Startseite A modified simple chaotic hyperjerk circuit: coexisting bubbles of bifurcation and mixed-mode bursting oscillations
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

A modified simple chaotic hyperjerk circuit: coexisting bubbles of bifurcation and mixed-mode bursting oscillations

  • Gervais Dolvis Leutcho ORCID logo EMAIL logo , Jacques Kengne , Alexis Ngoumkam Negou , Theophile Fonzin Fozin , Viet-Thanh Pham und Sajad Jafari
Veröffentlicht/Copyright: 23. Juni 2020

Abstract

A relatively simple chaotic hyperjerk circuit, which is the modified chaotic hyperjerk system [Dalkiran and Sprott, IJBC 2016] is proposed and investigated in this paper. Only one semiconductor diode modelled the nonlinear function capable of rich and complex dynamical behaviours of the system. We investigate a new kind of behaviours name “bubbles of bifurcation’’ (referred as BsB hereafter) observed here for the first time in the hyperjerk system. An interesting phenomenon of mixed-mode bursting oscillations (MMBOs) is also investigated. The complex dynamics of the novel oscillator (such as MMBOs, BsB, offset boosting and multistability) with respect to its parameters and initial conditions are uncovered using bifurcation diagrams, Lyapunov exponents (LE) and phase portraits. As another interesting property of this circuit, some parameter regions are determined for the existence of coexisting BsB and the coexistence of asymmetric mixed-mode bursting oscillations. Let us emphasized that the complex phenomena observed in this work is very rare in the literature and henceforth merit dissemination. Finally, a physical circuit is constructed to demonstrate some experimental observation of MMBOs.


Corresponding author: Gervais Dolvis Leutcho, Research Unit of Laboratory of Condensed Matter, Electronics and Signal Processing (UR-MACETS) Department of Physics, Faculty of Sciences, University of Dschang, P.O. Box 67, Dschang, Cameroon; Research Unit of Laboratory of Automation and Applied Computer (LAIA), Electrical Engineering Department of IUT-FV, University of Dschang, P.O. Box 134, Bandjoun, Cameroon, E-mail:

Funding source: Agence Universitaire de la Francophonie

Award Identifier / Grant number: AUF/EI/DF/2019

Funding source: Romania government

Acknowledgments

Gervais Dolvis Leutcho acknowledges AUF (Agence Universitaire de la Francophonie) through the Doctoral Fellowship Program « Eugen Ionescu» (AUF/EI/DF/2019) for the financial support. He is indebted to Prof. Dr. Ing. M. Borda and Prof. Dr. Ing. R. Terebes (TUCN) for the hospitality under « Eugen Ionescu » Fellowship as well as all the valuable discussions and reading of this paper. He would like to thank the Romania government for its financial support.

  1. Research funding: The research was funded by the Agence Universitaire de la Francophonie and Romania government.

  2. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  3. Employment or leadership: None declared.

  4. Honorarium: None declared.

  5. Conflict of interest statement: The authors declare no conflict of interest.

References

[1] G. Alvarez and S. Li, “Some basic cryptographic requirements for chaos-based cryptosystems,” Int. J. Bifurcat. Chaos, vol. 16, no. 08, pp. 2129–2151, 2006, https://doi.org/10.1142/s0218127406015970.Suche in Google Scholar

[2] H. Natiq, N. Al-Saidi, M. Said, and A. Kilicman, “A new hyperchaotic map and its application for image encryption,” Eur. Phys. J. Plus, vol. 133, no. 1, p. 6, 2018, https://doi.org/10.1140/epjp/i2018-11834-2.Suche in Google Scholar

[3] X. Wang, A. Akgul, S. Cicek, V. T. Pham, and D. V. Hoang, “A chaotic system with two stable equilibrium points: Dynamics, circuit realization and communication application,” Int. J. Bifurcat. Chaos, vol. 27, no. 08, Art no. 1750130, 2017, https://doi.org/10.1142/s0218127417501309.Suche in Google Scholar

