A Ni(II) coordination polymer with dual electrochemical functions: synthesis, crystal structure, hydrogen evolution reaction and l-ascorbic acid sensing
Abstract
A two-dimensional Ni(II) coordination polymer (NiCP) of the formula {[NiL(terephthalate)(H2O)2]·2H2O} n (L = bis(1-(pyridin-4-ylmethyl)-benzimidazol-2-ylmethyl)ether), has been obtained from a solvothermal reaction, and characterized by single-crystal X-ray diffraction, elemental analysis, and IR and UV/Vis spectra. The coordinated terephthalate anions and the L ligands connect the Ni(II) ions in two directions, resulting in the construction of a corrugated layered structure. The electrochemical properties of a NiCP-CPE composite electrode supported by this coordination polymer were studied. For the electrocatalytic hydrogen evolution reaction, the required overpotential of this electrode (NiCP-CPE) is −521 mV when the current density reaches 10 mA cm−2. Compared with the solid carbon paste electrode (sCPE, −976 mV), the smaller overpotential proves effective electrocatalysis of the coordination polymer of the hydrogen evolution reaction. The doped electrode also exhibits high-efficiency in the electrochemical sensing of l-ascorbic acid in water, showing a detection limit of 0.28 μM in a linear range of 0.4–4000 μM.
Funding source: Natural Science Foundation of Gansu Province
Award Identifier / Grant number: 21JR7RA298
Funding source: Excellent graduate student "Innovation Star" project of Gansu Province
Award Identifier / Grant number: 2021CXZX-648
Acknowledgements
The present research was supported by Natural Science Foundation of Gansu Province (Grant No. 21JR7RA298) and Excellent graduate student “Innovation Star” project of Gansu Province (Grant No. 2021CXZX-648).
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: Natural Science Foundation of Gansu Province (Grant No. 21JR7RA298) and Excellent graduate student "Innovation Star" project of Gansu Province (Grant No. 2021CXZX-648).
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Parker, J. F., Chervin, C. N., Pala, I. R., Machler, M., Burz, M. F., Long, J. W., Rolison, D. R. Science 2017, 356, 415–418. https://doi.org/10.1126/science.aak9991.Search in Google Scholar PubMed
2. Tao, K., Dan, H., Hai, Y., Liu, L., Gong, Y. Inorg. Chem. 2020, 59, 7000–7011. https://doi.org/10.1021/acs.inorgchem.0c00483.Search in Google Scholar PubMed
3. Zhang, R. L., Feng, J. J., Yao, Y. Q., Fang, K. M., Zhang, L., Yin, Z. Z., Wang, A. J. Appl. Surf. Sci. 2021, 548, 149280. https://doi.org/10.1016/j.apsusc.2021.149280.Search in Google Scholar
4. Adegbemiga, Y. B., Xie, M., Yaseen, W., Judith Oluigbo, C., Xie, J., Xu, Y. Chem. Eng. Sci. 2021, 246, 116868. https://doi.org/10.1016/j.ces.2021.116868.Search in Google Scholar
5. Wu, Y., Yang, Y., Li, Y., Zhang, C., Wang, Y., Tian, H. Ceram. Int. 2021, 47, 12002–12009. https://doi.org/10.1016/j.ceramint.2021.01.043.Search in Google Scholar
6. Wang, W., Wang, W., Xu, Y., Ren, X., Liu, X., Li, Z. Appl. Surf. Sci. 2021, 560, 149985. https://doi.org/10.1016/j.apsusc.2021.149985.Search in Google Scholar
7. Du, W., Shi, Y., Zhou, W., Yu, Y., Zhang, B. Angew. Chem. 2021, 133, 7127–7131. https://doi.org/10.1002/ange.202015723.Search in Google Scholar
8. Ge, Z., Fu, B., Zhao, J., Li, X., Ma, B., Chen, Y. J. Mater. Sci. 2020, 55, 14081–14104. https://doi.org/10.1007/s10853-020-05010-w.Search in Google Scholar
9. Ren, M., Guo, X., Huang, S. Appl. Surf. Sci. 2021, 556, 149801. https://doi.org/10.1016/j.apsusc.2021.149801.Search in Google Scholar
10. Shen, Z., Fan, X., Ma, S., An, Y., Yang, D., Guo, N., Luo, Z., Hu, Y. Int. J. Hydrogen Energy 2020, 45, 14396–14406. https://doi.org/10.1016/j.ijhydene.2020.03.174.Search in Google Scholar
