Abstract
The structural and mechanical properties of an insensitive high-explosive 1,1-diamino-2,2-dinitroethylene (FOX-7) polymorphs were studied using dispersion-corrected density functional theory calculations. The predicted lattice parameters of FOX-7 polymorphs agree well with the available single-crystal X-ray diffraction data. From our elastic modulus calculations, we found that the ε phase has the highest shear modulus G, Young’s modulus E, longitudinal speed CL, and shear speed CS, respectively. Moreover, both α and α′ phase are brittle, ε phase is ductile nature. The results of Hirshfeld surfaces and fingerprint plots indicate that the α and α′ phase possess similar molecular packing modes. Meanwhile, the ε phase is found to have the strongest π…π interactions because of the nearly planer molecules formed a planar layer in the crystal. The pressure effects on the α and α′ phase presented an obvious anisotropy, a pressure-induced phase transition from phase α′ (P21/n) to ε phase (P1) was studied. And we also analyze the influence of pressure on the electronic structure.
Funding source: National Natural Science Foundation of China
Award Identifier / Grant number: Unassigned
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This work was supported by the National Natural Science Foundation of China (Grant No. 12104364).
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Latypov, N. V., Bergman, J. Tetrahedron 1998, 54, 11525–11536. https://doi.org/10.1016/s0040-4020(98)00673-5.Search in Google Scholar
2. Sorescu, D. C., Boatz, J. A., Thompson, D. L. J. Phys. Chem. A 2001, 105, 5010–5021. https://doi.org/10.1021/jp010289m.Search in Google Scholar
3. Michalchuk, A. A. L., Rudic, S., Pulham, C. R., Morrison, C. Chem. Commun. 2021, 57, 11213–11216. https://doi.org/10.1039/d1cc03906g.Search in Google Scholar PubMed
4. Stankevich, A. V., Taibinov, N. P., Kostitsyn, O. V., Garmashev, A. Y. J. Phys. Conf. Ser. 2021, 1787, 012006. https://doi.org/10.1088/1742-6596/1787/1/012006.Search in Google Scholar
5. Evers, J., Klapötke, T. M., Mayer, P., Oehlinger, G. Welch J. Inorg. Chem. 2006, 45, 4996–5007. https://doi.org/10.1021/ic052150m.Search in Google Scholar PubMed
6. Crawford, M. J., Evers, J., Göbel, M., Klapötke, T. M., Mayer, P., Oehlinger, G., Welch, J. M. Propellants Explos. Pyrotech. 2007, 32, 478–495. https://doi.org/10.1002/prep.200700240.Search in Google Scholar
7. Pravica, M., Liu, Y., Robinson, J., Velisavljevic, N., Liu, Z., Galley, M. J. Appl. Phys. 2012, 111, 103534. https://doi.org/10.1063/1.4722350.Search in Google Scholar
8. Bishop, M. M., Chellappa, R. S., Pravica, M., Coe, J., Liu, Z., Dattlebaum, D., Vohra, Y., Velisavljevic, N. J. Chem. Phys. 2012, 137, 174304. https://doi.org/10.1063/1.4759448.Search in Google Scholar PubMed
9. Dreger, Z. A., Tao, Y., Gupta, Y. M. Chem. Phys. Lett. 2013, 584, 83–87. https://doi.org/10.1016/j.cplett.2013.08.070.Search in Google Scholar
10. Dreger, Z. A., Tao, Y., Gupta, Y. M. J. Phys. Chem. A 2014, 118, 5002–5012. https://doi.org/10.1021/jp5052062.Search in Google Scholar PubMed
11. Hunter, S., Coster, P. L., Davidson, A. J., Millar, D. I. A., Parker, S. F., Marshall, W. G., Smith, R. I., Morrison, C. A., Pulham, C. R. J. Phys. Chem. C 2015, 119, 2322–2334. https://doi.org/10.1021/jp5110888.Search in Google Scholar
12. Zhang, J., Velisavljevic, N., Zhu, J., Wang, L. J. Phys. Condens. Matter 2016, 28, 2–9. https://doi.org/10.1088/0953-8984/28/39/395402.Search in Google Scholar PubMed