[4] T. Fonzin Fozin, P. Megavarna Ezhilarasu, Z. Njitacke Tabekoueng, et al., “On the dynamics of a simplified canonical Chua’s oscillator with smooth hyperbolic sine nonlinearity, “Hyperchaos, multistability and multistability control,” Chaos Interdiscipl. J. Nonlinear Sci., vol. 29, no. 11, Art no. 113105, 2019, https://doi.org/10.1063/1.5121028.Suche in Google Scholar

[5] G. D. Leutcho, S. Jafari, I. I. Hamarash, J. Kengne, Z. T. Njitacke, I. Hussain, “A new megastable nonlinear oscillator with infinite attractors,” Chaos, Solit. Fractals, vol. 134, Art no. 109703, 2020, https://doi.org/10.1016/j.chaos.2020.109703.Suche in Google Scholar

[6] G. D. Leutcho, A. J. M. Khalaf, Z. Njitacke Tabekoueng, et al., “A new oscillator with mega-stability and its Hamilton energy: Infinite coexisting hidden and self-excited attractors,” Chaos Interdiscipl. J. Nonlinear Sci. vol. 30, no. 3, Art no. 033112, 2020, https://doi.org/10.1063/1.5142777.Suche in Google Scholar

[7] Z. Wei, Y Li, B. Sang, Y. Liu, and W. Zhang, “Complex dynamical behaviors in a 3D simple chaotic flow with 3D stable or 3D unstable manifolds of a single equilibrium,” Int. J. Bifurcat. Chaos, vol. 29, no. 07, Art no. 1950095, 2019, https://doi.org/10.1142/s0218127419500950.Suche in Google Scholar

[8] Z. Wei, V. T. Pham, T. Kapitaniak, and Z. Wang, “Bifurcation analysis and circuit realization for multiple-delayed Wang–Chen system with hidden chaotic attractors,” Nonlinear Dynam., vol. 85, no. 3, pp. 1635–1650, 2016, https://doi.org/10.1007/s11071-016-2783-4.Suche in Google Scholar

[9] Z. Wei, B. Zhu, J. Yang, M. Perc, M. Slavinec, “Bifurcation analysis of two disc dynamos with viscous friction and multiple time delays,” Appl. Math. Comput., vol. 347, pp. 265–281, 2019, https://doi.org/10.1016/j.amc.2018.10.090.Suche in Google Scholar

[10] S. Boccaletti, J. Kurths, G. Osipov, D. Valladares, and C. Zhou, “The synchronization of chaotic systems,” Phys. Rep., vol. 366, no. 1–2, pp. 1–101, 2002, https://doi.org/10.1016/S0370-1573(02)00137-0.Suche in Google Scholar

[11] J. Sprott, “High-dimensional dynamics in the delayed Hénon map,” Electron. J. Theor. Phys., vol. 3, no. 12, pp. 19–35, 2006.Suche in Google Scholar

[12] S. Zhang, Y. Zeng, Z. Li, M. Wang, and L. Xiong, “Generating one to four-wing hidden attractors in a novel 4D no-equilibrium chaotic system with extreme multistability,” Chaos Interdiscipl. J. Nonlinear Sci., vol. 28, no. 1, Art no. 013113, 2018, https://doi.org/10.1063/1.5006214.Suche in Google Scholar PubMed

[13] J. C. Sprott, “Some simple chaotic flows,” Phys. Rev. E, vol. 50, no. 2, pp. R647, 1994, https://doi.org/10.1103/PhysRevE.50.R647.Suche in Google Scholar

[14] J. C. Sprott, Elegant chaos: algebraically simple chaotic flows, World Scientific, 2010, https://doi.org/10.1142/7183.Suche in Google Scholar

[15] J. C. Sprott, “A proposed standard for the publication of new chaotic systems,” Int. J. Bifurcat. Chaos, vol. 21, no. 09, pp. 2391–2394, 2011, https://doi.org/10.1142/s021812741103009x.Suche in Google Scholar