11. Bao, S. S., Qin, M. F., Zheng, L. M. Chem. Commun. 2020, 56, 12090–12108. https://doi.org/10.1039/d0cc03850d.Search in Google Scholar PubMed
12. Zhang, D. M., Xu, C. G., Liu, Y. Z., Fan, C. B., Zhu, B., Fan, Y. H. J. Solid State Chem. 2020, 290, 121549. https://doi.org/10.1016/j.jssc.2020.121549.Search in Google Scholar
13. Kumar, N., Paul, A. K. Inorg. Chem. 2020, 59, 1284–1294. https://doi.org/10.1021/acs.inorgchem.9b02997.Search in Google Scholar PubMed
14. Kumagai, H., Kawata, S., Nakano, H. Inorg. Chem. 2019, 58, 2379–2385. https://doi.org/10.1021/acs.inorgchem.8b02768.Search in Google Scholar PubMed
15. Chen, K., Downes, C. A., Schneider, E., Goodpaster, J. D., Marinescu, S. C. ACS Appl. Mater. Interfaces 2021, 13, 16384–16395. https://doi.org/10.1021/acsami.1c01727.Search in Google Scholar PubMed
16. Tuan, D. D., Huang, C. W., Duan, X., Lin, C. H., Lin, K. Y. A. Int. J. Hydrogen Energy 2020, 45, 31952–31962. https://doi.org/10.1016/j.ijhydene.2020.08.243.Search in Google Scholar
17. Micheroni, D., Lan, G., Lin, W. J. Am. Chem. Soc. 2018, 140, 15591–15595. https://doi.org/10.1021/jacs.8b09521.Search in Google Scholar PubMed
18. Zhang, B., Zheng, Y., Ma, T., Yang, C., Peng, Y., Zhou, Z., Zhou, M., Li, S., Wang, Y., Cheng, C. Adv. Mater. 2021, 33, 2006042. https://doi.org/10.1002/adma.202006042.Search in Google Scholar PubMed
19. Fiaz, M., Kashif, M., Majeed, S., Ashiq, M. N., Farid, M. A., Athar, M. ChemistrySelect 2019, 4, 6996–7002. https://doi.org/10.1002/slct.201901151.Search in Google Scholar
20. Fiaz, M., Athar, M. ChemistrySelect 2019, 4, 8508–8515. https://doi.org/10.1002/slct.201901818.Search in Google Scholar
21. Zhao, L., Yang, A., Wang, A., Yu, H., Dai, J., Zheng, Y. Int. J. Hydrogen Energy 2020, 45, 30367–30374. https://doi.org/10.1016/j.ijhydene.2020.08.003.Search in Google Scholar
22. Chen, X., An, X., Tang, L., Chen, T., Zhang, G. Chem. Eng. J. 2022, 429, 132259. https://doi.org/10.1016/j.cej.2021.132259.Search in Google Scholar
23. Khattar, R., Hundal, M. S., Mathur, P. Inorg. Chim. Acta. 2012, 390, 129–134. https://doi.org/10.1016/j.ica.2012.04.015.Search in Google Scholar
24. Khattar, R., Yadav, A., Mathur, P. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2015, 142, 375–381. https://doi.org/10.1016/j.saa.2015.01.115.Search in Google Scholar PubMed
25. SMART, SAINT; Bruker AXS Inc.: Madison, WI (USA), 2007.Search in Google Scholar
26. Sheldrick, G. M. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71, 3–8. https://doi.org/10.1107/s2053229614024218.Search in Google Scholar
27. SADABS; Bruker AXS Inc.: Madison, WI (USA), 2000.Search in Google Scholar
28. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. J. Appl. Crystallogr. 2009, 42, 339–341. https://doi.org/10.1107/s0021889808042726.Search in Google Scholar
29. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D., Spagna, R. J. Appl. Crystallogr. 2007, 40, 609–613. https://doi.org/10.1107/s0021889807010941.Search in Google Scholar
30. Buljac, M., Krivić, D., Škugor Rončević, I., Vladislavić, N., Vukadin, J., Buzuk, M. Monatsh. Chem. 2020, 151, 511–524. https://doi.org/10.1007/s00706-020-02588-4.Search in Google Scholar
31. Luo, W., Yang, Z., Li, Z., Zhang, J., Liu, J., Zhao, Z., Wang, Z., Yan, S., Yu, T., Zou, Z. Energy Environ. Sci. 2011, 4, 4046. https://doi.org/10.1039/c1ee01812d.Search in Google Scholar
32. Qu, Y., Wang, C., Zhao, K., Wu, Y. C., Huang, G. Z., Han, X. T., Wu, H. L. J. Coord. Chem. 2019, 72, 3046–3056. https://doi.org/10.1080/00958972.2019.1675049.Search in Google Scholar
33. Wu, Y. C., Xia, L. X., Zhang, G., Wu, H. L., Qu, Y., Zhao, K., Wang, C. J. Coord. Chem. 2020, 73, 3223–3235. https://doi.org/10.1080/00958972.2020.1843641.Search in Google Scholar