13. Dreger, Z. A., Stash, A. I., Yu, Z. G., Chen, Y. S., Tao, Y., Gupta, Y. M. J. Phys. Chem. C 2016, 120, 1218–1224. https://doi.org/10.1021/acs.jpcc.5b10644.Search in Google Scholar
14. Segall, M. D., Lindan, P. J. D., Probert, M. J., Pickard, C. J., Hasnip, P. J., Clark, S. J., Payne, M. C. J. Phys. Condens. Matter 2002, 14, 2717–2744. https://doi.org/10.1088/0953-8984/14/11/301.Search in Google Scholar
15. Hamann, D. R., Schlüter, M., Chiang, C. Phys. Rev. Lett. 1979, 43, 1494–1497. https://doi.org/10.1103/physrevlett.43.1494.Search in Google Scholar
16. Fischer, T. H., Almlöf, J. J. Phys. Chem. 1992, 96, 9768–9774. https://doi.org/10.1021/j100203a036.Search in Google Scholar
17. Perdew, J. P., Burke, K., Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865–3868. https://doi.org/10.1103/physrevlett.77.3865.Search in Google Scholar
18. Monkhorst, H. J., Pack, J. D. S. Phys. Rev. B 1976, 13, 5188–5192. https://doi.org/10.1103/physrevb.13.5188.Search in Google Scholar
19. Grimme, S. J. Comput. Chem. 2006, 27, 1787–1799. https://doi.org/10.1002/jcc.20495.Search in Google Scholar PubMed
20. Dreger, Z. A., Stash, A. I., Yu, Z. G., Chen, Y. S., Tao, Y., Gupta, Y. M. J. Phys. Chem. C 2016, 120, 27600–27607. https://doi.org/10.1021/acs.jpcc.6b10010.Search in Google Scholar
21. Birch, F. J. Appl. Phys. 1938, 9, 279–288. https://doi.org/10.1063/1.1710417.Search in Google Scholar
22. Peiris, S. M., Wong, C. P., Zerilli, F. J. J. Chem. Phys. 2004, 120, 8060–8066. https://doi.org/10.1063/1.1690754.Search in Google Scholar PubMed
23. Appalakondaiah, S., Vaitheeswaran, G., Lebègue, S. J. Chem. Phys. 2014, 140, 014105. https://doi.org/10.1063/1.4855056.Search in Google Scholar PubMed
24. Moses, A. B., Adivaiah, B., Vaitheeswaran, G. Phys. Chem. Chem. Phys. 2019, 21, 884–900. https://doi.org/10.1039/c8cp04827d.Search in Google Scholar PubMed
25. Fedorov, I. A., Nguyen, C. V., Prosekov, A. Y. ACS Omega 2021, 6, 642–648. https://doi.org/10.1021/acsomega.0c05152.Search in Google Scholar PubMed PubMed Central
26. Rykounov, A. A. J. Appl. Phys. 2015, 117, 215901. https://doi.org/10.1063/1.4921815.Search in Google Scholar
27. Hill, R. Proc. Phys. Soc. Sect. A 1952, 65, 349–354. https://doi.org/10.1088/0370-1298/65/5/307.Search in Google Scholar
28. Upadhyay, D., Pratap, A., Jha, P. K. J. Raman Spectrosc. 2019, 50, 603–613. https://doi.org/10.1002/jrs.5538.Search in Google Scholar
29. Gomis, O., Manjón, F. J., Rodríguez, H. P., Muñoz, A. J. Phys. Chem. Solids 2019, 124, 111–120. https://doi.org/10.1016/j.jpcs.2018.09.002.Search in Google Scholar
30. Dusabe, B., Dongho-Nguimdo, G. M., Joubert, D. P. Eur. Phys. J. B 2020, 93, 1–12. https://doi.org/10.1140/epjb/e2020-10060-3.Search in Google Scholar
31. Camacho-García, J. H., Moreno-Hernández, J. C., Ruiz-Peralta, M. L., Bautista-Hernandez, A., Escobedo-Morales, A. Mater. Res. Express 2019, 6, 045904.10.1088/2053-1591/aafae5Search in Google Scholar
32. Winey, J. M., Toyoda, Y., Gupta, Y. M. J. Appl. Phys. 2020, 127, 155901. https://doi.org/10.1063/1.5140194.Search in Google Scholar
33. McKinnon, J. J., Spackman, M. A., Mitchell, A. S. Acta Crystallogr. 2004, B60, 627–668. https://doi.org/10.1107/s0108768104020300.Search in Google Scholar
34. Spackman, M. A., McKinnon, J. J. CrystEngComm 2002, 4, 378–392. https://doi.org/10.1039/b203191b.Search in Google Scholar
