Startseite Tl2[B10H10] und Tl2[B12H12]: Kristallstrukturen, Raman-Spektren und Tl+-Lone-Pair-Lumineszenz im Vergleich
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Tl2[B10H10] und Tl2[B12H12]: Kristallstrukturen, Raman-Spektren und Tl+-Lone-Pair-Lumineszenz im Vergleich

  • Kevin U. Bareiß , Fabian M. Kleeberg , David Enseling , Thomas Jüstel und Thomas Schleid EMAIL logo
Veröffentlicht/Copyright: 21. Februar 2022
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Thallium(I) decahydro-closo-decaborate Tl2[B10H10] and thallium(I) dodecahydro-closo-dodecaborate Tl2[B12H12] are readily available as microcrystalline powders from reactions of thallium(I) carbonate Tl2[CO3] with aqueous solutions of the respective free acid (H3O)2[B10H10] or (H3O)2[B12H12]. Tl2[B12H12] crystallizes with an anti-fluorite related structure (cubic, Fm3, a = 1074.23(8) pm, Z = 4). Each Tl+ cation is coordinated by four icosahedral [B12H12]2– anions (d(B–B) = 180–181 pm) providing a twelvefold coordination sphere of hydrogen atoms (d(Tl–H) = 296 pm). Tl2[B10H10] crystallizes monoclinically in the space group P21/n with a = 704.03(5), b = 1111.45(8), c = 1281.16(9) pm and β = 94.912(3)° for Z = 4. The bicapped square antiprismatic [B10H10]2– anions (d(B–B) = 147–176 pm to the two apical boron atoms, d(B–B) = 161–199 pm within the corpus) again form distorted tetrahedra around the (Tl1)+, but square pyramids around the (Tl2)+ cations. Thus (Tl1)+ is coordinated by 12 hydrogen atoms (d(Tl1–H) = 275–315 pm), but (Tl2)+ only by 11 of them (d(Tl2–H) = 267–357 pm). Both compounds show a greenish-yellow photoluminescence caused by an interconfigurational 6sp6s2 emission (3Pn1S0, n = 0–2) at the Tl+ cation.


Professor Holger Braunschweig zum 60. Geburtstag gewidmet.



Corresponding author: Thomas Schleid, Universität Stuttgart, Stuttgart, Germany, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

Literatur

1. Tiritiris, I., Schleid, Th. Z. Anorg. Allg. Chem. 2001, 627, 1836–1845; https://doi.org/10.1002/1521-3749(200108)627:8<1836::aid-zaac1836>3.0.co;2-a.10.1002/1521-3749(200108)627:8<1836::AID-ZAAC1836>3.0.CO;2-ASuche in Google Scholar

2. Tiritiris, I., Schleid, Th. Z. Anorg. Allg. Chem. 2004, 630, 541–546; https://doi.org/10.1002/zaac.200300416.Suche in Google Scholar

3. Van, Ng.-D., Kleeberg, F. M., Schleid, Th. Z. Anorg. Allg. Chem. 2015, 641, 2484–2489; https://doi.org/10.1002/zaac.201500572.Suche in Google Scholar

4. Tiritiris, I., Schleid, Th. Z. Anorg. Allg. Chem. 2008, 634, 317–324; https://doi.org/10.1002/zaac.200700399.Suche in Google Scholar

5. Tiritiris, I., Schleid, Th. Z. Anorg. Allg. Chem. 2005, 631, 1593–1596; https://doi.org/10.1002/zaac.200500093.Suche in Google Scholar

6. Tiritiris, I. Untersuchungen zu Reaktivität, Aufbau und struktureller Dynamik von salzartigen closo-Dodekaboraten. Dissertation, Universität Stuttgart, Stuttgart, 2004.Suche in Google Scholar

