Home A Ni(II) coordination polymer with dual electrochemical functions: synthesis, crystal structure, hydrogen evolution reaction and l-ascorbic acid sensing
Article
Licensed
Unlicensed Requires Authentication

A Ni(II) coordination polymer with dual electrochemical functions: synthesis, crystal structure, hydrogen evolution reaction and l-ascorbic acid sensing

  • Geng Zhang , Jianping Dong , Ruixue Li , Qinqin Shen , Kaiyi Li , Xiaoxia Kong and Huilu Wu ORCID logo EMAIL logo
Published/Copyright: January 20, 2022
Become an author with De Gruyter Brill

Abstract

A two-dimensional Ni(II) coordination polymer (NiCP) of the formula {[NiL(terephthalate)(H2O)2]·2H2O} n (L = bis(1-(pyridin-4-ylmethyl)-benzimidazol-2-ylmethyl)ether), has been obtained from a solvothermal reaction, and characterized by single-crystal X-ray diffraction, elemental analysis, and IR and UV/Vis spectra. The coordinated terephthalate anions and the L ligands connect the Ni(II) ions in two directions, resulting in the construction of a corrugated layered structure. The electrochemical properties of a NiCP-CPE composite electrode supported by this coordination polymer were studied. For the electrocatalytic hydrogen evolution reaction, the required overpotential of this electrode (NiCP-CPE) is −521 mV when the current density reaches 10 mA cm−2. Compared with the solid carbon paste electrode (sCPE, −976 mV), the smaller overpotential proves effective electrocatalysis of the coordination polymer of the hydrogen evolution reaction. The doped electrode also exhibits high-efficiency in the electrochemical sensing of l-ascorbic acid in water, showing a detection limit of 0.28 μM in a linear range of 0.4–4000 μM.


Corresponding author: Huilu Wu, School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, 730070, P. R. China, E-mail:

Funding source: Natural Science Foundation of Gansu Province

Award Identifier / Grant number: 21JR7RA298

Funding source: Excellent graduate student "Innovation Star" project of Gansu Province

Award Identifier / Grant number: 2021CXZX-648

Acknowledgements

The present research was supported by Natural Science Foundation of Gansu Province (Grant No. 21JR7RA298) and Excellent graduate student “Innovation Star” project of Gansu Province (Grant No. 2021CXZX-648).

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: Natural Science Foundation of Gansu Province (Grant No. 21JR7RA298) and Excellent graduate student "Innovation Star" project of Gansu Province (Grant No. 2021CXZX-648).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Parker, J. F., Chervin, C. N., Pala, I. R., Machler, M., Burz, M. F., Long, J. W., Rolison, D. R. Science 2017, 356, 415–418. https://doi.org/10.1126/science.aak9991.Search in Google Scholar PubMed

2. Tao, K., Dan, H., Hai, Y., Liu, L., Gong, Y. Inorg. Chem. 2020, 59, 7000–7011. https://doi.org/10.1021/acs.inorgchem.0c00483.Search in Google Scholar PubMed

3. Zhang, R. L., Feng, J. J., Yao, Y. Q., Fang, K. M., Zhang, L., Yin, Z. Z., Wang, A. J. Appl. Surf. Sci. 2021, 548, 149280. https://doi.org/10.1016/j.apsusc.2021.149280.Search in Google Scholar

4. Adegbemiga, Y. B., Xie, M., Yaseen, W., Judith Oluigbo, C., Xie, J., Xu, Y. Chem. Eng. Sci. 2021, 246, 116868. https://doi.org/10.1016/j.ces.2021.116868.Search in Google Scholar

5. Wu, Y., Yang, Y., Li, Y., Zhang, C., Wang, Y., Tian, H. Ceram. Int. 2021, 47, 12002–12009. https://doi.org/10.1016/j.ceramint.2021.01.043.Search in Google Scholar

6. Wang, W., Wang, W., Xu, Y., Ren, X., Liu, X., Li, Z. Appl. Surf. Sci. 2021, 560, 149985. https://doi.org/10.1016/j.apsusc.2021.149985.Search in Google Scholar

7. Du, W., Shi, Y., Zhou, W., Yu, Y., Zhang, B. Angew. Chem. 2021, 133, 7127–7131. https://doi.org/10.1002/ange.202015723.Search in Google Scholar

