
Three chloridocuprate complexes with methylene blue counterions of the chemical compositions [MB]+2[CuCl4]2− · H2O (1), [MB]+2[CuCl4]2− (2) and [(MB)+(CuCl2)−]3 (3) (where [MB]+ – methylthioninium cation; methylene blue cation) have been prepared by solvent-assisted mechanochemical synthesis. The reactions were carried out by mixing the copper(II) chloride dihydrate, CuCl2⋅2H2O, and methylene blue pentahydrate, [MB]+Cl− · 5H2O by grinding in an agate mortar with the addition of DMF as a solvent. The crystal structures of the compounds have been determined by single-crystal X-ray diffraction. The content of an asymmetric unit of the crystals consists of: (1) a tetrahedral [CuCl4]2− anion, two [MB]+ cations and one water molecule of crystallization; (2) a tetrahedral [CuCl4]2− anion and two [MB]+ cations; (3) trimeric [(MB)+(CuCl2)−]3 molecules with the Cu atoms coordinated by a nitrogen atom of the phenothiazine ring and two chlorine ions in a trigonal planar geometry with the copper atom in the oxidation state of +1.
Acknowledgments
The authors are grateful to the colleagues, especially to Odil Choriev, in the Institute of Bioorganic Chemistry of the Academy of Sciences of the Republic of Uzbekistan for assistance in the X-ray experiments.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Raj, M. M., Dharmaraja, A., Kavitha, S. J., Panchanatheswaran, K., Lynch, D. E. Inorg. Chim. Acta 2007, 360, 1799–2008; https://doi.org/10.1016/j.ica.2006.09.022.Search in Google Scholar
2. McDonagh, E. M., Bautista, J. M., Youngster, I., Altman, R. B., Klein, T. E. Pharmacogenetics Genom. 2013, 23, 498–508; https://doi.org/10.1097/fpc.0b013e32836498f4.Search in Google Scholar
3. Ginimuge, P. R., Jyothi, S. D. J. Anaesthesiol. Clin. Pharmacol. 2010 26, 517–520; https://doi.org/10.4103/0970-9185.74599.Search in Google Scholar
4. Matisoff, A. J., Panni, M. K. Anesthesiology 2006, 105, 228 https://doi.org/10.1097/00000542-200607000-00043 (1 page).Search in Google Scholar PubMed
5. Garza, F., Kearney, T. E. Methylene blue. In Poisoning & Drug Overdose, 6th ed.; Olson, K. R., Ed. McGraw Hill Medical: New York, 2012; pp. 510–511.Search in Google Scholar
6. Haouzi, P., McCann, M., Tubbs, N., Judenherc-Haouzi, A., Cheung, J., Bouillaud, F. Toxicol. Sci. 2019, 170, 82–94; https://doi.org/10.1093/toxsci/kfz081.Search in Google Scholar PubMed PubMed Central
7. Haouzi, P., Gueguinou, M., Sonobe, T., Judenherc-Haouzi, A., Tubbs, N., Trebak, M., Cheung, J., Bouillaud, F. Clin. Toxicol. 2018, 56, 828–840; https://doi.org/10.1080/15563650.2018.1429615.Search in Google Scholar PubMed PubMed Central
8. Biot, C., Bauer, H., Schirmer, R. H., Davioud-Charvet, E. J. Med. Chem. 2004, 47, 5972–5983; https://doi.org/10.1021/jm0497545.Search in Google Scholar PubMed
9. Coulibaly, B., Zoungrana, A., Mockenhaupt, F. P., Schirmer, R. H., Klose, C., Mansmann, U., Meissner, P. E., Müller, O. PLoS One 2009, 4, e5318 https://doi.org/10.1371/journal.pone.0005318 (6 pages).Search in Google Scholar PubMed PubMed Central
10. Färber, P. M., Arscott, L. D., Williams, C. H.Jr., Becker, K., Schirmer, R. H. FEBS Lett. 1998, 422, 311–314.10.1016/S0014-5793(98)00031-3Search in Google Scholar
11. Amadoruge, P. C., Barnham, K. J. Int. J. Alzheimer’s Dis. 2011, 2011, 542043 (9 pages).10.4061/2011/542043Search in Google Scholar PubMed PubMed Central
