Home Structural characterization of benzketozone monohydrate
Article
Licensed
Unlicensed Requires Authentication

Structural characterization of benzketozone monohydrate

  • Umida Tillaeva , Jamshid Ashurov , Gulnora Tillaeva , Abdusamat Nabiev and Vahobjon Sabirov EMAIL logo
Published/Copyright: January 31, 2022
Become an author with De Gruyter Brill

Abstract

The structure of benzketozone monohydrate, C9H9N3O2S·H2O (BKZ), was studied by single-crystal X-ray diffraction, quantum chemical (DFT) and IR spectroscopy methods. The nitrogen atoms of the amino and imine groups of the thiosemicarbazide fragment are stabilized in the cis-configuration. The bond length N–C in the thiosemicarbazide group is unusually short (1.306(3) Å) as a result of the p,π-conjugation in that group. The hydrogen bonds and other weak interactions are studied by Hirshfeld surface calculations. The geometrical parameters of the structures were optimized by density functional theory.


Corresponding author: Vahobjon Sabirov, Tashkent State Technical University, 110110, Ulugbek str., 45, Almalyk, Uzbekistan, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Pfau, C. J. Bull WHO 1975, 52, 737–744.10.1177/107769907505200422Search in Google Scholar

2. Pfau, C. J., The thiosemicarbozones. In Chemotherapy of Viral Infections; Came, P. E., Caliguiri, L. A., Eds. Univ. Texas Med. Branch: Glveston, 1982; pp. 147–198.10.1007/978-3-642-68487-6_5Search in Google Scholar

3. Sandeman, T. F. Br. Med. 1966, 12, 625–627; https://doi.org/10.1136/bmj.2.5514.625.Search in Google Scholar

4. Bauer, D. J., In Chemotherapy of Virus Diseases; Bauer, D. J., Ed. Pergamon Press: London, Vol. 1, 1972; pp. 35–113.Search in Google Scholar

5. Levinson, W., In Selective Inhibitors of Viral Function; Carter, W. A., Ed. CRC Press: Cleveland, Ohio, 1973; pp. 213–226.Search in Google Scholar

6. Khan, T., Joshi, R. C., Khan, A. R. Der Chem. Sin. 2015, 6, 1–11.Search in Google Scholar

7. Sartorelli, A. C., Agrawal, K. C., Tsiftsoglou, A. S., Moore, E. C. Adv. Enzym. Regul. 1977, 11, 117–139; https://doi.org/10.1016/0065-2571(77)90012-7.Search in Google Scholar

8. Agrawal, K. C., Sartorelli, A. C. Prog. Med. Chem. 1978, 15, 321–356; https://doi.org/10.1016/s0079-6468(08)70259-5.Search in Google Scholar

9. Petering, D. H., In Metal Complexes as Anticancer Agents; Sigel, H., Sigel, A., Eds. Dekker: New York, Basel, Vol. 11, 1980; pp. 197–229.Search in Google Scholar

10. Murphy, M. B., Deweese, J. J. Adv. Mol. Toxic. 2017, 11, 203–240; https://doi.org/10.1016/b978-0-12-812522-9.00005-1.Search in Google Scholar

11. Tillaeva, U. M., Kasimova, D. B., Tillaeva, G. U., Gaibnazarova, D. T., Yakhyaev, U. B. World J. Pharm. Life Sci. 2020, 6, 24–26.Search in Google Scholar

12. Djuraev, A. D., Yakubkhodjaeva, M. R., Abdullaeva, M. E., Atakhodjaeva, M. A. Eur. J. Mol. Clin. Med. 2020, 7, 3566–3582.Search in Google Scholar

13. Savir, S., Wei, Z. J., Liew, J. W. K., Vythilingam, I., Lim, Y. A. L., Saad, H. M., Sim, K. S., Tan, K. W. J. Mol. Struct. 2020, 1211, 1280–1290; https://doi.org/10.1016/j.molstruc.2020.128090.Search in Google Scholar

14. de Oliveira, R. B., de Souza-Fagundes, E. M., Soares, R. P. P., Andrade, A. A., Krettli, A. U., Zani, C. L. Eur. J. Med. Chem. 2007, 43, 1983–1988.10.1016/j.ejmech.2007.11.012Search in Google Scholar PubMed

15. Qi, J., Yao, Q., Qian, K., Tian, L., Cheng, Z., Yang, D., Wang, Y. Eur. J. Med. Chem. 2018, 154, 91–100; https://doi.org/10.1016/j.ejmech.2018.05.016.Search in Google Scholar PubMed