8. Ge, Z., Fu, B., Zhao, J., Li, X., Ma, B., Chen, Y. J. Mater. Sci. 2020, 55, 14081–14104. https://doi.org/10.1007/s10853-020-05010-w.Search in Google Scholar

9. Ren, M., Guo, X., Huang, S. Appl. Surf. Sci. 2021, 556, 149801. https://doi.org/10.1016/j.apsusc.2021.149801.Search in Google Scholar

10. Shen, Z., Fan, X., Ma, S., An, Y., Yang, D., Guo, N., Luo, Z., Hu, Y. Int. J. Hydrogen Energy 2020, 45, 14396–14406. https://doi.org/10.1016/j.ijhydene.2020.03.174.Search in Google Scholar

11. Bao, S. S., Qin, M. F., Zheng, L. M. Chem. Commun. 2020, 56, 12090–12108. https://doi.org/10.1039/d0cc03850d.Search in Google Scholar PubMed

12. Zhang, D. M., Xu, C. G., Liu, Y. Z., Fan, C. B., Zhu, B., Fan, Y. H. J. Solid State Chem. 2020, 290, 121549. https://doi.org/10.1016/j.jssc.2020.121549.Search in Google Scholar

13. Kumar, N., Paul, A. K. Inorg. Chem. 2020, 59, 1284–1294. https://doi.org/10.1021/acs.inorgchem.9b02997.Search in Google Scholar PubMed

14. Kumagai, H., Kawata, S., Nakano, H. Inorg. Chem. 2019, 58, 2379–2385. https://doi.org/10.1021/acs.inorgchem.8b02768.Search in Google Scholar PubMed

15. Chen, K., Downes, C. A., Schneider, E., Goodpaster, J. D., Marinescu, S. C. ACS Appl. Mater. Interfaces 2021, 13, 16384–16395. https://doi.org/10.1021/acsami.1c01727.Search in Google Scholar PubMed

16. Tuan, D. D., Huang, C. W., Duan, X., Lin, C. H., Lin, K. Y. A. Int. J. Hydrogen Energy 2020, 45, 31952–31962. https://doi.org/10.1016/j.ijhydene.2020.08.243.Search in Google Scholar

17. Micheroni, D., Lan, G., Lin, W. J. Am. Chem. Soc. 2018, 140, 15591–15595. https://doi.org/10.1021/jacs.8b09521.Search in Google Scholar PubMed

18. Zhang, B., Zheng, Y., Ma, T., Yang, C., Peng, Y., Zhou, Z., Zhou, M., Li, S., Wang, Y., Cheng, C. Adv. Mater. 2021, 33, 2006042. https://doi.org/10.1002/adma.202006042.Search in Google Scholar PubMed

19. Fiaz, M., Kashif, M., Majeed, S., Ashiq, M. N., Farid, M. A., Athar, M. ChemistrySelect 2019, 4, 6996–7002. https://doi.org/10.1002/slct.201901151.Search in Google Scholar

20. Fiaz, M., Athar, M. ChemistrySelect 2019, 4, 8508–8515. https://doi.org/10.1002/slct.201901818.Search in Google Scholar

21. Zhao, L., Yang, A., Wang, A., Yu, H., Dai, J., Zheng, Y. Int. J. Hydrogen Energy 2020, 45, 30367–30374. https://doi.org/10.1016/j.ijhydene.2020.08.003.Search in Google Scholar

22. Chen, X., An, X., Tang, L., Chen, T., Zhang, G. Chem. Eng. J. 2022, 429, 132259. https://doi.org/10.1016/j.cej.2021.132259.Search in Google Scholar

23. Khattar, R., Hundal, M. S., Mathur, P. Inorg. Chim. Acta. 2012, 390, 129–134. https://doi.org/10.1016/j.ica.2012.04.015.Search in Google Scholar

24. Khattar, R., Yadav, A., Mathur, P. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2015, 142, 375–381. https://doi.org/10.1016/j.saa.2015.01.115.Search in Google Scholar PubMed

25. SMART, SAINT; Bruker AXS Inc.: Madison, WI (USA), 2007.Search in Google Scholar

26. Sheldrick, G. M. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

27. SADABS; Bruker AXS Inc.: Madison, WI (USA), 2000.Search in Google Scholar

28. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. J. Appl. Crystallogr. 2009, 42, 339–341. https://doi.org/10.1107/s0021889808042726.Search in Google Scholar

29. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D., Spagna, R. J. Appl. Crystallogr. 2007, 40, 609–613. https://doi.org/10.1107/s0021889807010941.Search in Google Scholar

30. Buljac, M., Krivić, D., Škugor Rončević, I., Vladislavić, N., Vukadin, J., Buzuk, M. Monatsh. Chem. 2020, 151, 511–524. https://doi.org/10.1007/s00706-020-02588-4.Search in Google Scholar

31. Luo, W., Yang, Z., Li, Z., Zhang, J., Liu, J., Zhao, Z., Wang, Z., Yan, S., Yu, T., Zou, Z. Energy Environ. Sci. 2011, 4, 4046. https://doi.org/10.1039/c1ee01812d.Search in Google Scholar

32. Qu, Y., Wang, C., Zhao, K., Wu, Y. C., Huang, G. Z., Han, X. T., Wu, H. L. J. Coord. Chem. 2019, 72, 3046–3056. https://doi.org/10.1080/00958972.2019.1675049.Search in Google Scholar

33. Wu, Y. C., Xia, L. X., Zhang, G., Wu, H. L., Qu, Y., Zhao, K., Wang, C. J. Coord. Chem. 2020, 73, 3223–3235. https://doi.org/10.1080/00958972.2020.1843641.Search in Google Scholar

34. Xia, X. Z., Xia, L. X., Zhang, G., Li, Y. G., Wang, J., Xu, J. H., Wu, H. L. J. Mol. Struct. 2021, 1227, 129726. https://doi.org/10.1016/j.molstruc.2020.129726.Search in Google Scholar

35. Dong, W. K., Wang, G., Sun, Y. X., Dong, X. Y., Yao, J., Gaob, X. H. Russ. J. Gen. Chem. 2013, 83, 1131–1135. https://doi.org/10.1134/s1070363213060212.Search in Google Scholar

36. Mao, S. S., Han, X. T., Li, C., Huang, G. Z., Shen, K. S., Shi, X. K., Wu, H. L. J. Coord. Chem. 2018, 71, 3330–3341. https://doi.org/10.1080/00958972.2018.1514116.Search in Google Scholar

37. Wang, F., Yuan, B., Tao, J., Zhu, C., Li, Y., Guo, T., Yang, X., Jiang, W. Polyhedron 2019, 164, 108–112. https://doi.org/10.1016/j.poly.2019.02.034.Search in Google Scholar

38. Xia, X. Z., Xia, L. X., Zhang, G., Xu, J. H., Wang, C., Wu, Y. C., Zhao, K., Wu, H. L. J. Coord. Chem. 2020, 73, 3322–3331. https://doi.org/10.1080/00958972.2020.1857746.Search in Google Scholar

39. Li, J. X., Hou, S. X., Hao, Z. C., Cui, G. H. Transit. Met. Chem. 2017, 42, 661–671. https://doi.org/10.1007/s11243-017-0172-6.Search in Google Scholar

40. Lupașcu, G., Pahonțu, E., Shova, S., Bărbuceanu Ștefania, F., Badea, M., Paraschivescu, C., Neamțu, J., Dinu, M., Ancuceanu, R. V., Drăgănescu, D., Dinu‐Pîrvu, C. E. Appl. Organomet. Chem. 2021, 35, e6149.10.1002/aoc.6149Search in Google Scholar

41. Li, L. H., Dong, W. K., Zhang, Y., Akogun, S. F., Xu, L. Appl. Organomet. Chem. 2017, 31, e3818. https://doi.org/10.1002/aoc.3818.Search in Google Scholar

42. Xu, Y. L., Zhang, H., Shen, K. S., Mao, S. S., Shi, X. K., Wu, H. L. Appl. Organomet. Chem. 2018, 32, e3902. https://doi.org/10.1002/aoc.3902.Search in Google Scholar

43. Du, L., Xing, L., Zhang, G., Sun, S. Carbon 2020, 156, 77–92. https://doi.org/10.1016/j.carbon.2019.09.029.Search in Google Scholar

