Home Crystal structure of three chloridocuprate(I, II) complexes with methylene blue (MB) counterions
Article
Licensed
Unlicensed Requires Authentication

Crystal structure of three chloridocuprate(I, II) complexes with methylene blue (MB) counterions

  • Vahobjon Kh. Sabirov EMAIL logo and Mukarram X. Kadirova
Published/Copyright: March 14, 2023
Become an author with De Gruyter Brill

Abstract

Three chloridocuprate complexes with methylene blue counterions of the chemical compositions [MB]+2[CuCl4]2− · H2O (1), [MB]+2[CuCl4]2− (2) and [(MB)+(CuCl2)]3 (3) (where [MB]+ – methylthioninium cation; methylene blue cation) have been prepared by solvent-assisted mechanochemical synthesis. The reactions were carried out by mixing the copper(II) chloride dihydrate, CuCl2⋅2H2O, and methylene blue pentahydrate, [MB]+Cl · 5H2O by grinding in an agate mortar with the addition of DMF as a solvent. The crystal structures of the compounds have been determined by single-crystal X-ray diffraction. The content of an asymmetric unit of the crystals consists of: (1) a tetrahedral [CuCl4]2− anion, two [MB]+ cations and one water molecule of crystallization; (2) a tetrahedral [CuCl4]2− anion and two [MB]+ cations; (3) trimeric [(MB)+(CuCl2)]3 molecules with the Cu atoms coordinated by a nitrogen atom of the phenothiazine ring and two chlorine ions in a trigonal planar geometry with the copper atom in the oxidation state of +1.


Corresponding author: Vahobjon Kh. Sabirov, Institute of Pharmaceutical Education and Research, 46 Building, 19 Quarter, Yunusabad District, 100114, Tashkent, Uzbekistan, E-mail:

Acknowledgments

The authors are grateful to the colleagues, especially to Odil Choriev, in the Institute of Bioorganic Chemistry of the Academy of Sciences of the Republic of Uzbekistan for assistance in the X-ray experiments.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Raj, M. M., Dharmaraja, A., Kavitha, S. J., Panchanatheswaran, K., Lynch, D. E. Inorg. Chim. Acta 2007, 360, 1799–2008; https://doi.org/10.1016/j.ica.2006.09.022.Search in Google Scholar

2. McDonagh, E. M., Bautista, J. M., Youngster, I., Altman, R. B., Klein, T. E. Pharmacogenetics Genom. 2013, 23, 498–508; https://doi.org/10.1097/fpc.0b013e32836498f4.Search in Google Scholar

3. Ginimuge, P. R., Jyothi, S. D. J. Anaesthesiol. Clin. Pharmacol. 2010 26, 517–520; https://doi.org/10.4103/0970-9185.74599.Search in Google Scholar

4. Matisoff, A. J., Panni, M. K. Anesthesiology 2006, 105, 228 https://doi.org/10.1097/00000542-200607000-00043 (1 page).Search in Google Scholar PubMed

5. Garza, F., Kearney, T. E. Methylene blue. In Poisoning & Drug Overdose, 6th ed.; Olson, K. R., Ed. McGraw Hill Medical: New York, 2012; pp. 510–511.Search in Google Scholar

6. Haouzi, P., McCann, M., Tubbs, N., Judenherc-Haouzi, A., Cheung, J., Bouillaud, F. Toxicol. Sci. 2019, 170, 82–94; https://doi.org/10.1093/toxsci/kfz081.Search in Google Scholar PubMed PubMed Central

7. Haouzi, P., Gueguinou, M., Sonobe, T., Judenherc-Haouzi, A., Tubbs, N., Trebak, M., Cheung, J., Bouillaud, F. Clin. Toxicol. 2018, 56, 828–840; https://doi.org/10.1080/15563650.2018.1429615.Search in Google Scholar PubMed PubMed Central

8. Biot, C., Bauer, H., Schirmer, R. H., Davioud-Charvet, E. J. Med. Chem. 2004, 47, 5972–5983; https://doi.org/10.1021/jm0497545.Search in Google Scholar PubMed

9. Coulibaly, B., Zoungrana, A., Mockenhaupt, F. P., Schirmer, R. H., Klose, C., Mansmann, U., Meissner, P. E., Müller, O. PLoS One 2009, 4, e5318 https://doi.org/10.1371/journal.pone.0005318 (6 pages).Search in Google Scholar PubMed PubMed Central

10. Färber, P. M., Arscott, L. D., Williams, C. H.Jr., Becker, K., Schirmer, R. H. FEBS Lett. 1998, 422, 311–314.10.1016/S0014-5793(98)00031-3Search in Google Scholar

