Abstract
The resistance distance between any two vertices of a connected graph is defined as the effective resistance between them in the electrical network constructed from the graph by replacing each edge with a unit resistor. The Kirchhoff index of a graph is defined as the sum of all the resistance distances between any pair of vertices of the graph. Let G=H[G1, G2, …, Gk ] be the generalised join graph of G1, G2, …, Gk determined by H. In this paper, we first give formulae for resistance distances and Kirchhoff index of G in terms of parameters of
Acknowledgments
This work is supported by the National Natural Science Foundation of China (grants 11571139, 11301217) and the Natural Science Foundation of Fujian Province, China (grants 2015J01017, 2013J01014).
References
[1] D. J. Klein and M. Randić, J. Math. Chem. 12, 81 (1993).10.1007/BF01164627Suche in Google Scholar
[2] Z.-Z. Tan, Resistance Network Model, Xidian University Press, Xi’an 2011.Suche in Google Scholar
[3] P. V. Mieghem, Graph Spectra of Complex Networks, Cambridge University Press, Cambridge 2010.10.1017/CBO9780511921681Suche in Google Scholar
[4] D. J. Klein, Resistance-distance sum rules, Croat. Chem. Acta 75, 633 (2002).Suche in Google Scholar
[5] H. Y. Chen and F. J. Zhang, J. Math. Chem. 44, 405 (2008).10.1007/s10910-007-9317-8Suche in Google Scholar
[6] H. Y. Chen, Discrete Appl. Math. 155, 1691 (2010).10.1016/j.dam.2010.05.020Suche in Google Scholar
[7] H. Y. Chen and F. J. Zhang, Discrete Appl. Math. 155, 654 (2007).10.1016/j.dam.2006.09.008Suche in Google Scholar
[8] W. J. Xiao and I. Gutman, Theor. Chem. Acc. 110, 284 (2003).10.1007/s00214-003-0460-4Suche in Google Scholar
[9] R. B. Bapat, I. Gutman, and W. J. Xiao, Z. Naturforsch. 58a, 494 (2003).10.1515/zna-2003-9-1003Suche in Google Scholar
[10] F. Y. Wu, J. Phys. A: Math. Gen. 37, 6653 (2004).10.1088/0305-4470/37/26/004Suche in Google Scholar
[11] Y. J. Yang and D. J. Klein, Discrete Appl. Math. 161, 2702 (2013).10.1016/j.dam.2012.07.015Suche in Google Scholar
[12] N. S. Izmailian, R. Kenna, and F. Y. Wu, J. Phys. A: Math. Theor. 47, 035003 (2014).10.1088/1751-8113/47/3/035003Suche in Google Scholar
[13] W. J. Tzeng and F. Y. Wu, J. Phys. A: Math. Gen. 39, 8579 (2006).10.1088/0305-4470/39/27/002Suche in Google Scholar
[14] E. G. Chatzarakis and M. M. Kantonidou, Int. J. Electr. Eng. Educ. 44, 64 (2007).10.7227/IJEEE.44.1.7Suche in Google Scholar
[15] Y. J. Yang and H. P. Zhang, J. Phys. A: Math. Theor. 41, 445203 (2008).10.1088/1751-8113/41/44/445203Suche in Google Scholar
[16] Y. J. Yang and D. J. Klein, J. Phys. A: Math. Theor 47, 375203 (2014).10.1088/1751-8113/47/37/375203Suche in Google Scholar
[17] Y. J. Yang, Digest J. Nanomater. Biostruct. 7, 593 (2012).Suche in Google Scholar
[18] J. W. Essam and F. Y. Wu, J. Phys. A: Math. Theor. 42, 025205 (2009).10.1088/1751-8113/42/2/025205Suche in Google Scholar
[19] M. A. Jafarizadeh, R. Sufiani, and S. Jafarizadeh, J. Stat. Phys. 139, 177 (2010).10.1007/s10955-009-9909-8Suche in Google Scholar
[20] N. S. Izmailian and M. C. Huang, Phys. Rev. E 82, 011125 (2010).10.1103/PhysRevE.82.011125Suche in Google Scholar PubMed
[21] Z.-Z. Tan, L. Zhou, and J. H. Yang, J. Phys. A: Math. Theor. 46, 195202 (2013).10.1088/1751-8113/46/19/195202Suche in Google Scholar
[22] N. Chair, Ann. Phys. 327, 3116 (2012).10.1016/j.aop.2012.09.002Suche in Google Scholar
[23] L. Sun, W. Wang, J. Zhou, and C. Bu, Linear Multilinear A. 63, 523 (2015).10.1080/03081087.2013.877011Suche in Google Scholar
[24] J. Zhou, Z. Wang, and C. Bu, Electron. J. Comb. 23, P1.41 (2016).10.37236/5295Suche in Google Scholar
[25] A. Ghosh, S. Boyd, and A. Saberi, SIAM Rev. 50, 37 (2008).10.1137/050645452Suche in Google Scholar
[26] H. P. Zhang and Y. J. Yang, Int. J. Quantum Chem. 107, 330 (2007).10.1002/qua.21068Suche in Google Scholar
[27] X. Gao, Y. Luo, and W. Liu, Discrete Appl. Math. 159, 2050 (2011).10.1016/j.dam.2011.06.027Suche in Google Scholar
[28] X. Gao, Y. Luo, and W. Liu, Discrete Appl. Math. 160, 560 (2012).10.1016/j.dam.2011.11.011Suche in Google Scholar
