Home Pressure-induced phase transitions and mechanical properties of insensitive high explosive 1,1-diamino-2,2-dinitroethylene
Article
Licensed
Unlicensed Requires Authentication

Pressure-induced phase transitions and mechanical properties of insensitive high explosive 1,1-diamino-2,2-dinitroethylene

  • Wenpeng Wang EMAIL logo , Qijun Liu , Fusheng Liu and Zhengtang Liu
Published/Copyright: February 7, 2022
Become an author with De Gruyter Brill

Abstract

The structural and mechanical properties of an insensitive high-explosive 1,1-diamino-2,2-dinitroethylene (FOX-7) polymorphs were studied using dispersion-corrected density functional theory calculations. The predicted lattice parameters of FOX-7 polymorphs agree well with the available single-crystal X-ray diffraction data. From our elastic modulus calculations, we found that the ε phase has the highest shear modulus G, Young’s modulus E, longitudinal speed CL, and shear speed CS, respectively. Moreover, both α and α′ phase are brittle, ε phase is ductile nature. The results of Hirshfeld surfaces and fingerprint plots indicate that the α and α′ phase possess similar molecular packing modes. Meanwhile, the ε phase is found to have the strongest π…π interactions because of the nearly planer molecules formed a planar layer in the crystal. The pressure effects on the α and α′ phase presented an obvious anisotropy, a pressure-induced phase transition from phase α′ (P21/n) to ε phase (P1) was studied. And we also analyze the influence of pressure on the electronic structure.


Corresponding author: Wenpeng Wang, School of Science, Xi’an University of Posts and Telecommunications, Xi’an 710121, China, E-mail:

Funding source: National Natural Science Foundation of China

Award Identifier / Grant number: Unassigned

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by the National Natural Science Foundation of China (Grant No. 12104364).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Latypov, N. V., Bergman, J. Tetrahedron 1998, 54, 11525–11536. https://doi.org/10.1016/s0040-4020(98)00673-5.Search in Google Scholar

2. Sorescu, D. C., Boatz, J. A., Thompson, D. L. J. Phys. Chem. A 2001, 105, 5010–5021. https://doi.org/10.1021/jp010289m.Search in Google Scholar

3. Michalchuk, A. A. L., Rudic, S., Pulham, C. R., Morrison, C. Chem. Commun. 2021, 57, 11213–11216. https://doi.org/10.1039/d1cc03906g.Search in Google Scholar PubMed

4. Stankevich, A. V., Taibinov, N. P., Kostitsyn, O. V., Garmashev, A. Y. J. Phys. Conf. Ser. 2021, 1787, 012006. https://doi.org/10.1088/1742-6596/1787/1/012006.Search in Google Scholar

5. Evers, J., Klapötke, T. M., Mayer, P., Oehlinger, G. Welch J. Inorg. Chem. 2006, 45, 4996–5007. https://doi.org/10.1021/ic052150m.Search in Google Scholar PubMed

6. Crawford, M. J., Evers, J., Göbel, M., Klapötke, T. M., Mayer, P., Oehlinger, G., Welch, J. M. Propellants Explos. Pyrotech. 2007, 32, 478–495. https://doi.org/10.1002/prep.200700240.Search in Google Scholar

7. Pravica, M., Liu, Y., Robinson, J., Velisavljevic, N., Liu, Z., Galley, M. J. Appl. Phys. 2012, 111, 103534. https://doi.org/10.1063/1.4722350.Search in Google Scholar

8. Bishop, M. M., Chellappa, R. S., Pravica, M., Coe, J., Liu, Z., Dattlebaum, D., Vohra, Y., Velisavljevic, N. J. Chem. Phys. 2012, 137, 174304. https://doi.org/10.1063/1.4759448.Search in Google Scholar PubMed

9. Dreger, Z. A., Tao, Y., Gupta, Y. M. Chem. Phys. Lett. 2013, 584, 83–87. https://doi.org/10.1016/j.cplett.2013.08.070.Search in Google Scholar

10. Dreger, Z. A., Tao, Y., Gupta, Y. M. J. Phys. Chem. A 2014, 118, 5002–5012. https://doi.org/10.1021/jp5052062.Search in Google Scholar PubMed

11. Hunter, S., Coster, P. L., Davidson, A. J., Millar, D. I. A., Parker, S. F., Marshall, W. G., Smith, R. I., Morrison, C. A., Pulham, C. R. J. Phys. Chem. C 2015, 119, 2322–2334. https://doi.org/10.1021/jp5110888.Search in Google Scholar

12. Zhang, J., Velisavljevic, N., Zhu, J., Wang, L. J. Phys. Condens. Matter 2016, 28, 2–9. https://doi.org/10.1088/0953-8984/28/39/395402.Search in Google Scholar PubMed

13. Dreger, Z. A., Stash, A. I., Yu, Z. G., Chen, Y. S., Tao, Y., Gupta, Y. M. J. Phys. Chem. C 2016, 120, 1218–1224. https://doi.org/10.1021/acs.jpcc.5b10644.Search in Google Scholar

14. Segall, M. D., Lindan, P. J. D., Probert, M. J., Pickard, C. J., Hasnip, P. J., Clark, S. J., Payne, M. C. J. Phys. Condens. Matter 2002, 14, 2717–2744. https://doi.org/10.1088/0953-8984/14/11/301.Search in Google Scholar

15. Hamann, D. R., Schlüter, M., Chiang, C. Phys. Rev. Lett. 1979, 43, 1494–1497. https://doi.org/10.1103/physrevlett.43.1494.Search in Google Scholar

