Tl2[B10H10] und Tl2[B12H12]: Kristallstrukturen, Raman-Spektren und Tl+-Lone-Pair-Lumineszenz im Vergleich
Abstract
Thallium(I) decahydro-closo-decaborate Tl2[B10H10] and thallium(I) dodecahydro-closo-dodecaborate Tl2[B12H12] are readily available as microcrystalline powders from reactions of thallium(I) carbonate Tl2[CO3] with aqueous solutions of the respective free acid (H3O)2[B10H10] or (H3O)2[B12H12]. Tl2[B12H12] crystallizes with an anti-fluorite related structure (cubic,
Professor Holger Braunschweig zum 60. Geburtstag gewidmet.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
Literatur
1. Tiritiris, I., Schleid, Th. Z. Anorg. Allg. Chem. 2001, 627, 1836–1845; https://doi.org/10.1002/1521-3749(200108)627:8<1836::aid-zaac1836>3.0.co;2-a.10.1002/1521-3749(200108)627:8<1836::AID-ZAAC1836>3.0.CO;2-ASuche in Google Scholar
2. Tiritiris, I., Schleid, Th. Z. Anorg. Allg. Chem. 2004, 630, 541–546; https://doi.org/10.1002/zaac.200300416.Suche in Google Scholar
3. Van, Ng.-D., Kleeberg, F. M., Schleid, Th. Z. Anorg. Allg. Chem. 2015, 641, 2484–2489; https://doi.org/10.1002/zaac.201500572.Suche in Google Scholar
4. Tiritiris, I., Schleid, Th. Z. Anorg. Allg. Chem. 2008, 634, 317–324; https://doi.org/10.1002/zaac.200700399.Suche in Google Scholar
5. Tiritiris, I., Schleid, Th. Z. Anorg. Allg. Chem. 2005, 631, 1593–1596; https://doi.org/10.1002/zaac.200500093.Suche in Google Scholar
6. Tiritiris, I. Untersuchungen zu Reaktivität, Aufbau und struktureller Dynamik von salzartigen closo-Dodekaboraten. Dissertation, Universität Stuttgart, Stuttgart, 2004.Suche in Google Scholar
7. Tiritiris, I., Schleid, Th. Z. Anorg. Allg. Chem. 2002, 628, 1411–1418; https://doi.org/10.1002/1521-3749(200206)628:6<1411::aid-zaac1411>3.0.co;2-x.10.1002/1521-3749(200206)628:6<1411::AID-ZAAC1411>3.0.CO;2-XSuche in Google Scholar
8. Yousufuddin, M., Her, J.-H., Zhou, W., Jalisatgi, S. S., Udovic, T. J. Inorg. Chim. Acta. 2009, 362, 3155–3158; https://doi.org/10.1016/j.ica.2009.02.020.Suche in Google Scholar
9. Ponomarev, V. I., Lyubeznova, T. Y., Solntsev, K. A., Kuznetsov, N. T. Koord. Khim. 1991, 17, 21–27.Suche in Google Scholar
10. Tiritiris, I., Schleid, Th. Z. Anorg. Allg. Chem. 2003, 629, 1390–1402; https://doi.org/10.1002/zaac.200300098.Suche in Google Scholar
11. Tiritiris, I., Schleid, Th., Müller, K., Preetz, W. Z. Anorg. Allg. Chem. 2000, 626, 323–325; https://doi.org/10.1002/(sici)1521-3749(200002)626:2<323::aid-zaac323>3.0.co;2-q.10.1002/(SICI)1521-3749(200002)626:2<323::AID-ZAAC323>3.0.CO;2-QSuche in Google Scholar
12. Tiritiris, I., Van, Ng.-D., Schleid, Th. Z. Anorg. Allg. Chem. 2011, 637, 682–688; https://doi.org/10.1002/zaac.201000457.Suche in Google Scholar
13. Kleeberg, F. M., Zimmermann, L. W., Schleid, Th. J. Cluster Sci. 2022, 33; https://doi.org/10.1007/s10876-021-02166-6.Suche in Google Scholar
14. Zimmermann, L. W., Van, Ng.-D., Gudat, D., Schleid, Th. Angew. Chem. Int. Ed. 2016, 128, 1942–1945; https://doi.org/10.1002/ange.201509629.Suche in Google Scholar
15. Kleeberg, F. M. Synthese und Strukturaufklärung neuer salzartiger Dekahydro-closo-Dekaborate und Dodekahydro-closo-Dodekaborate sowie deren halogenierter Derivate. Dissertation, Universität Stuttgart, Stuttgart, 2017.Suche in Google Scholar