[16] B. Bo-Cheng, L. Zhong, and X. Jian-Ping, “Transient chaos in smooth memristor oscillator,” Chin. Phys. B, vol. 19, no. 3, Art no. 030510, 2010, https://doi.org/10.1088/1674-1056/19/3/030510.Suche in Google Scholar

[17] Z. Wei, I. Moroz, J. Sprott, A. Akgul, and W. Zhang, “Hidden hyperchaos and electronic circuit application in a 5D self-exciting homopolar disc dynamo,” Chaos Interdiscipl. J. Nonlinear Sci., vol. 27, no. 3, Art no. 033101, 2017, https://doi.org/10.1063/1.4977417.Suche in Google Scholar PubMed

[18] Z. Wei, V. T. Pham, A. J. M. Khalaf, J. Kengne, and S. Jafari, “A modified multistable chaotic oscillator,” Int. J. Bifurcat. Chaos, vol. 28, no. 07, Art no. 1850085, 2018, https://doi.org/10.1142/s0218127418500852.Suche in Google Scholar

[19] Q. Lai, C. Chen, X. W. Zhao, J. Kengne, and C. Volos, “Constructing chaotic system with multiple coexisting attractors,” IEEE Access, vol. 7, pp. 24051–24056, 2019, https://doi.org/10.1109/access.2019.2900367.Suche in Google Scholar

[20] Y. Li, X. Huang, Y. Song, and J. Lin, “A new fourth-order memristive chaotic system and its generation,” Int. J. Bifurcat. Chaos, vol. 25, no. 11, Art no. 1550151, 2015, https://doi.org/10.1142/s0218127415501515.Suche in Google Scholar

[21] F. Y. Dalkiran and J. C. Sprott, “Simple chaotic hyperjerk system,” Int. J. Bifurcat. Chaos, vol. 26, no. 11, Art no. 1650189, 2016, https://doi.org/10.1142/s0218127416501893.Suche in Google Scholar

[22] J. Kengne, G. D. Leutcho, and A. N. K. Telem, “Reversals of period doubling, coexisting multiple attractors, and offset boosting in a novel memristive diode bridge-based hyperjerk circuit,” Analog Integr. Circuits Signal Process, vol. 101, pp. 1–21, 2018, https://doi.org/10.1007/s10470-018-1372-5.Suche in Google Scholar

[23] G. Leutcho, J. Kengne, and L. K. Kengne, “Dynamical analysis of a novel autonomous 4-D hyperjerk circuit with hyperbolic sine nonlinearity: chaos, antimonotonicity and a plethora of coexisting attractors,” Chaos, Solit. Fractals, vol. 107, pp. 67–87, 2018, https://doi.org/10.1016/j.chaos.2017.12.008.Suche in Google Scholar

[24] S. Ren, S. Panahi, K. Rajagopal, A. Akgul, V. T. Pham, and S. Jafaris, “A new chaotic flow with hidden attractor: The first hyperjerk system with no equilibrium,” Z. Naturforsch., vol. 73, no. 3, pp. 239–249, 2018, https://doi.org/10.1515/zna-2017-0409.Suche in Google Scholar

[25] M. Tuna, A. Karthikeyan, K. Rajagopal, M. Alcin, and İ. Koyuncu, “Hyperjerk multiscroll oscillators with megastability: Analysis, FPGA implementation and a novel ANN-ring-based true random number generator,” AEU-Int. J. Electron. Commun., vol. 112, Art no. 152941, 2019, https://doi.org/10.1016/j.aeue.2019.152941.Suche in Google Scholar

[26] S. Vaidyanathan, A. Akgul, S. Kaçar, and U. Çavuşoğlu, “A new 4-D chaotic hyperjerk system, its synchronization, circuit design and applications in RNG, image encryption and chaos-based steganography,” Eur. Phys. J. Plus, vol. 133, no. 2, p. 46, 2018, https://doi.org/10.1140/epjp/i2018-11872-8.Suche in Google Scholar

