Home Cationic tri(ferrocenecarbonitrile)silver(I)
Article
Licensed
Unlicensed Requires Authentication

Cationic tri(ferrocenecarbonitrile)silver(I)

  • Frank Strehler , Tobias Rüffer , Julian Noll , Dieter Schaarschmidt , Alexander Hildebrandt and Heinrich Lang EMAIL logo
Published/Copyright: August 30, 2018
Become an author with De Gruyter Brill

Abstract

The synthesis of the tri-coordinated ferrocenecarbonitrile silver(I) complex [Ag(N≡CFc)3]OTf (3) is reported. Its electrochemical behavior shows that the three ferrocenyl units are oxidized in a very close potential range. In addition, the molecular structure of 3 in the solid state is discussed, showing that silver(I) is exclusively coordinated by three ferrocenecarbonitrile molecules.


Dedicated to: Professor Bernt Krebs on the occasion of his 80th birthday.


Acknowledgement

We thank the Federal Cluster of Excellence EXC 1075 MERGE Technologies for Multifunctional Lightweight Structures, supported by the German Research Foundation (DFG) for the financial support.

References

[1] N. Dowling, P. M. Henry, Inorg. Chem.1982, 21, 4088.10.1021/ic00141a042Search in Google Scholar

[2] W. Henke, Liebigs Ann. Chem.1858, 106, 280.10.1002/jlac.18581060307Search in Google Scholar

[3] R. A. Michelin, M. Mozzon, R. Bertani, Coord. Chem. Rev.1996, 147, 299.10.1016/0010-8545(94)01128-1Search in Google Scholar

[4] B. N. Storhoff, H. C. Lewis Jr., Coord. Chem. Rev.1977, 23, 1.10.1016/S0010-8545(00)80329-XSearch in Google Scholar

[5] M. L. Kuznetsov, Russ. Chem. Rev.2002, 71, 265.10.1070/RC2002v071n04ABEH000708Search in Google Scholar

[6] N. A. Bokach, V. Y. Kukushkin, Russ. Chem. Rev.2005, 74, 153.10.1070/RC2005v074n02ABEH000979Search in Google Scholar

[7] S. F. Rach, F. E. Kühn, Chem. Rev.2009, 109, 2061.10.1021/cr800270hSearch in Google Scholar

[8] F. A. Cotton, F. E. Kühn, Inorg. Chim. Acta1996, 252, 257.10.1016/S0020-1693(96)05320-0Search in Google Scholar

[9] F. A. Cotton, L. M. Daniels, S. C. Haefner, F. E. Ku, Inorg. Chim. Acta1999, 287, 159.10.1016/S0020-1693(98)00415-0Search in Google Scholar

[10] A. Bacchi, D. Belli Dell’ Amico, F. Calderazzo, L. Labella, G. Pelizzi, F. Marchetti, S. Samaritani, Inorg. Chim. Acta2010, 363, 2467.10.1016/j.ica.2010.04.001Search in Google Scholar

[11] T. M. Pappenfus, J. R. Burney, K. A. McGee, G. G. W. Lee, L. R. Jarvis, D. P. Ekerholm, M. Farah, L. I. Smith, L. M. Hinkle, K. R. Mann, Inorg. Chim. Acta2010, 363, 3214.10.1016/j.ica.2010.05.060Search in Google Scholar

[12] M. T. Mock, R. G. Potter, M. J. O’Hagan, D. M. Camaioni, W. G. Dougherty, W. S. Kassel, D. L. DuBois, Inorg. Chim. Acta2011, 50, 11914.10.1021/ic200857xSearch in Google Scholar

[13] K. Born, P. Comba, M. Kerscher, G. Linti, H. Pritzkow, H. Rohwer, Dalton Trans.2009, 362.10.1039/B810833ASearch in Google Scholar

[14] S. Liang, H. Wang, T. Deb, J. L. Petersen, G. T. Yee, M. P. Jensen, Inorg. Chem.2012, 51, 12707.10.1021/ic301409sSearch in Google Scholar

[15] R. T. Henriques, E. Herdtweck, F. E. Kühn, A. D. Lopes, C. C. Romão, J. Chem. Soc., Dalton Trans.1998, 1293.10.1039/a708988kSearch in Google Scholar