16. El-Asmy, A. A., Sherif, Y. E., Gabr, S. A., Al-Hazmi, G. A. Biochem. Ind. J. 2007, 1, 53–62.Search in Google Scholar

17. Kaur, S., Ali, B. Pharmacology 1982, 24, 162–168; https://doi.org/10.1159/000137591.Search in Google Scholar PubMed

18. Kumar, D., Singh, V. K. Drug Discov. Ther. 2014, 13, 24–32.Search in Google Scholar

19. Anderson, B. J., Jasinski, J. P., Freedman, M. B., Millikan, S. P., O’Rourke, K. A., Smolenski, V. A. Crystals 2016, 6, 17; https://doi.org/10.3390/cryst6020017.Search in Google Scholar

20. Gulcan, M., Gümüş, S., Şekerci, M., Özdemir, S., Şahin, E., Çolak, N. Phosphorus Sulfur Silicon Relat. Elem. 2017, 193, 14–22.10.1080/10426507.2017.1370589Search in Google Scholar

21. Khalaji, A. D., Shahsavani, E., Dušek, M., Kucerakova, M., Eigner, V. Iran. J. Chem. Chem. Eng. 2020, 39, 23–28.Search in Google Scholar

22. Qi, J., Zheng, Y., Qian, K., Tian, I., Zhang, G.-X., Cheng, Zh., Wang, Y. J. Inorg. Biochem. 2017, 177, 110–117; https://doi.org/10.1016/j.jinorgbio.2017.09.012.Search in Google Scholar

23. Singh, R. B., Ishil, H. Crit. Rev. Anal. Chem. 1991, 22, 381–409; https://doi.org/10.1080/10408349108051640.Search in Google Scholar

24. Palaniappan, R. Curr. Sci. 1989, 58, 958–961.Search in Google Scholar

25. Casas, J., García Gassende, M. S., Sordo, J. Coord. Chem. Rev. 2000, 209, 197–261; https://doi.org/10.1016/s0010-8545(00)00363-5.Search in Google Scholar

26. Bakhritdinova, F., Abdurakhmanova, U. The 8th International Symposium on Ocular Pharmacology and Therapeutics; Italy: Rome, 2009; p. 129.Search in Google Scholar

27. Tillaeva, U. M., Kasimova, D. B., Tillaeva, G. U., Gaibnazarova, D. T., Yakhyaev, U. B. World J. Pharm. Life Sci. 2020, 6, 624–626.Search in Google Scholar

28. Burshtein, I. F., Verezhan, A. V., Fundamensky, V. S., Bologa, O. A., Malinovskii, N. B. J. Struct. Chem. 1988, 5, 166–169.Search in Google Scholar

29. Sheldrick, G. M. SHELXS-97 and Shelxl-97, Program for Crystal Structure Solution and Refinement; University of Göttingen: Göttingen, 1997.Search in Google Scholar

30. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J., Wood, P. A. J. Appl. Crystallogr. 2008, 41, 466–470; https://doi.org/10.1107/s0021889807067908.Search in Google Scholar

31. Spackman, M. A., Jayatilaka, D. CrystEngComm 2009, 11, 19–32; https://doi.org/10.1039/b818330a.Search in Google Scholar

32. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D., Spackman, M. A. CrystalExplorer17; University of Western Australia, 2017. http://hirshfeldsurface.net.Search in Google Scholar

33. Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., Hutchison, G. R. J. Chem. Inform. 2012, 4, 17; https://doi.org/10.1186/1758-2946-4-17.Search in Google Scholar PubMed PubMed Central

34. Lu, T., Chen, F. J. Comput. Chem. 2012, 33, 580–592; https://doi.org/10.1002/jcc.22885.Search in Google Scholar PubMed

35. Becke, A. D. Phys. Rev. 1988, A38, 3098–3100; https://doi.org/10.1103/physreva.38.3098.Search in Google Scholar PubMed

36. Lee, C., Yang, W., Parr, G. Phys. Rev. 1988, B37, 785–789; https://doi.org/10.1103/physrevb.37.785.Search in Google Scholar PubMed

37. Neese, F. Comput. Mol. Sci. 2012, 2, 73–78; https://doi.org/10.1002/wcms.81.Search in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/znb-2021-0170).


Received: 2021-11-16
Accepted: 2022-01-01
Published Online: 2022-01-31
Published in Print: 2022-03-28

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 18.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/znb-2021-0170/html
Scroll to top button