Abstract
The non-local residual symmetry for the classical Korteweg-de Vries equation is derived by the truncated Painlevé analysis. This symmetry is first localised to the Lie point symmetry by introducing the auxiliary dependent variables. By using Lie’s first theorem, we then obtain the finite transformation for the localised residual symmetry. Based on the consistent tanh expansion method, some exact interaction solutions among different non-linear excitations are explicitly presented finally. Some special interaction solutions are investigated both in analytical and graphical ways at the same time.
Acknowledgments
This work was supported by the Foundation of Educational Committee of Zhejiang Province (grant no. Y201432744), and the Zhejiang Province Natural Science Foundation of China (grant nos. LY14A010005 and LQ14A040001).
References
[1] G. B. Whitham, Linear and Nonlinear Waves, Wiley-Interscience, New York 1974.Suche in Google Scholar
[2] Y. Z. Miropol’sky, Dynamics of Internal Gravity Waves in the Ocean, Kluwer Academic, Dordrecht 2001.10.1007/978-94-017-1325-2Suche in Google Scholar
[3] M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform, SIAM, Philadelphia 1981.10.1137/1.9781611970883Suche in Google Scholar
[4] L. A. Ostrovsky and Y. A. Stepanyants, Rev. Geophys. 27, 293 (1989).10.1029/RG027i003p00293Suche in Google Scholar
[5] L. A. Ostrovsky and Y. A. Stepanyants, Chaos 15, 037111 (2005).10.1063/1.2107087Suche in Google Scholar PubMed
[6] J. Apel, L. A. Ostrovsky, Y. A. Stepanyants, and J. F. Lynch, J. Acoust. Soc. Am. 121, 695 (2007).10.1121/1.2395914Suche in Google Scholar PubMed
[7] L. A. Ostrovsky, E. N. Pelinovsky, V. I. Shrira, and Y. A. Stepanyants, Chaos 25, 097620 (2015).10.1063/1.4927448Suche in Google Scholar PubMed
[8] E. Pelinovskii, O. Polukhina, and K. Lamb, Oceanology 40, 757 (2000).Suche in Google Scholar
[9] R. Grimshaw, E. Pelinovsky, and O. Poloukhina, Nonlin. Proc. Geophys. 9, 221 (2002).10.5194/npg-9-221-2002Suche in Google Scholar
[10] J. Weiss, J. Math. Phys. 24, 1405 (1983).10.1063/1.525875Suche in Google Scholar
[11] S. Y. Lou, Phys. Scr. 57, 481 (1998).10.1088/0031-8949/57/4/001Suche in Google Scholar
[12] X. R. Hu, S. L. Lou, and Y. Chen, Phys. Rev. E 85, 056607 (2012).10.1103/PhysRevE.85.056607Suche in Google Scholar PubMed
[13] G. W. Bluman and S. Kumei, Symmetries and Differential Equations, Springer, Berlin 1989.10.1007/978-1-4757-4307-4Suche in Google Scholar
[14] G. W. Bluman and Z. Yan, Eur. J. Appl. Math. 16, 239 (2005).10.1017/S0956792505005838Suche in Google Scholar
[15] Z. Yan, Stud. Appl. Math. 132, 266 (2014).10.1111/sapm.12028Suche in Google Scholar
[16] J. Weiss, M. Tabor, and G. Carnevale, J. Math. Phys. 24, 522 (1983).10.1063/1.525721Suche in Google Scholar
[17] R. Conte, Phys. Lett. A. 140, 383 (1989).10.1016/0375-9601(89)90072-8Suche in Google Scholar
[18] A. Pickering, J. Phys. A. 26, 4395 (1993).10.1088/0305-4470/26/17/044Suche in Google Scholar
[19] Z. Yan and H. Zhang, J. Phys. A. 34, 1785 (2001).10.1088/0305-4470/34/8/320Suche in Google Scholar
[20] Z. Yan, Phys. Lett. A. 318, 78 (2003).10.1016/j.physleta.2003.08.073Suche in Google Scholar
[21] S. Y. Lou, arXiv 1140, 1308 (2013).10.1038/scibx.2014.1140Suche in Google Scholar
[22] X. R. Hu and Y. Q. Li, Appl. Math. Lett. 51, 20 (2016).10.1016/j.aml.2015.07.004Suche in Google Scholar
[23] S. Y. Lou, Stud. Appl. Math. 134, 372 (2015).10.1111/sapm.12072Suche in Google Scholar
[24] S. Y. Lou, X. P. Cheng, and X. Y. Tang, Chin. Phys. Lett. 31, 070201 (2014).10.1088/0256-307X/31/7/070201Suche in Google Scholar
[25] J. Y. Wang, X. P. Cheng, X. Y. Tang, J. R. Yang, and B. Ren, Phys. Plasmas 21, 032111 (2014).10.1063/1.4868244Suche in Google Scholar
©2017 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Hydrogen and Carbon Vapour Pressure Isotope Effects in Liquid Fluoroform Studied by Density Functional Theory
- Analytic Approximations to Nonlinear Boundary Value Problems Modeling Beam-Type Nano-Electromechanical Systems
- Resistance Distances and Kirchhoff Index in Generalised Join Graphs
- Residual Symmetries and Interaction Solutions for the Classical Korteweg-de Vries Equation
- Nanofluidic Transport over a Curved Surface with Viscous Dissipation and Convective Mass Flux
- Reconstruction of f(T) Gravity with Interacting Variable-Generalised Chaplygin Gas and the Thermodynamics with Corrected Entropies
- Peristaltic Flow of Rabinowitsch Fluid in a Curved Channel: Mathematical Analysis Revisited
- Analysis of the Laminar Newtonian Fluid Flow Through a Thin Fracture Modelled as a Fluid-Saturated Sparsely Packed Porous Medium
- Lie Symmetries and Conservation Laws of the Generalised Foam-Drainage Equation
- Lie Symmetry Analysis, Analytical Solutions, and Conservation Laws of the Generalised Whitham–Broer–Kaup–Like Equations
- Discrete and Semidiscrete Models for AKNS Equation
Artikel in diesem Heft
- Frontmatter
- Hydrogen and Carbon Vapour Pressure Isotope Effects in Liquid Fluoroform Studied by Density Functional Theory
- Analytic Approximations to Nonlinear Boundary Value Problems Modeling Beam-Type Nano-Electromechanical Systems
- Resistance Distances and Kirchhoff Index in Generalised Join Graphs
- Residual Symmetries and Interaction Solutions for the Classical Korteweg-de Vries Equation
- Nanofluidic Transport over a Curved Surface with Viscous Dissipation and Convective Mass Flux
- Reconstruction of f(T) Gravity with Interacting Variable-Generalised Chaplygin Gas and the Thermodynamics with Corrected Entropies
- Peristaltic Flow of Rabinowitsch Fluid in a Curved Channel: Mathematical Analysis Revisited
- Analysis of the Laminar Newtonian Fluid Flow Through a Thin Fracture Modelled as a Fluid-Saturated Sparsely Packed Porous Medium
- Lie Symmetries and Conservation Laws of the Generalised Foam-Drainage Equation
- Lie Symmetry Analysis, Analytical Solutions, and Conservation Laws of the Generalised Whitham–Broer–Kaup–Like Equations
- Discrete and Semidiscrete Models for AKNS Equation