Home Analytic Approximations to Nonlinear Boundary Value Problems Modeling Beam-Type Nano-Electromechanical Systems
Article
Licensed
Unlicensed Requires Authentication

Analytic Approximations to Nonlinear Boundary Value Problems Modeling Beam-Type Nano-Electromechanical Systems

  • Li Zou , Songxin Liang EMAIL logo , Yawei Li and David J. Jeffrey
Published/Copyright: December 10, 2016

Abstract

Nonlinear boundary value problems arise frequently in physical and mechanical sciences. An effective analytic approach with two parameters is first proposed for solving nonlinear boundary value problems. It is demonstrated that solutions given by the two-parameter method are more accurate than solutions given by the Adomian decomposition method (ADM). It is further demonstrated that solutions given by the ADM can also be recovered from the solutions given by the two-parameter method. The effectiveness of this method is demonstrated by solving some nonlinear boundary value problems modeling beam-type nano-electromechanical systems.

Award Identifier / Grant number: 51379033

Award Identifier / Grant number: 51522902

Funding statement: The research was partially supported by the National Natural Science Foundation of China (51379033, 51522902).

Acknowledgments

The research was partially supported by the National Natural Science Foundation of China (51379033, 51522902).

References

[1] G. Bonanno and B. Di Bella, J. Math. Anal. Appl. 343, 1166 (2008).10.1016/j.jmaa.2008.01.049Search in Google Scholar

[2] I. A. Brigadnov, Acta Mech. 226, 1309 (2015).10.1007/s00707-014-1243-9Search in Google Scholar

[3] R. Bustamante and K. R. Rajagopal, Int. J. Non-Linear Mech. 46, 376 (2011).10.1016/j.ijnonlinmec.2010.10.002Search in Google Scholar

[4] S. M. Mkhitaryan, Mech. Sol. 47, 646 (2012).10.3103/S0025654412060064Search in Google Scholar

[5] J. S. Duan, R. Rach, and A. M. Wazwaz, Int. J. Non-Linear Mech. 49, 159 (2013).10.1016/j.ijnonlinmec.2012.10.003Search in Google Scholar

[6] G. Adomian, Solving Frontier Problems of Physics: The Decomposition Method, Kluwer Academic, Dordrecht 1994.10.1007/978-94-015-8289-6Search in Google Scholar

[7] M. Turkyilmazoglu, Mediterranean J. Math. 13, 4019 (2016).10.1007/s00009-016-0730-8Search in Google Scholar

[8] S. J. Liao, Beyond Perturbation – Introduction to the Homotopy Analysis Method, Chapman & Hall/CRC, Boca Raton 2003.Search in Google Scholar

[9] M. Abd El-Aziz and T. Nabil, Meccanica 50, 1467 (2015).10.1007/s11012-015-0113-4Search in Google Scholar

[10] J. F. Cui, Z. L. Lin, and Y. L. Zhao, Z. Naturfors. Sect. A-J. Phys. Sci. 70, 193 (2015).10.1515/zna-2014-0353Search in Google Scholar

[11] R. Ellahi, M. Raza, and K. Vafai, Math. Comput. Model. 55, 1876 (2012).10.1016/j.mcm.2011.11.043Search in Google Scholar

[12] E. Hetmaniok, D. Slota, T. Trawinski, and R. Witula, Numer. Algorithms 67, 163 (2014).10.1007/s11075-013-9781-0Search in Google Scholar

[13] O. Martin, Appl. Math. Model. 37, 3959 (2013).10.1016/j.apm.2012.08.023Search in Google Scholar

[14] S. S. Motsa, H. S. Nik, S. Effati, and J. Saberi-Nadjafi, J. Numer. Math. 22, 343 (2014).10.1515/jnma-2014-0015Search in Google Scholar

[15] S. S. Ray and S. Sahoo, Comput. Math. Math. Phys. 56, 1319 (2016).10.1134/S0965542516070162Search in Google Scholar

[16] E. Shivanian and S. Abbasbandy, Nonlinear Anal. Real 15, 89 (2014).10.1016/j.nonrwa.2013.06.003Search in Google Scholar

[17] M. Turkyilmazoglu, Commun. Nonlinear Sci. 17, 4097 (2012).10.1016/j.cnsns.2012.01.030Search in Google Scholar

[18] M. Turkyilmazoglu, J. Appl. Mech. Trans. ASME 78, 021005 (2011).10.1115/1.4002567Search in Google Scholar

[19] M. Turkyilmazoglu, FILOMAT 30, 1633 (2016).10.2298/FIL1606633TSearch in Google Scholar

[20] J. S. Duan and R. Rach, Appl. Math. Comput. 218, 4090 (2011).10.1016/j.amc.2011.09.037Search in Google Scholar

[21] S. J. Liao, Commun. Nonlinear Sci. 15, 2003 (2010).10.1016/j.cnsns.2009.09.002Search in Google Scholar

[22] M. Turkyilmazoglu, Hacettepe J. Math. Stat. 44, 651 (2015).Search in Google Scholar

Received: 2016-9-30
Accepted: 2016-11-3
Published Online: 2016-12-10
Published in Print: 2017-3-1

©2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 20.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zna-2016-0420/html
Scroll to top button