Abstract
The structure of benzketozone monohydrate, C9H9N3O2S·H2O (BKZ), was studied by single-crystal X-ray diffraction, quantum chemical (DFT) and IR spectroscopy methods. The nitrogen atoms of the amino and imine groups of the thiosemicarbazide fragment are stabilized in the cis-configuration. The bond length N–C in the thiosemicarbazide group is unusually short (1.306(3) Å) as a result of the p,π-conjugation in that group. The hydrogen bonds and other weak interactions are studied by Hirshfeld surface calculations. The geometrical parameters of the structures were optimized by density functional theory.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Pfau, C. J. Bull WHO 1975, 52, 737–744.10.1177/107769907505200422Search in Google Scholar
2. Pfau, C. J., The thiosemicarbozones. In Chemotherapy of Viral Infections; Came, P. E., Caliguiri, L. A., Eds. Univ. Texas Med. Branch: Glveston, 1982; pp. 147–198.10.1007/978-3-642-68487-6_5Search in Google Scholar
3. Sandeman, T. F. Br. Med. 1966, 12, 625–627; https://doi.org/10.1136/bmj.2.5514.625.Search in Google Scholar
4. Bauer, D. J., In Chemotherapy of Virus Diseases; Bauer, D. J., Ed. Pergamon Press: London, Vol. 1, 1972; pp. 35–113.Search in Google Scholar
5. Levinson, W., In Selective Inhibitors of Viral Function; Carter, W. A., Ed. CRC Press: Cleveland, Ohio, 1973; pp. 213–226.Search in Google Scholar
6. Khan, T., Joshi, R. C., Khan, A. R. Der Chem. Sin. 2015, 6, 1–11.Search in Google Scholar
7. Sartorelli, A. C., Agrawal, K. C., Tsiftsoglou, A. S., Moore, E. C. Adv. Enzym. Regul. 1977, 11, 117–139; https://doi.org/10.1016/0065-2571(77)90012-7.Search in Google Scholar
8. Agrawal, K. C., Sartorelli, A. C. Prog. Med. Chem. 1978, 15, 321–356; https://doi.org/10.1016/s0079-6468(08)70259-5.Search in Google Scholar
9. Petering, D. H., In Metal Complexes as Anticancer Agents; Sigel, H., Sigel, A., Eds. Dekker: New York, Basel, Vol. 11, 1980; pp. 197–229.Search in Google Scholar
10. Murphy, M. B., Deweese, J. J. Adv. Mol. Toxic. 2017, 11, 203–240; https://doi.org/10.1016/b978-0-12-812522-9.00005-1.Search in Google Scholar
11. Tillaeva, U. M., Kasimova, D. B., Tillaeva, G. U., Gaibnazarova, D. T., Yakhyaev, U. B. World J. Pharm. Life Sci. 2020, 6, 24–26.Search in Google Scholar
12. Djuraev, A. D., Yakubkhodjaeva, M. R., Abdullaeva, M. E., Atakhodjaeva, M. A. Eur. J. Mol. Clin. Med. 2020, 7, 3566–3582.Search in Google Scholar
13. Savir, S., Wei, Z. J., Liew, J. W. K., Vythilingam, I., Lim, Y. A. L., Saad, H. M., Sim, K. S., Tan, K. W. J. Mol. Struct. 2020, 1211, 1280–1290; https://doi.org/10.1016/j.molstruc.2020.128090.Search in Google Scholar
14. de Oliveira, R. B., de Souza-Fagundes, E. M., Soares, R. P. P., Andrade, A. A., Krettli, A. U., Zani, C. L. Eur. J. Med. Chem. 2007, 43, 1983–1988.10.1016/j.ejmech.2007.11.012Search in Google Scholar PubMed
15. Qi, J., Yao, Q., Qian, K., Tian, L., Cheng, Z., Yang, D., Wang, Y. Eur. J. Med. Chem. 2018, 154, 91–100; https://doi.org/10.1016/j.ejmech.2018.05.016.Search in Google Scholar PubMed
16. El-Asmy, A. A., Sherif, Y. E., Gabr, S. A., Al-Hazmi, G. A. Biochem. Ind. J. 2007, 1, 53–62.Search in Google Scholar
17. Kaur, S., Ali, B. Pharmacology 1982, 24, 162–168; https://doi.org/10.1159/000137591.Search in Google Scholar PubMed
18. Kumar, D., Singh, V. K. Drug Discov. Ther. 2014, 13, 24–32.Search in Google Scholar
19. Anderson, B. J., Jasinski, J. P., Freedman, M. B., Millikan, S. P., O’Rourke, K. A., Smolenski, V. A. Crystals 2016, 6, 17; https://doi.org/10.3390/cryst6020017.Search in Google Scholar
20. Gulcan, M., Gümüş, S., Şekerci, M., Özdemir, S., Şahin, E., Çolak, N. Phosphorus Sulfur Silicon Relat. Elem. 2017, 193, 14–22.10.1080/10426507.2017.1370589Search in Google Scholar
21. Khalaji, A. D., Shahsavani, E., Dušek, M., Kucerakova, M., Eigner, V. Iran. J. Chem. Chem. Eng. 2020, 39, 23–28.Search in Google Scholar
22. Qi, J., Zheng, Y., Qian, K., Tian, I., Zhang, G.-X., Cheng, Zh., Wang, Y. J. Inorg. Biochem. 2017, 177, 110–117; https://doi.org/10.1016/j.jinorgbio.2017.09.012.Search in Google Scholar
23. Singh, R. B., Ishil, H. Crit. Rev. Anal. Chem. 1991, 22, 381–409; https://doi.org/10.1080/10408349108051640.Search in Google Scholar
24. Palaniappan, R. Curr. Sci. 1989, 58, 958–961.Search in Google Scholar
25. Casas, J., García Gassende, M. S., Sordo, J. Coord. Chem. Rev. 2000, 209, 197–261; https://doi.org/10.1016/s0010-8545(00)00363-5.Search in Google Scholar