11. Amadoruge, P. C., Barnham, K. J. Int. J. Alzheimer’s Dis. 2011, 2011, 542043 (9 pages).10.4061/2011/542043Search in Google Scholar PubMed PubMed Central

12. Wischik, C. M., Edwards, P. C., Lai, R. Y., Roth, M., Harrington, C. R. Proc. Natl. Acad. Sci. U. S. A. 1996, 93, 11213–11218; https://doi.org/10.1073/pnas.93.20.11213.Search in Google Scholar PubMed PubMed Central

13. Oz, M., Lorke, D. E., Petroianu, G. A. Biochem. Pharmacol. 2009, 78, 927–932; https://doi.org/10.1016/j.bcp.2009.04.034.Search in Google Scholar PubMed

14. Scigliano, G., Scigliano, G. A. Med. Hypotheses 2021, 146, 110455–110470; https://doi.org/10.1016/j.mehy.2020.110455.Search in Google Scholar PubMed PubMed Central

15. Saikrupa, B. V., Muthukumar, M., Kavya, S., Suma, P. K. J. Drug Deliv. Therapeut. 2022, 12, 181–186; https://doi.org/10.22270/jddt.v12i3.5438.Search in Google Scholar

16. Cwalinski, T., Polom, W., Marano, L., Roviello, G., D’Angelo, A., Cwalina, N., Matuszewski, M., Roviello, F., Jaskiewicz, J., Polom, K. J. Clin. Med. 2020, 9, 3538–3550; https://doi.org/10.3390/jcm9113538.Search in Google Scholar PubMed PubMed Central

17. Slooter, M. D., Janssen, A., Bemelman, W. A., Tanis, P. J., Hompes, R. Tech. Coloproctol. 2019, 23, 305–313; https://doi.org/10.1007/s10151-019-01973-4.Search in Google Scholar PubMed PubMed Central

18. Curry, S. Ann. Emerg. Med. 1982, 11, 214–221; https://doi.org/10.1016/s0196-0644(82)80502-7.Search in Google Scholar PubMed

19. Manivannan, R., Kameshwaran, S., Srividhya, V., Praveen, R., Pravin, R. Int. J. Allied Med. Sci. Clin. Res. 2021, 9, 108–112.Search in Google Scholar

20. Rehman, H. West. J. Med. 2001, 175, 193–196; https://doi.org/10.1136/ewjm.175.3.193.Search in Google Scholar PubMed PubMed Central

21. Kayabaşı, Y., Erbaş, O. Dokkyo J. Med. Sci. 2020, 6, 136–145.10.5606/fng.btd.2020.25035Search in Google Scholar

22. Mowry, S., Ogren, P. J. J. Chem. Educ. 1999, 76, 971–974; https://doi.org/10.1021/ed076p970.Search in Google Scholar

23. Canossa, S., Bacchi, A., Graiff, C., Pelagatti, P., Predieri, G., Ienco, A., Manca, G., Mealli, C. Inorg. Chem. 2017, 56, 3512–3516; https://doi.org/10.1021/acs.inorgchem.6b02980.Search in Google Scholar PubMed

24. Impert, O., Katafias, A., Kita, P., Mills, A., Pietkiewicz-Graczyk, A., Wrzeszcz, G. Dalton Trans. 2003, 348–353; https://doi.org/10.1039/b205786g.Search in Google Scholar

25. CrysAlis Pro Software System (version 1.171.40.84a), Intelligent Data Collection and Processing Software for Small Molecule and Protein Crystallography; Rigaku Oxford Diffraction: Yarnton, Oxfordshire (U. K.), 2020.Search in Google Scholar

26. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. J. Appl. Crystallogr. 2009, 42, 339–341; https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

27. Sheldrick, G. M. Acta Crystallogr. 2015, A71, 3–8.10.1107/S2053273314026370Search in Google Scholar PubMed PubMed Central

28. Sheldrick, G. M. Crystallographic Computing 5, From Chemistry to Biology; Moras, D., Podjarny, A. D., Thierry, J. C., Eds. International Union of Crystallography, Oxford University Press: Oxford, 1992; pp. 145–157.Search in Google Scholar

29. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J., Wood, P. A. J. Appl. Crystallogr. 2008, 41, 466–470; https://doi.org/10.1107/s0021889807067908.Search in Google Scholar

30. Spek, A. L. Acta Crystallogr. 2015, C71, 9–18.Search in Google Scholar

31. Spek, A. L. Acta Crystallogr. 2009, D65, 148–155; https://doi.org/10.1107/s090744490804362x.Search in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/znb-2022-0146).


Received: 2022-12-03
Accepted: 2023-02-06
Published Online: 2023-03-14
Published in Print: 2023-05-25

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 24.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/znb-2022-0146/html
Scroll to top button