16. Knoth, W. H., Miller, H. C., Sauer, J. C., Balthis, J. H., Chia, Y. T., Muetterties, E. L. Inorg. Chem. 1964, 3, 159–167; https://doi.org/10.1021/ic50012a002.Suche in Google Scholar
17. Kunkely, H., Vogler, A. Inorg. Chim. Acta. 2007, 360, 679–680; https://doi.org/10.1016/j.ica.2006.08.059.Suche in Google Scholar
18. Dobrott, R. D., Lipscomb, W. N. J. Chem. Phys. 1962, 37, 1779–1784; https://doi.org/10.1063/1.1733368.Suche in Google Scholar
19. Hofmann, K., Albert, B. Z. Kristallogr. 2005, 220, 142–146; https://doi.org/10.1524/zkri.220.2.142.59144.Suche in Google Scholar
20. Otwinowski, Z., Minor, W. Methods Enzymol. 1997, 276, 307–326; https://doi.org/10.1016/s0076-6879(97)76066-x.Suche in Google Scholar
21. Stoe & Cie. X-RED32 (version 1.31); Stoe & Cie: Darmstadt, Germany, 2005.Suche in Google Scholar
22. Sheldrick, G. M. SHELXS/L-97, Programs for Crystal Structure Determination; University of Göttingen: Göttingen, 1997.Suche in Google Scholar
23. Osram Sylvania Color Calculator 7.77, downloaded December 2021. https://www.osram.us/cb/tools-and-resources/applications/led-colorcalculator/index.jsp.Suche in Google Scholar
24. Shannon, R. D. Acta Crystallogr. 1976, A32, 751–767; https://doi.org/10.1107/s0567739476001551.Suche in Google Scholar
25. Van, Ng.-D., Tiritiris, I., Schleid, Th. Z. Anorg. Allg. Chem. 2004, 630, 1764; https://doi.org/10.1002/zaac.200470140.Suche in Google Scholar
26. Muetterties, E. L., Merrifield, R. E., Miller, H. C., Knoth, W. H., Downing, J. R. J. Am. Chem. Soc. 1962, 84, 2506–2508; https://doi.org/10.1021/ja00872a011.Suche in Google Scholar
27. Weber, W., Thorpe, M. F. J. Phys. Chem. Solid. 1975, 36, 967–974; https://doi.org/10.1016/0022-3697(75)90176-6.Suche in Google Scholar
28. Abdul-Fattah, M., Butler, I. Canad. J. Spectrosc. 1977, 22, 110–112.Suche in Google Scholar
29. Boyle, L. L., Parker, Y. M. Mol. Phys. 1980, 39, 95–109; https://doi.org/10.1080/00268978000100091.Suche in Google Scholar
30. Leites, L. A., Bukalov, S. S., Kurbakova, A. P., Kaganski, M. M., Gaft, Y., Kuznetsov, N. T., Zakharova, I. A. Spectrochim. Acta 1982, 38A, 1047–1056; https://doi.org/10.1016/0584-8539(82)80032-9.Suche in Google Scholar
31. Leites, L. A., Kurbakova, A. P., Kaganskii, M. M., Gaft, Y. L., Zakharova, I. A., Kuznetsov, N. T. Izvest. Akad. Nauk SSSR Ser. Khim. 1983, 10, 2284–2292.Suche in Google Scholar
32. Tiritiris, I., Weidlein, J., Schleid, Th. Z. Naturforsch. 2005, 60b, 627–639; https://doi.org/10.1515/znb-2005-0605.Suche in Google Scholar
33. Preetz, W., Srebny, H.-G. Z. Naturforsch. 1984, 39b, 6–13; https://doi.org/10.1515/znb-1984-0103.Suche in Google Scholar
34. Weidlein, J., Müller, U., Dehnicke, K. Schwingungsspektroskopie; Thieme-Verlag: Stuttgart, 1988; pp. S. 142–144.Suche in Google Scholar
35. Blasse, G., Grabmeier, B. C. Luminescent Materials; Springer-Verlag: Berlin, Heidelberg, New York, 1994.10.1007/978-3-642-79017-1Suche in Google Scholar
36. Seitz, F. J. Chem. Phys. 1938, 6, 150–162; https://doi.org/10.1063/1.1750216.Suche in Google Scholar
