Abstract
The present study is devoted to ultrasonic characterization of Si-oil based magneto-rheological (MR) fluid. Initially, the structural, morphological and magnetic properties of carbonyl iron powder have been carried out by its X-ray diffraction (XRD), scanning electron microscope (SEM), SEM-energy dispersive X-ray analyser (SEM-EDX) and vibrating sample magnetometer (VSM) measurements. The cubic structure with lattice parameter 2.841 Å of powdered material is confirmed by XRD study while spherical particle content is confirmed by SEM measurement. The VSM measurement of powder endorses the smooth magnetization and demagnetization with no remnance and coercivity. The rheological and ultrasonic properties are measured for pure Si-oil and four synthesized MR fluids having 10–40 wt% of carbonyl iron powder. The density and viscosity of synthesized MR fluid is found to enhance with weight percentage of carbonyl iron powder. In absence of magnetic field, the longitudinal ultrasonic velocity is found to decay with temperature and concentration. In presence of magnetic field, the longitudinal ultrasonic velocity is found to enhance while velocity measured at transverse magnetic field is found to decay for each MR fluid. The change in ultrasonic velocity with concentration at fixed temperature or magnetic field resembles the magnetization characteristics of disperse powder in MR fluid. The study opens a new dimension for its characterization through ultrasonic non-destructive technique.
Acknowledgements
Authors express their high gratitude to Dr. Satish Chandra, Department of Physics, P.P.N. (P.G.) College, Kanpur for his valuable discussion during the preparation of manuscript. Besides this, the authors also devote a special regards to the Reviewers for their valuable comments in improving the manuscript.
References
[1] M. Kciuk and R. Turczyn, J. Achiev. Mater. Manufac. Engg., vol. 18, p. 127, 2006.Suche in Google Scholar
[2] A.G. Olabi and A. Grunwald, Mater. Desi., vol. 28, p. 2658, 2007, https://doi.org/10.1016/j.matdes.2006.10.009.10.1016/j.matdes.2006.10.009Suche in Google Scholar
[3] P. Gadekar, V. S. Kanthale, N. D. Khaire, et al., Engg. Technol., vol. 7, p. 32, 2017, https://doi.org/10.1016/j.matdes.2006.10.009.10.1016/j.matdes.2006.10.009Suche in Google Scholar
[4] R. Jinaga, T. Jagadeesha, S. Kolekar, et al., Int. J. Mol. Sci., vol. 20, p. 5766, 2019, https://doi.org/10.3390/ijms20225766.10.3390/ijms20225766Suche in Google Scholar PubMed PubMed Central
[5] M. N. Aruna, M. R. Rahman, S. Joladarashi, et al., Mater. Res. Express, vol. 6, 2019, Art no. 086105, https://doi.org/10.1088/2053-1591/ab1e03.10.1088/2053-1591/ab1e03Suche in Google Scholar
[6] J. S. Oh, C. W. Shul, T. H. Kim, et al., Int. J. Mol. Sci., vol. 21, p. 1149, 2020, https://doi.org/10.3390/ijms21031149.10.3390/ijms21031149Suche in Google Scholar PubMed PubMed Central
[7] W. Song, Z. Peng, P. Li, et al., Micromachines, vol. 11, p. 314, 2020, https://doi.org/10.3390/mi11030314.10.3390/mi11030314Suche in Google Scholar PubMed PubMed Central
[8] M. Ashtiani, S. H. Hashemabadi, and A. Ghaffari, J. Magn. Mag. Mater, vol. 374, p. 716, 2015, https://doi.org/10.1016/j.jmmm.2014.09.020.10.1016/j.jmmm.2014.09.020Suche in Google Scholar
[9] S. Kolekar, R. V. Kurahatti, V. G. Kamble, et al., In. J. Nano Sci., vol. 18, 2019, Art no. 1850041, https://doi.org/10.1142/S0219581X18500412.10.1142/S0219581X18500412Suche in Google Scholar
[10] H. Singh, H. S. Gill, and S. S. Sehgal, J. Sci. Tech., vol. 9, p. 1, 2016, https://doi.org/10.17485/ijst/2016/v9iS1/101472.10.17485/ijst/2016/v9iS1/101472Suche in Google Scholar
[11] B. K. Kumbhar, S. R. Patil, and S. M. Sawant, Engg. Sci. Technol. I. J., vol. 18, p. 432, 2015, https://doi.org/10.17485/ijst/2016/v9iS1/101472.10.17485/ijst/2016/v9iS1/101472Suche in Google Scholar
[12] M. Romaszko and B.S. Sapinski, J. Theo. Appl. Mechanics, vol. 56, p. 571, 2018.10.15632/jtam-pl.56.3.571Suche in Google Scholar
[13] N. Golinelli, A. C. Becnel, A. Spaggiari, et al., IEEE Transac. Magnetics, vol. 52, 2016, Art no. 4600304.10.1109/TMAG.2016.2515983Suche in Google Scholar
[14] G. A. Flores and J. Liu, J. Intell. Mater. Sys. Struc., vol. 13, p. 641, 2002.10.1177/1045389X02013010006Suche in Google Scholar
[15] J. R. López, P. Castro, L. Elvira, et al., Ultrasonic, vol. 61, p. 10, 2015, https://doi.org/10.1016/j.ultras.2015.03.011.10.1016/j.ultras.2015.03.011Suche in Google Scholar PubMed