35. Rohl, A. L., Moret, M., Kaminsky, W., Claborn, K., McKinnon, J. J., Kahr, B. Cryst. Growth Des. 2008, 8, 4517–4525. https://doi.org/10.1021/cg8005212.Search in Google Scholar
36. Spackman, M. A., Jayatilaka, D. CrystEngComm 2009, 11, 19–32. https://doi.org/10.1039/b818330a.Search in Google Scholar
37. Shelton, H., Dera, P., Tkachev, S. Crystals 2018, 8, 1–20. https://doi.org/10.3390/cryst8070265.Search in Google Scholar
38. Loots, L., Barbour, L. J. CrystEngComm 2012, 14, 300–304. https://doi.org/10.1039/c1ce05763d.Search in Google Scholar
39. Abraham, B. M., Vaitheeswaran, G. Mater. Chem. Phys. 2020, 240, 122175. https://doi.org/10.1016/j.matchemphys.2019.122175.Search in Google Scholar
40. Wu, Q., Zhu, W., Xiao, H. J. Mol. Model. 2013, 19, 4039–4047. https://doi.org/10.1007/s00894-013-1931-8.Search in Google Scholar PubMed
41. Zhu, W., Xiao, H. Struct. Chem. 2010, 21, 657–665. https://doi.org/10.1007/s11224-010-9596-8.Search in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- In this issue
- Research Articles
- Structural and electrochemical properties of the binary silicides Eu5Si3 and EuSi
- The solid solution TbNiIn1−xGa x
- Structural characterization of benzketozone monohydrate
- Synthesis, crystal structure and properties of a 2-D Cd(II) coordination polymer based on ferrocenecarboxylate and 4,4′-bipyridine ligands
- Pressure-induced phase transitions and mechanical properties of insensitive high explosive 1,1-diamino-2,2-dinitroethylene
- Synthesis of a bifunctional boron-Lewis acid and studies on host-guest chemistry using pyridine and TMPD
- Syntheses directed by ionic liquids: structures and properties of six novel lanthanide 1,3,5-benzenetrisbenzoate frameworks
- Two new bis(pyridine)-bis(amide)-based copper(II) coordination compounds for the electrochemical detection of trace Cr(VI) and efficient electrocatalytic oxygen evolution
- Synthesis, characterization and crystal structure of 4-methoxybenzylidene-based zinc(II) complexes
- A Ni(II) coordination polymer with dual electrochemical functions: synthesis, crystal structure, hydrogen evolution reaction and l-ascorbic acid sensing
- Tl2[B10H10] und Tl2[B12H12]: Kristallstrukturen, Raman-Spektren und Tl+-Lone-Pair-Lumineszenz im Vergleich
Articles in the same Issue
- Frontmatter
- In this issue
- Research Articles
- Structural and electrochemical properties of the binary silicides Eu5Si3 and EuSi
- The solid solution TbNiIn1−xGa x
- Structural characterization of benzketozone monohydrate
- Synthesis, crystal structure and properties of a 2-D Cd(II) coordination polymer based on ferrocenecarboxylate and 4,4′-bipyridine ligands
- Pressure-induced phase transitions and mechanical properties of insensitive high explosive 1,1-diamino-2,2-dinitroethylene
- Synthesis of a bifunctional boron-Lewis acid and studies on host-guest chemistry using pyridine and TMPD
- Syntheses directed by ionic liquids: structures and properties of six novel lanthanide 1,3,5-benzenetrisbenzoate frameworks
- Two new bis(pyridine)-bis(amide)-based copper(II) coordination compounds for the electrochemical detection of trace Cr(VI) and efficient electrocatalytic oxygen evolution
- Synthesis, characterization and crystal structure of 4-methoxybenzylidene-based zinc(II) complexes
- A Ni(II) coordination polymer with dual electrochemical functions: synthesis, crystal structure, hydrogen evolution reaction and l-ascorbic acid sensing
- Tl2[B10H10] und Tl2[B12H12]: Kristallstrukturen, Raman-Spektren und Tl+-Lone-Pair-Lumineszenz im Vergleich