7. Tiritiris, I., Schleid, Th. Z. Anorg. Allg. Chem. 2002, 628, 1411–1418; https://doi.org/10.1002/1521-3749(200206)628:6<1411::aid-zaac1411>3.0.co;2-x.10.1002/1521-3749(200206)628:6<1411::AID-ZAAC1411>3.0.CO;2-XSuche in Google Scholar

8. Yousufuddin, M., Her, J.-H., Zhou, W., Jalisatgi, S. S., Udovic, T. J. Inorg. Chim. Acta. 2009, 362, 3155–3158; https://doi.org/10.1016/j.ica.2009.02.020.Suche in Google Scholar

9. Ponomarev, V. I., Lyubeznova, T. Y., Solntsev, K. A., Kuznetsov, N. T. Koord. Khim. 1991, 17, 21–27.Suche in Google Scholar

10. Tiritiris, I., Schleid, Th. Z. Anorg. Allg. Chem. 2003, 629, 1390–1402; https://doi.org/10.1002/zaac.200300098.Suche in Google Scholar

11. Tiritiris, I., Schleid, Th., Müller, K., Preetz, W. Z. Anorg. Allg. Chem. 2000, 626, 323–325; https://doi.org/10.1002/(sici)1521-3749(200002)626:2<323::aid-zaac323>3.0.co;2-q.10.1002/(SICI)1521-3749(200002)626:2<323::AID-ZAAC323>3.0.CO;2-QSuche in Google Scholar

12. Tiritiris, I., Van, Ng.-D., Schleid, Th. Z. Anorg. Allg. Chem. 2011, 637, 682–688; https://doi.org/10.1002/zaac.201000457.Suche in Google Scholar

13. Kleeberg, F. M., Zimmermann, L. W., Schleid, Th. J. Cluster Sci. 2022, 33; https://doi.org/10.1007/s10876-021-02166-6.Suche in Google Scholar

14. Zimmermann, L. W., Van, Ng.-D., Gudat, D., Schleid, Th. Angew. Chem. Int. Ed. 2016, 128, 1942–1945; https://doi.org/10.1002/ange.201509629.Suche in Google Scholar

15. Kleeberg, F. M. Synthese und Strukturaufklärung neuer salzartiger Dekahydro-closo-Dekaborate und Dodekahydro-closo-Dodekaborate sowie deren halogenierter Derivate. Dissertation, Universität Stuttgart, Stuttgart, 2017.Suche in Google Scholar

16. Knoth, W. H., Miller, H. C., Sauer, J. C., Balthis, J. H., Chia, Y. T., Muetterties, E. L. Inorg. Chem. 1964, 3, 159–167; https://doi.org/10.1021/ic50012a002.Suche in Google Scholar

17. Kunkely, H., Vogler, A. Inorg. Chim. Acta. 2007, 360, 679–680; https://doi.org/10.1016/j.ica.2006.08.059.Suche in Google Scholar

18. Dobrott, R. D., Lipscomb, W. N. J. Chem. Phys. 1962, 37, 1779–1784; https://doi.org/10.1063/1.1733368.Suche in Google Scholar

19. Hofmann, K., Albert, B. Z. Kristallogr. 2005, 220, 142–146; https://doi.org/10.1524/zkri.220.2.142.59144.Suche in Google Scholar

20. Otwinowski, Z., Minor, W. Methods Enzymol. 1997, 276, 307–326; https://doi.org/10.1016/s0076-6879(97)76066-x.Suche in Google Scholar

21. Stoe & Cie. X-RED32 (version 1.31); Stoe & Cie: Darmstadt, Germany, 2005.Suche in Google Scholar

22. Sheldrick, G. M. SHELXS/L-97, Programs for Crystal Structure Determination; University of Göttingen: Göttingen, 1997.Suche in Google Scholar

23. Osram Sylvania Color Calculator 7.77, downloaded December 2021. https://www.osram.us/cb/tools-and-resources/applications/led-colorcalculator/index.jsp.Suche in Google Scholar