[27] M. Desroches, T. J. Kaper, and M. Krupa, “Mixed-mode bursting oscillations: Dynamics created by a slow passage through spike-adding canard explosion in a square-wave burster,” Chaos Interdiscipl. J. Nonlinear Sci., vol. 23, no. 4, Art no. 046106, 2013, https://doi.org/10.1063/1.4827026.Suche in Google Scholar PubMed

[28] F. Clément and J. P. Françoise, “Mathematical modeling of the GnRH pulse and surge generator,” SIAM J. Appl. Dyn. Syst., vol. 6, no. 2, pp. 441–456, 2007, https://doi.org/10.1137/060673825.Suche in Google Scholar

[29] R. Bertram, J. Rhoads, and W. P. Cimbora, “A phantom bursting mechanism for episodic bursting,” Bull. Math. Biol., vol. 70, no. 7, p. 1979, 2008, https://doi.org/10.1007/s11538-008-9335-0.Suche in Google Scholar PubMed

[30] M. Hanias, G. Giannaris, A. Spyridakis, and A. Rigas, “Time series analysis in chaotic diode resonator circuit,” Chaos, Solit. Fractals, vol. 27, no. 2, pp. 569–573, 2006, https://doi.org/10.1016/j.chaos.2005.03.051.Suche in Google Scholar

[31] S. Jafari, J. Sprott, V. T. Pham, C. Volos, and C. Li, “Simple chaotic 3D flows with surfaces of equilibria,” Nonlinear Dynam., vol. 86, no. 2, pp. 1349–1358, 2016, https://doi.org/10.1007/s11071-016-2968-x.Suche in Google Scholar

[32] S. Jafari, J. C. Sprott, and M. Molaie, “A simple chaotic flow with a plane of equilibria,” Int. J. Bifurcat. Chaos, vol. 26, Art no. 06, p. 1650098, 2016, https://doi.org/10.1142/s021812741650098x.Suche in Google Scholar

[33] Z. Njitacke and J. Kengne, “Complex dynamics of a 4D Hopfield neural networks , no. HNNs) with a nonlinear synaptic weight: Coexistence of multiple attractors and remerging Feigenbaum trees,” AEU-Int. J. Electron. Commun., vol. 93, pp. 242–252, 2018, https://doi.org/10.1016/j.aeue.2018.06.025.Suche in Google Scholar

[34] J. P. Singh and B. K. Roy, “Five new 4-D autonomous conservative chaotic systems with various type of non-hyperbolic and lines of equilibria,” Chaos, Solit. Fractals, vol. 114, pp. 81–91, 2018, https://doi.org/10.1016/j.chaos.2018.07.001.Suche in Google Scholar

[35] A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano, “Determining Lyapunov exponents from a time series,” Phys. Nonlinear Phenom., vol. 16, no. 3, pp. 285–317, 1985, https://doi.org/10.1016/0167-2789(85)90011-9.Suche in Google Scholar

[36] S. P. Dawson, C. Grebogi, J. A. Yorke, I. Kan, and H. Koçak, “Antimonotonicity: inevitable reversals of period-doubling cascades,” Phys. Lett., vol. 162, no. 3, pp. 249–254, 1992, https://doi.org/10.1016/0375-9601(92)90442-o.Suche in Google Scholar

[37] J. Kengne, V. F. Signing, J. Chedjou, and G. Leutcho, “Nonlinear behavior of a novel chaotic jerk system: antimonotonicity, crises, and multiple coexisting attractors,” Int. J. Dynam. Contr., vol. 6, no. 2, pp. 468–485, 2018, https://doi.org/10.1007/s40435-017-0318-6.Suche in Google Scholar

[38] L. Kocarev, K. Halle, and K. Eckert, “Experimental observation of antimonotonicity in Chua’s circuit,” Int. J. Bifurcat. Chaos, vol. 3, pp. 1051–1051, 1993, https://doi.org/10.1142/s0218127493000878.Suche in Google Scholar