12. Wischik, C. M., Edwards, P. C., Lai, R. Y., Roth, M., Harrington, C. R. Proc. Natl. Acad. Sci. U. S. A. 1996, 93, 11213–11218; https://doi.org/10.1073/pnas.93.20.11213.Search in Google Scholar PubMed PubMed Central
13. Oz, M., Lorke, D. E., Petroianu, G. A. Biochem. Pharmacol. 2009, 78, 927–932; https://doi.org/10.1016/j.bcp.2009.04.034.Search in Google Scholar PubMed
14. Scigliano, G., Scigliano, G. A. Med. Hypotheses 2021, 146, 110455–110470; https://doi.org/10.1016/j.mehy.2020.110455.Search in Google Scholar PubMed PubMed Central
15. Saikrupa, B. V., Muthukumar, M., Kavya, S., Suma, P. K. J. Drug Deliv. Therapeut. 2022, 12, 181–186; https://doi.org/10.22270/jddt.v12i3.5438.Search in Google Scholar
16. Cwalinski, T., Polom, W., Marano, L., Roviello, G., D’Angelo, A., Cwalina, N., Matuszewski, M., Roviello, F., Jaskiewicz, J., Polom, K. J. Clin. Med. 2020, 9, 3538–3550; https://doi.org/10.3390/jcm9113538.Search in Google Scholar PubMed PubMed Central
17. Slooter, M. D., Janssen, A., Bemelman, W. A., Tanis, P. J., Hompes, R. Tech. Coloproctol. 2019, 23, 305–313; https://doi.org/10.1007/s10151-019-01973-4.Search in Google Scholar PubMed PubMed Central
18. Curry, S. Ann. Emerg. Med. 1982, 11, 214–221; https://doi.org/10.1016/s0196-0644(82)80502-7.Search in Google Scholar PubMed
19. Manivannan, R., Kameshwaran, S., Srividhya, V., Praveen, R., Pravin, R. Int. J. Allied Med. Sci. Clin. Res. 2021, 9, 108–112.Search in Google Scholar
20. Rehman, H. West. J. Med. 2001, 175, 193–196; https://doi.org/10.1136/ewjm.175.3.193.Search in Google Scholar PubMed PubMed Central
21. Kayabaşı, Y., Erbaş, O. Dokkyo J. Med. Sci. 2020, 6, 136–145.10.5606/fng.btd.2020.25035Search in Google Scholar
22. Mowry, S., Ogren, P. J. J. Chem. Educ. 1999, 76, 971–974; https://doi.org/10.1021/ed076p970.Search in Google Scholar
23. Canossa, S., Bacchi, A., Graiff, C., Pelagatti, P., Predieri, G., Ienco, A., Manca, G., Mealli, C. Inorg. Chem. 2017, 56, 3512–3516; https://doi.org/10.1021/acs.inorgchem.6b02980.Search in Google Scholar PubMed
24. Impert, O., Katafias, A., Kita, P., Mills, A., Pietkiewicz-Graczyk, A., Wrzeszcz, G. Dalton Trans. 2003, 348–353; https://doi.org/10.1039/b205786g.Search in Google Scholar
25. CrysAlis Pro Software System (version 1.171.40.84a), Intelligent Data Collection and Processing Software for Small Molecule and Protein Crystallography; Rigaku Oxford Diffraction: Yarnton, Oxfordshire (U. K.), 2020.Search in Google Scholar
26. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar
27. Sheldrick, G. M. Acta Crystallogr. 2015, A71, 3–8.10.1107/S2053273314026370Search in Google Scholar PubMed PubMed Central
28. Sheldrick, G. M. Crystallographic Computing 5, From Chemistry to Biology; Moras, D., Podjarny, A. D., Thierry, J. C., Eds. International Union of Crystallography, Oxford University Press: Oxford, 1992; pp. 145–157.Search in Google Scholar
29. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J., Wood, P. A. J. Appl. Crystallogr. 2008, 41, 466–470; https://doi.org/10.1107/s0021889807067908.Search in Google Scholar
30. Spek, A. L. Acta Crystallogr. 2015, C71, 9–18.Search in Google Scholar
31. Spek, A. L. Acta Crystallogr. 2009, D65, 148–155; https://doi.org/10.1107/s090744490804362x.Search in Google Scholar
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/znb-2022-0146).