44. He, Q., Liu, H., Tan, P., Xie, J., Si, S., Pan, J. J. Solid State Chem. 2021, 299, 122179. https://doi.org/10.1016/j.jssc.2021.122179.Search in Google Scholar

45. Xie, J., Zhang, H., Li, S., Wang, R., Sun, X., Zhou, M., Zhou, J., Lou, X. W. D., Xie, Y. Adv. Mater. 2013, 25, 5807–5813. https://doi.org/10.1002/adma.201302685.Search in Google Scholar

46. Wang, T., Liu, L., Zhu, Z., Papakonstantinou, P., Hu, J., Liu, H., Li, M. Energy Environ. Sci. 2013, 6, 625–633. https://doi.org/10.1039/c2ee23513g.Search in Google Scholar

47. Walter, M. G., Warren, E. L., McKone, J. R., Boettcher, S. W., Mi, Q., Santori, E. A., Lewis, N. S. Chem. Rev. 2010, 110, 6446–6473. https://doi.org/10.1021/cr1002326.Search in Google Scholar

48. Qin, J. S., Du, D. Y., Guan, W., Bo, X. J., Li, Y. F., Guo, L. P., Su, Z. M., Wang, Y. Y., Lan, Y. Q., Zhou, H. C. J. Am. Chem. Soc. 2015, 137, 7169–7177. https://doi.org/10.1021/jacs.5b02688.Search in Google Scholar

49. Gómez-Marín, A. M., Feliu, J. M. Electrochim. Acta 2013, 104, 367–377.10.1016/j.electacta.2012.10.075Search in Google Scholar

50. Lu, B., Guo, L., Wu, F., Peng, Y., Lu, J. E., Smart, T. J., Wang, N., Finfrock, Y. Z., Morris, D., Zhang, P., Li, N., Gao, P., Ping, Y., Chen, S. Nat. Commun. 2019, 10, 631. https://doi.org/10.1038/s41467-019-08419-3.Search in Google Scholar

51. Sun, Y., Wang, L., Amer, W. A., Yu, H., Ji, J., Huang, L., Shan, J., Tong, R. J. Inorg. Organomet. Polym. Mater. 2013, 23, 270–285. https://doi.org/10.1007/s10904-012-9779-4.Search in Google Scholar

52. He, D. H., Liu, J. J., Wang, Y., Li, F., Li, B., He, J. B. Electrochim. Acta 2019, 308, 285–294. https://doi.org/10.1016/j.electacta.2019.04.038.Search in Google Scholar

53. Song, G., Atrens, A., John, D. S., Wu, X., Nairn, J. Corros. Sci. 1997, 39, 1981–2004. https://doi.org/10.1016/s0010-938x(97)00090-5.Search in Google Scholar

54. Zhou, L. L., Tang, L. Z., Zhang, Y. X., Zhan, S. Z. Polyhedron 2015, 92, 124–129. https://doi.org/10.1016/j.poly.2015.03.013.Search in Google Scholar

55. Guo, S., Yan, Z., Yuan, S. Weile Geng Energy 2021, 229, 120651. https://doi.org/10.1016/j.energy.2021.120651.Search in Google Scholar

56. Wang, S. D., Xie, L. X., Zhao, Y. F., Wang, Y. N. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2020, 242, 118750. https://doi.org/10.1016/j.saa.2020.118750.Search in Google Scholar PubMed

57. Wang, H., Wang, X., Kong, R. M., Xia, L., Qu, F. Chin. Chem. Lett. 2021, 32, 198–202. https://doi.org/10.1016/j.cclet.2020.10.017.Search in Google Scholar

58. Mao, S., Han, X., Li, C., Huang, G., Shen, K., Shi, X., Wu, H. J. Coord. Chem. 2018, 71, 3330–3341. https://doi.org/10.1080/00958972.2018.1514116.Search in Google Scholar

59. Wang, T., Zhu, H., Zhuo, J., Zhu, Z., Papakonstantinou, P., Lubarsky, G., Lin, J., Li, M. Anal. Chem. 2013, 85, 10289–10295. https://doi.org/10.1021/ac402114c.Search in Google Scholar PubMed


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/znb-2021-0185).


Received: 2021-12-15
Accepted: 2022-01-05
Published Online: 2022-01-20
Published in Print: 2022-03-28

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 18.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/znb-2021-0185/html
Scroll to top button