16. Fischer, T. H., Almlöf, J. J. Phys. Chem. 1992, 96, 9768–9774. https://doi.org/10.1021/j100203a036.Search in Google Scholar

17. Perdew, J. P., Burke, K., Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865–3868. https://doi.org/10.1103/physrevlett.77.3865.Search in Google Scholar

18. Monkhorst, H. J., Pack, J. D. S. Phys. Rev. B 1976, 13, 5188–5192. https://doi.org/10.1103/physrevb.13.5188.Search in Google Scholar

19. Grimme, S. J. Comput. Chem. 2006, 27, 1787–1799. https://doi.org/10.1002/jcc.20495.Search in Google Scholar PubMed

20. Dreger, Z. A., Stash, A. I., Yu, Z. G., Chen, Y. S., Tao, Y., Gupta, Y. M. J. Phys. Chem. C 2016, 120, 27600–27607. https://doi.org/10.1021/acs.jpcc.6b10010.Search in Google Scholar

21. Birch, F. J. Appl. Phys. 1938, 9, 279–288. https://doi.org/10.1063/1.1710417.Search in Google Scholar

22. Peiris, S. M., Wong, C. P., Zerilli, F. J. J. Chem. Phys. 2004, 120, 8060–8066. https://doi.org/10.1063/1.1690754.Search in Google Scholar PubMed

23. Appalakondaiah, S., Vaitheeswaran, G., Lebègue, S. J. Chem. Phys. 2014, 140, 014105. https://doi.org/10.1063/1.4855056.Search in Google Scholar PubMed

24. Moses, A. B., Adivaiah, B., Vaitheeswaran, G. Phys. Chem. Chem. Phys. 2019, 21, 884–900. https://doi.org/10.1039/c8cp04827d.Search in Google Scholar PubMed

25. Fedorov, I. A., Nguyen, C. V., Prosekov, A. Y. ACS Omega 2021, 6, 642–648. https://doi.org/10.1021/acsomega.0c05152.Search in Google Scholar PubMed PubMed Central

26. Rykounov, A. A. J. Appl. Phys. 2015, 117, 215901. https://doi.org/10.1063/1.4921815.Search in Google Scholar

27. Hill, R. Proc. Phys. Soc. Sect. A 1952, 65, 349–354. https://doi.org/10.1088/0370-1298/65/5/307.Search in Google Scholar

28. Upadhyay, D., Pratap, A., Jha, P. K. J. Raman Spectrosc. 2019, 50, 603–613. https://doi.org/10.1002/jrs.5538.Search in Google Scholar

29. Gomis, O., Manjón, F. J., Rodríguez, H. P., Muñoz, A. J. Phys. Chem. Solids 2019, 124, 111–120. https://doi.org/10.1016/j.jpcs.2018.09.002.Search in Google Scholar

30. Dusabe, B., Dongho-Nguimdo, G. M., Joubert, D. P. Eur. Phys. J. B 2020, 93, 1–12. https://doi.org/10.1140/epjb/e2020-10060-3.Search in Google Scholar

31. Camacho-García, J. H., Moreno-Hernández, J. C., Ruiz-Peralta, M. L., Bautista-Hernandez, A., Escobedo-Morales, A. Mater. Res. Express 2019, 6, 045904.10.1088/2053-1591/aafae5Search in Google Scholar

32. Winey, J. M., Toyoda, Y., Gupta, Y. M. J. Appl. Phys. 2020, 127, 155901. https://doi.org/10.1063/1.5140194.Search in Google Scholar

33. McKinnon, J. J., Spackman, M. A., Mitchell, A. S. Acta Crystallogr. 2004, B60, 627–668. https://doi.org/10.1107/s0108768104020300.Search in Google Scholar

34. Spackman, M. A., McKinnon, J. J. CrystEngComm 2002, 4, 378–392. https://doi.org/10.1039/b203191b.Search in Google Scholar

35. Rohl, A. L., Moret, M., Kaminsky, W., Claborn, K., McKinnon, J. J., Kahr, B. Cryst. Growth Des. 2008, 8, 4517–4525. https://doi.org/10.1021/cg8005212.Search in Google Scholar

36. Spackman, M. A., Jayatilaka, D. CrystEngComm 2009, 11, 19–32. https://doi.org/10.1039/b818330a.Search in Google Scholar

37. Shelton, H., Dera, P., Tkachev, S. Crystals 2018, 8, 1–20. https://doi.org/10.3390/cryst8070265.Search in Google Scholar

38. Loots, L., Barbour, L. J. CrystEngComm 2012, 14, 300–304. https://doi.org/10.1039/c1ce05763d.Search in Google Scholar

39. Abraham, B. M., Vaitheeswaran, G. Mater. Chem. Phys. 2020, 240, 122175. https://doi.org/10.1016/j.matchemphys.2019.122175.Search in Google Scholar

40. Wu, Q., Zhu, W., Xiao, H. J. Mol. Model. 2013, 19, 4039–4047. https://doi.org/10.1007/s00894-013-1931-8.Search in Google Scholar PubMed

41. Zhu, W., Xiao, H. Struct. Chem. 2010, 21, 657–665. https://doi.org/10.1007/s11224-010-9596-8.Search in Google Scholar

Received: 2021-12-02
Accepted: 2022-01-23
Published Online: 2022-02-07
Published in Print: 2022-03-28

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 17.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/znb-2021-0174/html
Scroll to top button