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- In this issue
- Research Articles
- Photoredox-catalyzed three-component difluorobenzylation of quinoxalin-2(1H)-ones with unactivated vinylarenes and BrCF2CO2Et/HCF2CO2H
- Catalyst-free direct synthesis of indeno[1,2-b]indol-5(4bH)-yl benzimidamides
- Crystal structure of three chloridocuprate(I, II) complexes with methylene blue (MB) counterions
- Crystal structure, photophysical properties, and DFT calculations of a boron difluoride curcumin complex
- The double cluster compound [Nb6Cl14(MeCN)4][Nb6Cl14(pyz)4]·6MeCN (Me: methyl, pyz: pyrazine) with a layered structure resulting from weak intermolecular interactions
- Expanding transition metal borate chemistry to include main group elements: high-pressure synthesis and structural relation of β-MgB4O7
- Eu2Ru3Si5 and Eu2Ir3Ga5 – first europium compounds with U2Mn3Si5-type structure but different europium valence
- Mössbauer-spectroscopic characterization of the stannides Sr2Pd2Sn and Eu2Pd2Sn
- Orthoamide und Iminiumsalze, CVIII. Umsetzungen von Orthoamiden der Alkincarbonsäuren mit CH/NH-aciden, tautomeriefähigen Verbindungen
- Book Review
- Thomas J. Meade (Guest Editor), Astrid Sigel, Helmut Sigel, Eva Freisinger, Roland K. O. Sigel (Series Editors): Molecular Bio-Sensors and the Role of Metal Ions
Articles in the same Issue
- Frontmatter
- In this issue
- Research Articles
- Photoredox-catalyzed three-component difluorobenzylation of quinoxalin-2(1H)-ones with unactivated vinylarenes and BrCF2CO2Et/HCF2CO2H
- Catalyst-free direct synthesis of indeno[1,2-b]indol-5(4bH)-yl benzimidamides
- Crystal structure of three chloridocuprate(I, II) complexes with methylene blue (MB) counterions
- Crystal structure, photophysical properties, and DFT calculations of a boron difluoride curcumin complex
- The double cluster compound [Nb6Cl14(MeCN)4][Nb6Cl14(pyz)4]·6MeCN (Me: methyl, pyz: pyrazine) with a layered structure resulting from weak intermolecular interactions
- Expanding transition metal borate chemistry to include main group elements: high-pressure synthesis and structural relation of β-MgB4O7
- Eu2Ru3Si5 and Eu2Ir3Ga5 – first europium compounds with U2Mn3Si5-type structure but different europium valence
- Mössbauer-spectroscopic characterization of the stannides Sr2Pd2Sn and Eu2Pd2Sn
- Orthoamide und Iminiumsalze, CVIII. Umsetzungen von Orthoamiden der Alkincarbonsäuren mit CH/NH-aciden, tautomeriefähigen Verbindungen
- Book Review
- Thomas J. Meade (Guest Editor), Astrid Sigel, Helmut Sigel, Eva Freisinger, Roland K. O. Sigel (Series Editors): Molecular Bio-Sensors and the Role of Metal Ions