[39] G. D. Leutcho, J. Kengne, and R. Kengne, “Remerging Feigenbaum trees, and multiple coexisting bifurcations in a novel hybrid diode-based hyperjerk circuit with offset boosting,” Int. J. Dynam. Contr., vol. 7, no. 1, pp. 61–82, 2019, https://doi.org/10.1007/s40435-018-0438-7.Suche in Google Scholar

[40] A. N. Negou, and J. Kengne, “Dynamic analysis of a unique jerk system with a smoothly adjustable symmetry and nonlinearity: Reversals of period doubling, offset boosting and coexisting bifurcations,” AEU-Int. J. Electron. Commun., vol. 90, pp. 1–19, 2018, https://doi.org/10.1016/j.aeue.2018.04.003.Suche in Google Scholar

[41] S. Zhang, Y. Zeng, Z. Li, M. Wang, X. Zhang, and D. Chang, “A novel simple no-equilibrium chaotic system with complex hidden dynamics,” Int. J. Dynam. Contr., vol. 6, no. 4, pp. 1465–1476, 2018, https://doi.org/10.1007/s40435-018-0413-3.Suche in Google Scholar

[42] C. Stegemann, H. A. Albuquerque, R. M. Rubinger, and P. C. Rech, “Lyapunov exponent diagrams of a 4-dimensional Chua system,” Chaos Interdiscipl. J. Nonlinear Sci., vol. 21, no. 3, p. 033105, 2011, https://doi.org/10.1063/1.3615232.Suche in Google Scholar PubMed

[43] B. Bao, P. Wu, H. Bao, H. Wu, X. Zhang, and M. Chen, “Symmetric periodic bursting behavior and bifurcation mechanism in a third-order memristive diode bridge-based oscillator,” Chaos, Solit. Fractals, vol. 109, pp. 146–153, 2018, https://doi.org/10.1016/j.chaos.2018.02.031.Suche in Google Scholar

[44] S. T. Kingni, B. Nana, G. M. Ngueuteu, P. Woafo, and J. Danckaert, “Bursting oscillations in a 3D system with asymmetrically distributed equilibria: Mechanism, electronic implementation and fractional derivation effect,” Chaos, Solit. Fractals, vol. 71, pp. 29–40, 2015, https://doi.org/10.1016/j.chaos.2014.11.011.Suche in Google Scholar

[45] A. Bayani, K. Rajagopal, A. J. M. Khalaf, S. Jafari, G. Leutcho, and J. Kengne, “Dynamical analysis of a new multistable chaotic system with hidden attractor: Antimonotonicity, coexisting multiple attractors, and offset boosting,” Phys. Lett., vol. 383, no. 13, pp. 1450–1456, 2019, https://doi.org/10.1016/j.physleta.2019.02.005.Suche in Google Scholar

[46] C. Li, and J. C. Sprott, “Variable-boostable chaotic flows,” Optik, vol. 127, no. 22, pp. 10389–10398, 2016, https://doi.org/10.1016/j.ijleo.2016.08.046.Suche in Google Scholar

[47] C. Li, J. C. Sprott, T. Kapitaniak, and T. Lu, “Infinite lattice of hyperchaotic strange attractors,” Chaos, Solit. Fractals, vol. 109, pp. 76–82, 2018, https://doi.org/10.1016/j.chaos.2018.02.022.Suche in Google Scholar

[48] C. Li, J. C. Sprott, and H. Xing, “Hypogenetic chaotic jerk flows,” Phys. Lett., vol. 380, no. 11–12, pp. 1172–1177, 2016, https://doi.org/10.1016/j.physleta.2016.01.045.Suche in Google Scholar

[49] C. Li, J. C. Sprott, and H. Xing, “Constructing chaotic systems with conditional symmetry. Nonlinear Dynam., vol. 87, no. 2, pp. 1351–1358, 2017, https://doi.org/10.1007/s11071-016-3118-1.Suche in Google Scholar