34. Xia, X. Z., Xia, L. X., Zhang, G., Li, Y. G., Wang, J., Xu, J. H., Wu, H. L. J. Mol. Struct. 2021, 1227, 129726. https://doi.org/10.1016/j.molstruc.2020.129726.Search in Google Scholar
35. Dong, W. K., Wang, G., Sun, Y. X., Dong, X. Y., Yao, J., Gaob, X. H. Russ. J. Gen. Chem. 2013, 83, 1131–1135. https://doi.org/10.1134/s1070363213060212.Search in Google Scholar
36. Mao, S. S., Han, X. T., Li, C., Huang, G. Z., Shen, K. S., Shi, X. K., Wu, H. L. J. Coord. Chem. 2018, 71, 3330–3341. https://doi.org/10.1080/00958972.2018.1514116.Search in Google Scholar
37. Wang, F., Yuan, B., Tao, J., Zhu, C., Li, Y., Guo, T., Yang, X., Jiang, W. Polyhedron 2019, 164, 108–112. https://doi.org/10.1016/j.poly.2019.02.034.Search in Google Scholar
38. Xia, X. Z., Xia, L. X., Zhang, G., Xu, J. H., Wang, C., Wu, Y. C., Zhao, K., Wu, H. L. J. Coord. Chem. 2020, 73, 3322–3331. https://doi.org/10.1080/00958972.2020.1857746.Search in Google Scholar
39. Li, J. X., Hou, S. X., Hao, Z. C., Cui, G. H. Transit. Met. Chem. 2017, 42, 661–671. https://doi.org/10.1007/s11243-017-0172-6.Search in Google Scholar
40. Lupașcu, G., Pahonțu, E., Shova, S., Bărbuceanu Ștefania, F., Badea, M., Paraschivescu, C., Neamțu, J., Dinu, M., Ancuceanu, R. V., Drăgănescu, D., Dinu‐Pîrvu, C. E. Appl. Organomet. Chem. 2021, 35, e6149.10.1002/aoc.6149Search in Google Scholar
41. Li, L. H., Dong, W. K., Zhang, Y., Akogun, S. F., Xu, L. Appl. Organomet. Chem. 2017, 31, e3818. https://doi.org/10.1002/aoc.3818.Search in Google Scholar
42. Xu, Y. L., Zhang, H., Shen, K. S., Mao, S. S., Shi, X. K., Wu, H. L. Appl. Organomet. Chem. 2018, 32, e3902. https://doi.org/10.1002/aoc.3902.Search in Google Scholar
43. Du, L., Xing, L., Zhang, G., Sun, S. Carbon 2020, 156, 77–92. https://doi.org/10.1016/j.carbon.2019.09.029.Search in Google Scholar
44. He, Q., Liu, H., Tan, P., Xie, J., Si, S., Pan, J. J. Solid State Chem. 2021, 299, 122179. https://doi.org/10.1016/j.jssc.2021.122179.Search in Google Scholar
45. Xie, J., Zhang, H., Li, S., Wang, R., Sun, X., Zhou, M., Zhou, J., Lou, X. W. D., Xie, Y. Adv. Mater. 2013, 25, 5807–5813. https://doi.org/10.1002/adma.201302685.Search in Google Scholar
46. Wang, T., Liu, L., Zhu, Z., Papakonstantinou, P., Hu, J., Liu, H., Li, M. Energy Environ. Sci. 2013, 6, 625–633. https://doi.org/10.1039/c2ee23513g.Search in Google Scholar
47. Walter, M. G., Warren, E. L., McKone, J. R., Boettcher, S. W., Mi, Q., Santori, E. A., Lewis, N. S. Chem. Rev. 2010, 110, 6446–6473. https://doi.org/10.1021/cr1002326.Search in Google Scholar
48. Qin, J. S., Du, D. Y., Guan, W., Bo, X. J., Li, Y. F., Guo, L. P., Su, Z. M., Wang, Y. Y., Lan, Y. Q., Zhou, H. C. J. Am. Chem. Soc. 2015, 137, 7169–7177. https://doi.org/10.1021/jacs.5b02688.Search in Google Scholar
49. Gómez-Marín, A. M., Feliu, J. M. Electrochim. Acta 2013, 104, 367–377.10.1016/j.electacta.2012.10.075Search in Google Scholar
50. Lu, B., Guo, L., Wu, F., Peng, Y., Lu, J. E., Smart, T. J., Wang, N., Finfrock, Y. Z., Morris, D., Zhang, P., Li, N., Gao, P., Ping, Y., Chen, S. Nat. Commun. 2019, 10, 631. https://doi.org/10.1038/s41467-019-08419-3.Search in Google Scholar
51. Sun, Y., Wang, L., Amer, W. A., Yu, H., Ji, J., Huang, L., Shan, J., Tong, R. J. Inorg. Organomet. Polym. Mater. 2013, 23, 270–285. https://doi.org/10.1007/s10904-012-9779-4.Search in Google Scholar
52. He, D. H., Liu, J. J., Wang, Y., Li, F., Li, B., He, J. B. Electrochim. Acta 2019, 308, 285–294. https://doi.org/10.1016/j.electacta.2019.04.038.Search in Google Scholar
53. Song, G., Atrens, A., John, D. S., Wu, X., Nairn, J. Corros. Sci. 1997, 39, 1981–2004. https://doi.org/10.1016/s0010-938x(97)00090-5.Search in Google Scholar