[29] J. L. Palacios, Int. J. Quant. Chem. 81, 135 (2001).10.1002/1097-461X(2001)81:2<135::AID-QUA4>3.0.CO;2-GSuche in Google Scholar
[30] C. Arauz, Discr. Appl. Math. 160, 1429 (2012).10.1016/j.dam.2012.02.008Suche in Google Scholar
[31] L. Ye, Linear Multilinear A. 59, 645 (2011).10.1080/03081081003794233Suche in Google Scholar
[32] J. B. Liu, X. F. Pan, J. D. Cao, and X. Huang, Math. Probl. Eng. 2014, Article ID 286876, 8 pp.Suche in Google Scholar
[33] Y. Yang and H. Zhang, Int. J. Quantum Chem. 108, 503 (2008).10.1002/qua.21537Suche in Google Scholar
[34] J. B. Liu, J. Cao, X.-F.Pan, and A. Elaiw, Discr. Dynam. Nat. Soc. 2013 (2013), Article ID 543189, 7 pp.10.1155/2013/543189Suche in Google Scholar
[35] J. Liu, X.-F. Pan, Y. Wang, and J. Cao, Math. Probl. Eng. 2014 (2014), Article ID 380874, 9 pp.10.1186/1687-2770-2014-96Suche in Google Scholar
[36] I. Gutman and B. Mohar, J. Chem. Inform. Comput. Sci. 36, 982 (1996).10.1021/ci960007tSuche in Google Scholar
[37] H.-Y. Zhu, D. J. Klein, and I. Lukovits, J. Chem. Inform. Comput. Sci. 36, 420 (1996).10.1021/ci950116sSuche in Google Scholar
[38] D. M. Cardoso, M. A. A. de Freitas, and E. A. Martins, and M. Robbiano, Discr. Math. 313, 733 (2013).10.1016/j.disc.2012.10.016Suche in Google Scholar
[39] A. J. Schwenk, in: Graphs Combinatorics (Eds. R. Bary, F. Harary), Lecture Notes in Mathematics, vol. 406, Springer-Verlag, Berlin 1974, pp. 153–172.10.1007/BFb0066438Suche in Google Scholar
[40] D. Cvetković, P. Rowlinson, and S. Simić, An Introduction to the Theory of Graph Spectra, Cambridge University Press, New York 2010.10.1017/CBO9780511801518Suche in Google Scholar
[41] M. Fiedler, Czech. Math. J. 23, 298 (1973).10.21136/CMJ.1973.101168Suche in Google Scholar
[42] F. Harary, Graph Theory, Addison-Wesley, Reading, MA 1969.10.21236/AD0705364Suche in Google Scholar
©2017 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Hydrogen and Carbon Vapour Pressure Isotope Effects in Liquid Fluoroform Studied by Density Functional Theory
- Analytic Approximations to Nonlinear Boundary Value Problems Modeling Beam-Type Nano-Electromechanical Systems
- Resistance Distances and Kirchhoff Index in Generalised Join Graphs
- Residual Symmetries and Interaction Solutions for the Classical Korteweg-de Vries Equation
- Nanofluidic Transport over a Curved Surface with Viscous Dissipation and Convective Mass Flux
- Reconstruction of f(T) Gravity with Interacting Variable-Generalised Chaplygin Gas and the Thermodynamics with Corrected Entropies
- Peristaltic Flow of Rabinowitsch Fluid in a Curved Channel: Mathematical Analysis Revisited
- Analysis of the Laminar Newtonian Fluid Flow Through a Thin Fracture Modelled as a Fluid-Saturated Sparsely Packed Porous Medium
- Lie Symmetries and Conservation Laws of the Generalised Foam-Drainage Equation
- Lie Symmetry Analysis, Analytical Solutions, and Conservation Laws of the Generalised Whitham–Broer–Kaup–Like Equations
- Discrete and Semidiscrete Models for AKNS Equation
Artikel in diesem Heft
- Frontmatter
- Hydrogen and Carbon Vapour Pressure Isotope Effects in Liquid Fluoroform Studied by Density Functional Theory
- Analytic Approximations to Nonlinear Boundary Value Problems Modeling Beam-Type Nano-Electromechanical Systems
- Resistance Distances and Kirchhoff Index in Generalised Join Graphs
- Residual Symmetries and Interaction Solutions for the Classical Korteweg-de Vries Equation
- Nanofluidic Transport over a Curved Surface with Viscous Dissipation and Convective Mass Flux
- Reconstruction of f(T) Gravity with Interacting Variable-Generalised Chaplygin Gas and the Thermodynamics with Corrected Entropies
- Peristaltic Flow of Rabinowitsch Fluid in a Curved Channel: Mathematical Analysis Revisited
- Analysis of the Laminar Newtonian Fluid Flow Through a Thin Fracture Modelled as a Fluid-Saturated Sparsely Packed Porous Medium
- Lie Symmetries and Conservation Laws of the Generalised Foam-Drainage Equation
- Lie Symmetry Analysis, Analytical Solutions, and Conservation Laws of the Generalised Whitham–Broer–Kaup–Like Equations
- Discrete and Semidiscrete Models for AKNS Equation