[16] A. R. Baev, E. V. Krobko, and Z. A. Novikava, J. Intel. Mater. Syst. Struct., special issue, article 1, 2015, https://doi.org/10.1177/1045389X15586448.10.1177/1045389X15586448Suche in Google Scholar
[17] M. A. Bramantya, M. Motozawa, and T. Sawada, J. Phys:. Condens. Matter, vol. 22, 2010, Art no. 324102, https://doi.org/10.1088/0953-8984/22/32/324102.10.1088/0953-8984/22/32/324102Suche in Google Scholar PubMed
[18] J. R. López, L. Elvira Segura, and F. M. de Espinosa Freijo, J. Magn. Mag. Mater., vol. 324, p. 222, 2012, https://doi.org/10.1016/j.jmmm.2011.08.019.10.1016/j.jmmm.2011.08.019Suche in Google Scholar
[19] A. Roszkowski, M. Bogdan, W. Skoczynski, et al., Measure. Sci. Rev., vol. 8, p. 58, 2008, https://doi.org/10.2478/v10048-008-0015-x.10.2478/v10048-008-0015-xSuche in Google Scholar
[20] F. Donado, J. L. Carrillo, and M. E. Mendoza, J. Phys. Condens. Matter., vol. 14, p. 2153, 2002, https://doi.org/10.1088/0953-8984/14/9/304.10.1088/0953-8984/14/9/304Suche in Google Scholar
[21] M. A. Bramantya and T. Sawada, J. Magn. Mag. Mater., vol. 323, p. 1330, 2011, https://doi.org/10.1016/j.jmmm.2010.11.040.10.1016/j.jmmm.2010.11.040Suche in Google Scholar
[22] B. Raj, V. Rajendran, and P. Palanichamy, Science and Technology of Ultrasonics, New Delhi, India, Narosa Publishing House, 2004.Suche in Google Scholar
[23] J. K´udelˇc´ık, P. Bury, P. Kopˇcansk´y, et al., J. Magn. Mag. Mater., vol. 38, p. 28, 2015.10.1016/j.jmmm.2015.04.031Suche in Google Scholar
[24] D. K. Pandey and S. Pandey, in Acoustic Waves: Ultrasonic: A Technique of Material Characterization, D. W. Dissanayake, Ed., Sciyo Croatia, Scio Publisher, 2010, p. 397.Suche in Google Scholar
[25] C. F. Ying and R. Truell, J. Appl. Phys., vol. 27, p. 1086, 1956, https://doi.org/10.1063/1.1722545.10.1063/1.1722545Suche in Google Scholar
[26] S. Taketomi, H. Takahashi, N. Inaba, et al., J. Phys. Soc. Jpn., vol. 60, p. 1689, 1991, https://doi.org/10.1143/JPSJ.60.1689.10.1143/JPSJ.60.1689Suche in Google Scholar
[27] D. Barara, S. Dutta, R. Srivatava, et al., I. J. Engg. Tech. Res., vol. 6, p. 428, 2017, https://doi.org/10.17577/IJERTV6IS080217.10.17577/IJERTV6IS080217Suche in Google Scholar
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- General
- Remote magnetically controlled drug release from electrospun composite nanofibers: design of a smart platform for therapy of psoriasis
- Dynamical Systems & Nonlinear Phenomena
- A modified simple chaotic hyperjerk circuit: coexisting bubbles of bifurcation and mixed-mode bursting oscillations
- Dynamics of a discrete-time system with Z-type control
- Dynamic response of axially loaded end-bearing rectangular closed diaphragm walls
- Hydrodynamics
- Admissibility conditions for Riemann data in shallow water theory
- Numerical study on the rotating electro-osmotic flow of third grade fluid with slip boundary condition
- Solid State Physics & Materials Science
- Ultrasonic study of Si-oil based magneto-rheological fluid
- Electromagnetic propagation characteristics of one-dimensional photonic crystals with metal layers in quasi-parity-time (PT)-symmetric system
- Thermodynamics & Statistical Physics
- Combined influence of axial electron temperature and exponential plasma density ramp on the self-focusing of a chirped laser in plasma
Artikel in diesem Heft
- Frontmatter
- General
- Remote magnetically controlled drug release from electrospun composite nanofibers: design of a smart platform for therapy of psoriasis
- Dynamical Systems & Nonlinear Phenomena
- A modified simple chaotic hyperjerk circuit: coexisting bubbles of bifurcation and mixed-mode bursting oscillations
- Dynamics of a discrete-time system with Z-type control
- Dynamic response of axially loaded end-bearing rectangular closed diaphragm walls
- Hydrodynamics
- Admissibility conditions for Riemann data in shallow water theory
- Numerical study on the rotating electro-osmotic flow of third grade fluid with slip boundary condition
- Solid State Physics & Materials Science
- Ultrasonic study of Si-oil based magneto-rheological fluid
- Electromagnetic propagation characteristics of one-dimensional photonic crystals with metal layers in quasi-parity-time (PT)-symmetric system
- Thermodynamics & Statistical Physics
- Combined influence of axial electron temperature and exponential plasma density ramp on the self-focusing of a chirped laser in plasma