26. Bakhritdinova, F., Abdurakhmanova, U. The 8th International Symposium on Ocular Pharmacology and Therapeutics; Italy: Rome, 2009; p. 129.Search in Google Scholar
27. Tillaeva, U. M., Kasimova, D. B., Tillaeva, G. U., Gaibnazarova, D. T., Yakhyaev, U. B. World J. Pharm. Life Sci. 2020, 6, 624–626.Search in Google Scholar
28. Burshtein, I. F., Verezhan, A. V., Fundamensky, V. S., Bologa, O. A., Malinovskii, N. B. J. Struct. Chem. 1988, 5, 166–169.Search in Google Scholar
29. Sheldrick, G. M. SHELXS-97 and Shelxl-97, Program for Crystal Structure Solution and Refinement; University of Göttingen: Göttingen, 1997.Search in Google Scholar
30. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J., Wood, P. A. J. Appl. Crystallogr. 2008, 41, 466–470; https://doi.org/10.1107/s0021889807067908.Search in Google Scholar
31. Spackman, M. A., Jayatilaka, D. CrystEngComm 2009, 11, 19–32; https://doi.org/10.1039/b818330a.Search in Google Scholar
32. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D., Spackman, M. A. CrystalExplorer17; University of Western Australia, 2017. http://hirshfeldsurface.net.Search in Google Scholar
33. Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., Hutchison, G. R. J. Chem. Inform. 2012, 4, 17; https://doi.org/10.1186/1758-2946-4-17.Search in Google Scholar PubMed PubMed Central
34. Lu, T., Chen, F. J. Comput. Chem. 2012, 33, 580–592; https://doi.org/10.1002/jcc.22885.Search in Google Scholar PubMed
35. Becke, A. D. Phys. Rev. 1988, A38, 3098–3100; https://doi.org/10.1103/physreva.38.3098.Search in Google Scholar PubMed
36. Lee, C., Yang, W., Parr, G. Phys. Rev. 1988, B37, 785–789; https://doi.org/10.1103/physrevb.37.785.Search in Google Scholar PubMed
37. Neese, F. Comput. Mol. Sci. 2012, 2, 73–78; https://doi.org/10.1002/wcms.81.Search in Google Scholar
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/znb-2021-0170).
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- In this issue
- Research Articles
- Structural and electrochemical properties of the binary silicides Eu5Si3 and EuSi
- The solid solution TbNiIn1−xGa x
- Structural characterization of benzketozone monohydrate
- Synthesis, crystal structure and properties of a 2-D Cd(II) coordination polymer based on ferrocenecarboxylate and 4,4′-bipyridine ligands
- Pressure-induced phase transitions and mechanical properties of insensitive high explosive 1,1-diamino-2,2-dinitroethylene
- Synthesis of a bifunctional boron-Lewis acid and studies on host-guest chemistry using pyridine and TMPD
- Syntheses directed by ionic liquids: structures and properties of six novel lanthanide 1,3,5-benzenetrisbenzoate frameworks
- Two new bis(pyridine)-bis(amide)-based copper(II) coordination compounds for the electrochemical detection of trace Cr(VI) and efficient electrocatalytic oxygen evolution
- Synthesis, characterization and crystal structure of 4-methoxybenzylidene-based zinc(II) complexes
- A Ni(II) coordination polymer with dual electrochemical functions: synthesis, crystal structure, hydrogen evolution reaction and l-ascorbic acid sensing
- Tl2[B10H10] und Tl2[B12H12]: Kristallstrukturen, Raman-Spektren und Tl+-Lone-Pair-Lumineszenz im Vergleich
Articles in the same Issue
- Frontmatter
- In this issue
- Research Articles
- Structural and electrochemical properties of the binary silicides Eu5Si3 and EuSi
- The solid solution TbNiIn1−xGa x
- Structural characterization of benzketozone monohydrate
- Synthesis, crystal structure and properties of a 2-D Cd(II) coordination polymer based on ferrocenecarboxylate and 4,4′-bipyridine ligands
- Pressure-induced phase transitions and mechanical properties of insensitive high explosive 1,1-diamino-2,2-dinitroethylene
- Synthesis of a bifunctional boron-Lewis acid and studies on host-guest chemistry using pyridine and TMPD
- Syntheses directed by ionic liquids: structures and properties of six novel lanthanide 1,3,5-benzenetrisbenzoate frameworks
- Two new bis(pyridine)-bis(amide)-based copper(II) coordination compounds for the electrochemical detection of trace Cr(VI) and efficient electrocatalytic oxygen evolution
- Synthesis, characterization and crystal structure of 4-methoxybenzylidene-based zinc(II) complexes
- A Ni(II) coordination polymer with dual electrochemical functions: synthesis, crystal structure, hydrogen evolution reaction and l-ascorbic acid sensing
- Tl2[B10H10] und Tl2[B12H12]: Kristallstrukturen, Raman-Spektren und Tl+-Lone-Pair-Lumineszenz im Vergleich