Startseite Residual Symmetries and Interaction Solutions for the Classical Korteweg-de Vries Equation
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Residual Symmetries and Interaction Solutions for the Classical Korteweg-de Vries Equation

  • Jin-Xi Fei EMAIL logo , Wei-Ping Cao und Zheng-Yi Ma
Veröffentlicht/Copyright: 10. Dezember 2016

Abstract

The non-local residual symmetry for the classical Korteweg-de Vries equation is derived by the truncated Painlevé analysis. This symmetry is first localised to the Lie point symmetry by introducing the auxiliary dependent variables. By using Lie’s first theorem, we then obtain the finite transformation for the localised residual symmetry. Based on the consistent tanh expansion method, some exact interaction solutions among different non-linear excitations are explicitly presented finally. Some special interaction solutions are investigated both in analytical and graphical ways at the same time.

Acknowledgments

This work was supported by the Foundation of Educational Committee of Zhejiang Province (grant no. Y201432744), and the Zhejiang Province Natural Science Foundation of China (grant nos. LY14A010005 and LQ14A040001).

References

[1] G. B. Whitham, Linear and Nonlinear Waves, Wiley-Interscience, New York 1974.Suche in Google Scholar

[2] Y. Z. Miropol’sky, Dynamics of Internal Gravity Waves in the Ocean, Kluwer Academic, Dordrecht 2001.10.1007/978-94-017-1325-2Suche in Google Scholar

[3] M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform, SIAM, Philadelphia 1981.10.1137/1.9781611970883Suche in Google Scholar

[4] L. A. Ostrovsky and Y. A. Stepanyants, Rev. Geophys. 27, 293 (1989).10.1029/RG027i003p00293Suche in Google Scholar

[5] L. A. Ostrovsky and Y. A. Stepanyants, Chaos 15, 037111 (2005).10.1063/1.2107087Suche in Google Scholar PubMed

[6] J. Apel, L. A. Ostrovsky, Y. A. Stepanyants, and J. F. Lynch, J. Acoust. Soc. Am. 121, 695 (2007).10.1121/1.2395914Suche in Google Scholar PubMed

[7] L. A. Ostrovsky, E. N. Pelinovsky, V. I. Shrira, and Y. A. Stepanyants, Chaos 25, 097620 (2015).10.1063/1.4927448Suche in Google Scholar PubMed

[8] E. Pelinovskii, O. Polukhina, and K. Lamb, Oceanology 40, 757 (2000).Suche in Google Scholar

[9] R. Grimshaw, E. Pelinovsky, and O. Poloukhina, Nonlin. Proc. Geophys. 9, 221 (2002).10.5194/npg-9-221-2002Suche in Google Scholar

[10] J. Weiss, J. Math. Phys. 24, 1405 (1983).10.1063/1.525875Suche in Google Scholar

[11] S. Y. Lou, Phys. Scr. 57, 481 (1998).10.1088/0031-8949/57/4/001Suche in Google Scholar

[12] X. R. Hu, S. L. Lou, and Y. Chen, Phys. Rev. E 85, 056607 (2012).10.1103/PhysRevE.85.056607Suche in Google Scholar PubMed

[13] G. W. Bluman and S. Kumei, Symmetries and Differential Equations, Springer, Berlin 1989.10.1007/978-1-4757-4307-4Suche in Google Scholar

[14] G. W. Bluman and Z. Yan, Eur. J. Appl. Math. 16, 239 (2005).10.1017/S0956792505005838Suche in Google Scholar

[15] Z. Yan, Stud. Appl. Math. 132, 266 (2014).10.1111/sapm.12028Suche in Google Scholar

[16] J. Weiss, M. Tabor, and G. Carnevale, J. Math. Phys. 24, 522 (1983).10.1063/1.525721Suche in Google Scholar

[17] R. Conte, Phys. Lett. A. 140, 383 (1989).10.1016/0375-9601(89)90072-8Suche in Google Scholar

[18] A. Pickering, J. Phys. A. 26, 4395 (1993).10.1088/0305-4470/26/17/044Suche in Google Scholar

[19] Z. Yan and H. Zhang, J. Phys. A. 34, 1785 (2001).10.1088/0305-4470/34/8/320Suche in Google Scholar

[20] Z. Yan, Phys. Lett. A. 318, 78 (2003).10.1016/j.physleta.2003.08.073Suche in Google Scholar

[21] S. Y. Lou, arXiv 1140, 1308 (2013).10.1038/scibx.2014.1140Suche in Google Scholar

[22] X. R. Hu and Y. Q. Li, Appl. Math. Lett. 51, 20 (2016).10.1016/j.aml.2015.07.004Suche in Google Scholar

[23] S. Y. Lou, Stud. Appl. Math. 134, 372 (2015).10.1111/sapm.12072Suche in Google Scholar

[24] S. Y. Lou, X. P. Cheng, and X. Y. Tang, Chin. Phys. Lett. 31, 070201 (2014).10.1088/0256-307X/31/7/070201Suche in Google Scholar

[25] J. Y. Wang, X. P. Cheng, X. Y. Tang, J. R. Yang, and B. Ren, Phys. Plasmas 21, 032111 (2014).10.1063/1.4868244Suche in Google Scholar

Received: 2016-9-4
Accepted: 2016-11-6
Published Online: 2016-12-10
Published in Print: 2017-3-1

©2017 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 24.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zna-2016-0339/html
Button zum nach oben scrollen