54. Zhou, L. L., Tang, L. Z., Zhang, Y. X., Zhan, S. Z. Polyhedron 2015, 92, 124–129. https://doi.org/10.1016/j.poly.2015.03.013.Search in Google Scholar
55. Guo, S., Yan, Z., Yuan, S. Weile Geng Energy 2021, 229, 120651. https://doi.org/10.1016/j.energy.2021.120651.Search in Google Scholar
56. Wang, S. D., Xie, L. X., Zhao, Y. F., Wang, Y. N. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2020, 242, 118750. https://doi.org/10.1016/j.saa.2020.118750.Search in Google Scholar PubMed
57. Wang, H., Wang, X., Kong, R. M., Xia, L., Qu, F. Chin. Chem. Lett. 2021, 32, 198–202. https://doi.org/10.1016/j.cclet.2020.10.017.Search in Google Scholar
58. Mao, S., Han, X., Li, C., Huang, G., Shen, K., Shi, X., Wu, H. J. Coord. Chem. 2018, 71, 3330–3341. https://doi.org/10.1080/00958972.2018.1514116.Search in Google Scholar
59. Wang, T., Zhu, H., Zhuo, J., Zhu, Z., Papakonstantinou, P., Lubarsky, G., Lin, J., Li, M. Anal. Chem. 2013, 85, 10289–10295. https://doi.org/10.1021/ac402114c.Search in Google Scholar PubMed
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/znb-2021-0185).
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- In this issue
- Research Articles
- Structural and electrochemical properties of the binary silicides Eu5Si3 and EuSi
- The solid solution TbNiIn1−xGa x
- Structural characterization of benzketozone monohydrate
- Synthesis, crystal structure and properties of a 2-D Cd(II) coordination polymer based on ferrocenecarboxylate and 4,4′-bipyridine ligands
- Pressure-induced phase transitions and mechanical properties of insensitive high explosive 1,1-diamino-2,2-dinitroethylene
- Synthesis of a bifunctional boron-Lewis acid and studies on host-guest chemistry using pyridine and TMPD
- Syntheses directed by ionic liquids: structures and properties of six novel lanthanide 1,3,5-benzenetrisbenzoate frameworks
- Two new bis(pyridine)-bis(amide)-based copper(II) coordination compounds for the electrochemical detection of trace Cr(VI) and efficient electrocatalytic oxygen evolution
- Synthesis, characterization and crystal structure of 4-methoxybenzylidene-based zinc(II) complexes
- A Ni(II) coordination polymer with dual electrochemical functions: synthesis, crystal structure, hydrogen evolution reaction and l-ascorbic acid sensing
- Tl2[B10H10] und Tl2[B12H12]: Kristallstrukturen, Raman-Spektren und Tl+-Lone-Pair-Lumineszenz im Vergleich
Articles in the same Issue
- Frontmatter
- In this issue
- Research Articles
- Structural and electrochemical properties of the binary silicides Eu5Si3 and EuSi
- The solid solution TbNiIn1−xGa x
- Structural characterization of benzketozone monohydrate
- Synthesis, crystal structure and properties of a 2-D Cd(II) coordination polymer based on ferrocenecarboxylate and 4,4′-bipyridine ligands
- Pressure-induced phase transitions and mechanical properties of insensitive high explosive 1,1-diamino-2,2-dinitroethylene
- Synthesis of a bifunctional boron-Lewis acid and studies on host-guest chemistry using pyridine and TMPD
- Syntheses directed by ionic liquids: structures and properties of six novel lanthanide 1,3,5-benzenetrisbenzoate frameworks
- Two new bis(pyridine)-bis(amide)-based copper(II) coordination compounds for the electrochemical detection of trace Cr(VI) and efficient electrocatalytic oxygen evolution
- Synthesis, characterization and crystal structure of 4-methoxybenzylidene-based zinc(II) complexes
- A Ni(II) coordination polymer with dual electrochemical functions: synthesis, crystal structure, hydrogen evolution reaction and l-ascorbic acid sensing
- Tl2[B10H10] und Tl2[B12H12]: Kristallstrukturen, Raman-Spektren und Tl+-Lone-Pair-Lumineszenz im Vergleich