Startseite Discrete and Semidiscrete Models for AKNS Equation
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Discrete and Semidiscrete Models for AKNS Equation

  • Song-lin Zhao EMAIL logo und Ying Shi
Veröffentlicht/Copyright: 31. Januar 2017

Abstract

We establish a discrete model for the Ablowitz–Kaup–Newell–Segur (AKNS) equation via generalised Cauchy matrix approach. Two semidiscrete AKNS equations are obtained by, respectively, introducing straight continuum limit and skew continuum limit. Some reductions are also discussed.

PACS: 39A14; 35Q51; 37K40

Award Identifier / Grant number: 11301483

Award Identifier / Grant number: 11401529

Award Identifier / Grant number: 11371241

Award Identifier / Grant number: 11501510

Award Identifier / Grant number: LY17A010024

Funding statement: This project is supported by the National Natural Science Foundation of China (Grant Nos. 11301483, 11401529, 11371241, and 11501510) and the Natural Science Foundation of Zhejiang Province (Grant No. LY17A010024).

A List of notations

In the following, we first list some notation, where the subscripts D and J correspond to the cases of matrices being diagonal and being Jordan block, respectively.

  • Diagonal matrix:

    (A.1)ΓD[N]({ki}1N)=Diag(k1,k2,,kN),
  • Jordan block matrix:

    (A.2)ΓJ[N](a)=(a00001a00001a000001a)N×N,
  • Lower triangular Toeplitz matrix: [1]

    (A.3)T[N]({aj}1N)=(a10000a2a1000a3a2a100aNaN1aN2a2a1)N×N,
  • Skew triangular Hankel matrix:

    (A.4)H[N]({bj}1N)=(b1bN2bN1bNb2bN1bN0b3bN00bN000)N×N.

Besides the above mentioned matrix notations we used, let us list other needed ones below.

(A.5a)discrete plane wave factor:  ρi=(p+kipki)n(q+kiqki)mρi0, with constants ρi0,
(A.5b)discrete plane wave factor:   σj=(pljp+lj)n(qljq+lj)mσj0, with constants σj0,
(A.5c)Nth order vector:   r1,D[N]({kj}1N)=(ρ1,ρ2,,ρN)T,
(A.5d)Nth order vector:   r1,J[N](k1)=(ρ1,k1ρ11!,,k1N1ρ1(N1)!)T,
(A.5e)Nth order vector:   r2,D[N]({lj}1N)=(σ1,σ2,,σN)T,
(A.5f)Nth order vector:   r2,J[N](l1)=(σ1,l1σ11!,,l1N1σ1(N1)!)T,
(A.5g)2N×2N matrix:  GDD[N1;N2]({ki}1N1;{lj}1N2)=(0GDD;12[N1;N2]({ki}1N1;{lj}1N2)GDD;12[N1;N2]T({ki}1N1;{lj}1N2)0),GDD;12[N1;N2]({ki}1N1;{lj}1N2)=(1kilj)N1×N2,
(A.5h)2N×2N matrix:   GDJ[N1;N2]({ki}1N1;b)=(0GDJ;12[N1;N2]({ki}1N1;b)GDJ;12[N1;N2]T({ki}1N1;b)0),GDJ;12[N1;N2]({kj}1N1;b)=(gi,j)N1×N2,   gi,j=(1kib)j,
(A.5i)2N×2Nmatrix:   GJD[N1;N2](a;{lj}1N2)=(0GJD;12[N1;N2](a;{lj}1N2)GJD;12[N1;N2]T(a;{lj}1N2)0),GJD;12[N1;N2](a;{lj}1N2)=(gi,j)N1×N2,   gi,j=(1alj)i,
(A.5j)2N×2Nmatrix:   GJJ[N1;N2](a;b)=(0GJJ;12[N1;N2](a;b)GJJ;12[N1;N2]T(a;b)0),GJJ;12[N1;N2](a;b)=(gi,j)N1×N2,   gi,j=Ci+j2i1(1)i+1(ab)i+j1,

where

Cji=j!i!(ji)!,   (ji).

References

[1] M. J. Ablowitz and F. J. Ladik, Stud. Appl. Math. 55, 213 (1976).10.1002/sapm1976553213Suche in Google Scholar

[2] M. J. Ablowitz and F. J. Ladik, Stud. Appl. Math. 57, 1 (1977).10.1002/sapm19775711Suche in Google Scholar

[3] R. Hirota, J. Phys. Soc. Japan 43, 1424, 2074 (1977).10.1143/JPSJ.43.2074Suche in Google Scholar

[4] E. Date, M. Jimbo, and T. Miwa, J. Phys. Soc. Japan 51, 4116 (1982), 52, 388, 761 (1983).10.1143/JPSJ.51.4116Suche in Google Scholar

[5] F. W. Nijhoff, G. R. W. Quispel, and H. W. Capel, Phys. Lett. 97A, 125 (1983).10.1016/0375-9601(83)90192-5Suche in Google Scholar

[6] V. E. Adler, A. I. Bobenko, and Yu. B. Suris, Commun. Math. Phys. 233, 513 (2002).10.1007/s00220-002-0762-8Suche in Google Scholar

[7] J. Hietarinta, J. Phys. A: Math. Theor. 44, 165204(22pp) (2011).10.1088/1751-8113/44/16/165204Suche in Google Scholar

[8] V. E. Adler, A. I. Bobenko, and Yu. B. Suris, Int. Math. Res. Notices 2011, 68 (2011).Suche in Google Scholar

[9] F. W. Nijhoff, J. Atkinson, and J. Hietarinta, J. Phys. A: Math. Theor. 42, 404005(34pp) (2009).10.1088/1751-8113/42/40/404005Suche in Google Scholar

[10] D. J. Zhang and S. L. Zhao, Stud. Appl. Math. 131, 72 (2013).10.1111/sapm.12007Suche in Google Scholar

[11] A. J. Walker, Similarity Reductions and Integrable Lattice Equations, Ph. D. thesis, Leeds University (2001).Suche in Google Scholar

[12] D. J. Zhang and S. T. Chen, Stud. Appl. Math. 125, 419 (2010).10.1111/j.1467-9590.2010.00494.xSuche in Google Scholar

[13] G. F. Yu, Stud. Appl. Math. 135, 117 (2015).10.1111/sapm.12082Suche in Google Scholar

[14] S. L. Zhao, J. Nonlin. Math. Phys. 23, 544 (2016).10.1080/14029251.2016.1237201Suche in Google Scholar

[15] J. Sylvester, C. R. Acad. Sci. Paris 99, 67, 115 (1884).Suche in Google Scholar

[16] D. J. Zhang, The Sylvester Equation, Cauchy Matrices and Matrix Discrete Integrable Systems, Report in the Isaac Newton Institute for Mathematical Sciences 2013.Suche in Google Scholar

[17] J. Hietarinta, N. Joshi, and F. W. Nijhoff, Discrete Systems and Integrability, Cambridge University Press, Cambridge, UK 2016.10.1017/CBO9781107337411Suche in Google Scholar

[18] D. J. Zhang, arXiv:nlin.SI/0603008 2006.Suche in Google Scholar

Received: 2016-11-16
Accepted: 2016-12-27
Published Online: 2017-1-31
Published in Print: 2017-3-1

©2017 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 25.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zna-2016-0443/html
Button zum nach oben scrollen