37. Nagy, R., Wollentin, R. W., Lui, C. K. J. Electrochem. Soc. 1950, 97, 29–32; https://doi.org/10.1149/1.2777961.Suche in Google Scholar
38. Yen, W. M., Shionoya, S., Yamamoto, H. Phosphor Handbook; CRC Press: Boca Raton, London, New York, 2007.10.1201/9781420005233Suche in Google Scholar
39. Brauer, P., Aberle, N., Knothe, M. Z. Naturforsch. 1967, 22a, 2059–2066; https://doi.org/10.1515/zna-1967-1231.Suche in Google Scholar
40. Clapp, R. H., Ginther, R. J. J. Opt. Soc. Am. 1947, 37, 355–362; https://doi.org/10.1364/josa.37.000355.Suche in Google Scholar PubMed
41. Sheldrick, G. M. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Suche in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- In this issue
- Research Articles
- Structural and electrochemical properties of the binary silicides Eu5Si3 and EuSi
- The solid solution TbNiIn1−xGa x
- Structural characterization of benzketozone monohydrate
- Synthesis, crystal structure and properties of a 2-D Cd(II) coordination polymer based on ferrocenecarboxylate and 4,4′-bipyridine ligands
- Pressure-induced phase transitions and mechanical properties of insensitive high explosive 1,1-diamino-2,2-dinitroethylene
- Synthesis of a bifunctional boron-Lewis acid and studies on host-guest chemistry using pyridine and TMPD
- Syntheses directed by ionic liquids: structures and properties of six novel lanthanide 1,3,5-benzenetrisbenzoate frameworks
- Two new bis(pyridine)-bis(amide)-based copper(II) coordination compounds for the electrochemical detection of trace Cr(VI) and efficient electrocatalytic oxygen evolution
- Synthesis, characterization and crystal structure of 4-methoxybenzylidene-based zinc(II) complexes
- A Ni(II) coordination polymer with dual electrochemical functions: synthesis, crystal structure, hydrogen evolution reaction and l-ascorbic acid sensing
- Tl2[B10H10] und Tl2[B12H12]: Kristallstrukturen, Raman-Spektren und Tl+-Lone-Pair-Lumineszenz im Vergleich
Artikel in diesem Heft
- Frontmatter
- In this issue
- Research Articles
- Structural and electrochemical properties of the binary silicides Eu5Si3 and EuSi
- The solid solution TbNiIn1−xGa x
- Structural characterization of benzketozone monohydrate
- Synthesis, crystal structure and properties of a 2-D Cd(II) coordination polymer based on ferrocenecarboxylate and 4,4′-bipyridine ligands
- Pressure-induced phase transitions and mechanical properties of insensitive high explosive 1,1-diamino-2,2-dinitroethylene
- Synthesis of a bifunctional boron-Lewis acid and studies on host-guest chemistry using pyridine and TMPD
- Syntheses directed by ionic liquids: structures and properties of six novel lanthanide 1,3,5-benzenetrisbenzoate frameworks
- Two new bis(pyridine)-bis(amide)-based copper(II) coordination compounds for the electrochemical detection of trace Cr(VI) and efficient electrocatalytic oxygen evolution
- Synthesis, characterization and crystal structure of 4-methoxybenzylidene-based zinc(II) complexes
- A Ni(II) coordination polymer with dual electrochemical functions: synthesis, crystal structure, hydrogen evolution reaction and l-ascorbic acid sensing
- Tl2[B10H10] und Tl2[B12H12]: Kristallstrukturen, Raman-Spektren und Tl+-Lone-Pair-Lumineszenz im Vergleich