[50] V. T. Pham, A. Akgul, C. Volos, S. Jafari, and T. Kapitaniak, “Dynamics and circuit realization of a no-equilibrium chaotic system with a boostable variable,” AEU-Int. J. Electron. Commun., vol. 78, pp. 134–140, 2017, https://doi.org/10.1016/j.aeue.2017.05.034.Suche in Google Scholar

[51] A. Akgul, S. Hussain, and I. Pehlivan, “A new three-dimensional chaotic system, its dynamical analysis and electronic circuit applications,” Optik, vol. 127, no. 18, pp. 7062–7071, 2016, https://doi.org/10.1016/j.ijleo.2016.05.010.Suche in Google Scholar

[52] H. Bao, W. Liu, and A. Hu, “Coexisting multiple firing patterns in two adjacent neurons coupled by memristive electromagnetic induction,” Nonlinear Dynam., vol. 95, no. 1, pp. 43–56, 2019, https://doi.org/10.1007/s11071-018-4549-7.Suche in Google Scholar

[53] K. Rajagopal, A. Durdu, S. Jafari, Y. Uyaroglu, A. Karthikeyan, and A. Akgul, “Multiscroll chaotic system with sigmoid nonlinearity and its fractional order form with synchronization application,” Int. J. Non Lin. Mech., vol. 116, pp. 262–272, 2019, https://doi.org/10.1016/j.ijnonlinmec.2019.07.013.Suche in Google Scholar

[54] T. F. Fonzin, J. Kengne, and F. Pelap, “Dynamical analysis and multistability in autonomous hyperchaotic oscillator with experimental verification,” Nonlinear Dynam., vol. 93, no. 2, pp. 653–669, 2018, https://doi.org/10.1007/s11071-018-4216-z.Suche in Google Scholar

[55] T. F. Fonzin, G. Leutcho, A. T. Kouanou, et al., “Multistability control of hysteresis and parallel bifurcation branches through a linear augmentation scheme,” Z. Naturforsch., vol. 75, no. 1, pp. 11–21, 2019, https://doi.org/10.1515/zna-2019-0286.Suche in Google Scholar

[56] G. D. Leutcho, J. Kengne, T. Fonzin Fozin, et al., “Multistability control of space magnetization in hyperjerk oscillator: A case study,” J. Comput. Nonlinear Dynam., vol. 15, no. 5, pp. 2020, https://doi.org/10.1115/1.4046639.Suche in Google Scholar

[57] Z. Njitacke, and J. Kengne, “Nonlinear dynamics of three-neurons-based Hopfield neural networks , no. HNNs): Remerging Feigenbaum trees, coexisting bifurcations and multiple attractors,” J. Circ. Syst. Comput., vol. 28, no. 07, Art no. 1950121, 2019, https://doi.org/10.1142/s0218126619501214.Suche in Google Scholar

[58] S. Vaidyanathan, L. G. Dolvis, K. Jacques, C. H. Lien, and A. Sambas, “A new five-dimensional four-wing hyperchaotic system with hidden attractor, its electronic circuit realisation and synchronisation via integral sliding mode control,” Int. J. Model. Ident. Contr., vol. 32, no. 1, pp. 30–45, 2019, https://doi.org/10.1504/ijmic.2019.101959.Suche in Google Scholar

[59] S. Vaidyanathan, I. Pehlivan, and L. G. Dolvis, et al., “A novel ANN-based four-dimensional two-disk hyperchaotic dynamical system, bifurcation analysis, circuit realisation and FPGA-based TRNG implementation,” Int. J. Comput. Appl. Technol., vol. 62, no. 1, pp. 20–35, 2019, https://doi.org/10.1504/ijcat.2020.103921.Suche in Google Scholar

Received: 2020-01-21
Accepted: 2020-05-03
Published Online: 2020-06-23
Published in Print: 2020-07-28

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 20.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zna-2020-0022/html
Button zum nach oben scrollen