[16] L. Becker, F. Strehler, M. Korb, P. Arndt, A. Spannenberg, W. Baumann, H. Lang, U. Rosenthal, Chem. Eur. J.2014, 20, 3061.10.1002/chem.201304478Search in Google Scholar

[17] R. Buschbeck, P. J. Low, H. Lang, Coord. Chem. Rev.2011, 255, 241.10.1016/j.ccr.2010.07.004Search in Google Scholar

[18] B. v. Ahsen, B. Bley, S. Proemmel, R. Wartchow, H. Willner, F. Aubke, Z. Anorg. Allg. Chem.1998, 624, 1225.10.1002/(SICI)1521-3749(199807)624:7<1225::AID-ZAAC1225>3.0.CO;2-JSearch in Google Scholar

[19] A. Sen, Acc. Chem. Res.1988, 21, 421.10.1021/ar00155a006Search in Google Scholar

[20] T. Haselwander, W. Heitz, Macromol. Chem. Phys. 1996, 197, 3435.10.1002/macp.1996.021971029Search in Google Scholar

[21] T. Kealy, P. Pauson, Nature1951, 168, 1039.10.1038/1681039b0Search in Google Scholar

[22] K. Aghoramurthy, J. Sci. Ind. Res.1956, 15B, 11.Search in Google Scholar

[23] P. Graham, R. Lindsey, J. Am. Chem. Soc.1957, 72, 3416.10.1021/ja01570a027Search in Google Scholar

[24] N. Dowling, P. Henry, N. Lewis, H. Taube, Inorg. Chem.1981, 20, 2345.10.1021/ic50221a084Search in Google Scholar

[25] K. Handlir, I. Pavlik, Vysoka Skola Chem. Technol.1965, 1, 13.Search in Google Scholar

[26] J.-L. Fillaut, N. N. Dua, F. Geneste, L. Toupet, S. Sinbandhit, J. Organomet. Chem.2006, 691, 5610.10.1016/j.jorganchem.2006.09.008Search in Google Scholar

[27] H. Helten, M. Beckmann, G. Schnakenburg, R. Streubel, Eur. J. Inorg. Chem.2010, 2337.10.1002/ejic.201000383Search in Google Scholar

[28] F. Strehler, A. Hildebrandt, M. Korb, T. Rüffer, H. Lang, Orgmetallics2014, 33, 4279.10.1021/om500597cSearch in Google Scholar

[29] F. Strehler, M. Korb, E. A. Poppitz, H. Lang, J. Orgmet. Chem.2015, 786, 1.10.1016/j.jorganchem.2015.02.049Search in Google Scholar

[30] F. Strehler, A. Hildebrandt, M. Korb, H. Lang, Z. Anorg. Allg. Chem.2013, 639, 1214.10.1002/zaac.201300133Search in Google Scholar

[31] N. Chawdhury, N. J. Long, M. F. Mahon, L. Ooi, P. R. Raithby, S. Rooke, A. J. P. White, D. J. Williams, M. Younus, J. Organomet. Chem.2004, 689, 840.10.1016/j.jorganchem.2003.11.035Search in Google Scholar

[32] H. Lang, R. Packheiser, B. Walfort, Organometallics2006, 25, 1836.10.1021/om058042pSearch in Google Scholar

[33] A. Kivrak, M. Zora, J. Organomet. Chem.2007, 692, 2346.10.1016/j.jorganchem.2007.02.002Search in Google Scholar

[34] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Theory and Applications in Inorganic Chemistry, Wiley, Weinheim, New York, 2008.10.1002/9780470405888Search in Google Scholar

[35] W. E. Buschmann, J. S. Miller, Chem. Eur. J.1998, 4, 1731.10.1002/(SICI)1521-3765(19980904)4:9<1731::AID-CHEM1731>3.0.CO;2-USearch in Google Scholar

[36] G. Gritzner, J. Kuta, Pure Appl. Chem.1984, 56, 461.10.1351/pac198456040461Search in Google Scholar

[37] S. Manahan, R. Iwamoto, J. Electroanal. Chem.1967, 14, 213.10.1016/0022-0728(67)80073-1Search in Google Scholar

[38] J. R. Aranzaes, M.-C. Daniel, D. Astruc, Can. J. Chem.2006, 299, 288.10.1139/v05-262Search in Google Scholar

[39] R. Dronskowski, X.-H. Liu, Acta Crystallogr. C2003, 59, m243.10.1107/S0108270103008357Search in Google Scholar