24. Shannon, R. D. Acta Crystallogr. 1976, A32, 751–767; https://doi.org/10.1107/s0567739476001551.Suche in Google Scholar

25. Van, Ng.-D., Tiritiris, I., Schleid, Th. Z. Anorg. Allg. Chem. 2004, 630, 1764; https://doi.org/10.1002/zaac.200470140.Suche in Google Scholar

26. Muetterties, E. L., Merrifield, R. E., Miller, H. C., Knoth, W. H., Downing, J. R. J. Am. Chem. Soc. 1962, 84, 2506–2508; https://doi.org/10.1021/ja00872a011.Suche in Google Scholar

27. Weber, W., Thorpe, M. F. J. Phys. Chem. Solid. 1975, 36, 967–974; https://doi.org/10.1016/0022-3697(75)90176-6.Suche in Google Scholar

28. Abdul-Fattah, M., Butler, I. Canad. J. Spectrosc. 1977, 22, 110–112.Suche in Google Scholar

29. Boyle, L. L., Parker, Y. M. Mol. Phys. 1980, 39, 95–109; https://doi.org/10.1080/00268978000100091.Suche in Google Scholar

30. Leites, L. A., Bukalov, S. S., Kurbakova, A. P., Kaganski, M. M., Gaft, Y., Kuznetsov, N. T., Zakharova, I. A. Spectrochim. Acta 1982, 38A, 1047–1056; https://doi.org/10.1016/0584-8539(82)80032-9.Suche in Google Scholar

31. Leites, L. A., Kurbakova, A. P., Kaganskii, M. M., Gaft, Y. L., Zakharova, I. A., Kuznetsov, N. T. Izvest. Akad. Nauk SSSR Ser. Khim. 1983, 10, 2284–2292.Suche in Google Scholar

32. Tiritiris, I., Weidlein, J., Schleid, Th. Z. Naturforsch. 2005, 60b, 627–639; https://doi.org/10.1515/znb-2005-0605.Suche in Google Scholar

33. Preetz, W., Srebny, H.-G. Z. Naturforsch. 1984, 39b, 6–13; https://doi.org/10.1515/znb-1984-0103.Suche in Google Scholar

34. Weidlein, J., Müller, U., Dehnicke, K. Schwingungsspektroskopie; Thieme-Verlag: Stuttgart, 1988; pp. S. 142–144.Suche in Google Scholar

35. Blasse, G., Grabmeier, B. C. Luminescent Materials; Springer-Verlag: Berlin, Heidelberg, New York, 1994.10.1007/978-3-642-79017-1Suche in Google Scholar

36. Seitz, F. J. Chem. Phys. 1938, 6, 150–162; https://doi.org/10.1063/1.1750216.Suche in Google Scholar

37. Nagy, R., Wollentin, R. W., Lui, C. K. J. Electrochem. Soc. 1950, 97, 29–32; https://doi.org/10.1149/1.2777961.Suche in Google Scholar

38. Yen, W. M., Shionoya, S., Yamamoto, H. Phosphor Handbook; CRC Press: Boca Raton, London, New York, 2007.10.1201/9781420005233Suche in Google Scholar

39. Brauer, P., Aberle, N., Knothe, M. Z. Naturforsch. 1967, 22a, 2059–2066; https://doi.org/10.1515/zna-1967-1231.Suche in Google Scholar

40. Clapp, R. H., Ginther, R. J. J. Opt. Soc. Am. 1947, 37, 355–362; https://doi.org/10.1364/josa.37.000355.Suche in Google Scholar PubMed

41. Sheldrick, G. M. Acta Crystallogr. 2008, A64, 112–122; https://doi.org/10.1107/s0108767307043930.Suche in Google Scholar

Erhalten: 2022-01-13
Angenommen: 2022-01-23
Online erschienen: 2022-02-21
Erschienen im Druck: 2022-03-28

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/znb-2022-0007/html?lang=de
Button zum nach oben scrollen