[40] L. Chiang, C. Yeh, Z. Chan, K.-M. Wang, Y. Chou, J. Chen, J. Wang, J. Y. Lai, Crystal Growth & Design2008, 8, 470.10.1021/cg070342hSearch in Google Scholar

[41] J. K. Jabor, R. Stößer, N. H. Thong, B. Ziemer, M. Meisel, Angew. Chem.2007, 119, 6470.10.1002/ange.200701211Search in Google Scholar

[42] A. A. M. Aly, B. Walfort, H. Lang, Z. Kristallogr. NCS2009, 219, 489.Search in Google Scholar

[43] M. Korb, J. Mahrholdt, H. Lang, Eur. J. Inorg. Chem.2017, 2017, 4028.10.1002/ejic.201700645Search in Google Scholar

[44] G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw, K. I. Goldberg, Organometallics2010, 29, 2176.10.1021/om100106eSearch in Google Scholar

[45] G. M. Sheldrick, Acta Crystallogr. A2008, 64, 112.10.1107/S0108767307043930Search in Google Scholar PubMed

[46] A. Nafady, W. E. Geiger, Organometallics2008, 27, 5624.10.1021/om800546dSearch in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/znb-2018-0090).


Received: 2018-05-16
Accepted: 2018-08-08
Published Online: 2018-08-30
Published in Print: 2018-11-27

©2018 Walter de Gruyter GmbH, Berlin/Boston

Articles in the same Issue

  1. Frontmatter
  2. In this Issue
  3. Preface
  4. Congratulations to Bernt Krebs
  5. Structural and IR-spectroscopic characterization of pyridinium acesulfamate, a monoclinic twin
  6. Cationic tri(ferrocenecarbonitrile)silver(I)
  7. Ternary indides RE3T2In4 (RE=Dy–Tm; T=Pd, Ir)
  8. Mixing SbIII and GeIV occupancy in the polyoxovanadate {V14E8} archetype
  9. Biolabeling with cobaltocinium tags
  10. Formation of di- and polynuclear Mn(II) thiocyanate pyrazole complexes in solution and in the solid state
  11. Hydrothermal synthesis and structure determination of a new calcium iron ruthenium hydrogarnet
  12. 7-Methyl-6-furylpurine forms dinuclear metal complexes with N3,N9 coordination
  13. Structural and magnetic investigations of the pseudo-ternary RE2TAl3 series (RE=Sc, Y, La–Nd, Sm, Gd–Lu; T=Ru, Rh, Ir) – size dependent formation of two different structure types
  14. A new stacking variant of Na2Pt(OH)6
  15. Alkali chalcogenido ortho manganates(II) A6MnQ4 (A=Rb, Cs; Q=S, Se, Te)
  16. Studie über den Einfluss des Fluorierungsgrades an einem tetradentaten C^N*N^C-Luminophor auf die photophysikalischen Eigenschaften seiner Platin(II)-Komplexe und deren Aggregation
  17. Hydrothermal growth mechanism of SnO2 nanorods in aqueous HCl
  18. Preface
  19. Congratulations to Werner Uhl
  20. The stannides REIr2Sn4 (RE=La, Ce, Pr, Nd, Sm)
  21. 1H-[1,2,4]Triazolo[4,3-a]pyridin-4-ium and 3H-[1,2,4]triazolo[4,3-a]quinolin-10-ium derivatives as new intercalating agents for DNA
  22. Functionalization of 1,3-diphosphacyclobutadiene cobalt complexes via Si–P bond insertion
  23. A new aspect of the “pseudo water” concept of bis(trimethylsilyl)carbodiimide – “pseudohydrates” of aluminum
  24. (NH4)InB8O14 – a high-pressure borate combining BO3 groups with corner- and edge-sharing BO4 tetrahedra
  25. Two series of rare earth metal-rich ternary aluminium transition metallides – RE6Co2Al (RE=Sc, Y, Nd, Sm, Gd–Tm, Lu) and RE6Ni2.25Al0.75 (RE=Y, Gd–Tm, Lu)
  26. Alkylaluminum, -gallium, -magnesium, and -zinc monophenolates with bulky substituents
  27. Note
  28. Synthesis and crystal structure of the copper silylamide cluster compound [Cu9{MesSi(NPh)3}2 (PhCO2)3]
Downloaded on 29.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/znb-2018-0090/html?lang=en
Scroll to top button