Startseite Resistance Distances and Kirchhoff Index in Generalised Join Graphs
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Resistance Distances and Kirchhoff Index in Generalised Join Graphs

  • Haiyan Chen EMAIL logo
Veröffentlicht/Copyright: 7. Januar 2017

Abstract

The resistance distance between any two vertices of a connected graph is defined as the effective resistance between them in the electrical network constructed from the graph by replacing each edge with a unit resistor. The Kirchhoff index of a graph is defined as the sum of all the resistance distances between any pair of vertices of the graph. Let G=H[G1, G2, …, Gk ] be the generalised join graph of G1, G2, …, Gk determined by H. In this paper, we first give formulae for resistance distances and Kirchhoff index of G in terms of parameters of Gis and H. Then, we show that computing resistance distances and Kirchhoff index of G can be decomposed into simpler ones. Finally, we obtain explicit formulae for resistance distances and Kirchhoff index of G when Gis and H take some special graphs, such as the complete graph, the path, and the cycle.

MSC 2010: 05C50; 60J20

Acknowledgments

This work is supported by the National Natural Science Foundation of China (grants 11571139, 11301217) and the Natural Science Foundation of Fujian Province, China (grants 2015J01017, 2013J01014).

References

[1] D. J. Klein and M. Randić, J. Math. Chem. 12, 81 (1993).10.1007/BF01164627Suche in Google Scholar

[2] Z.-Z. Tan, Resistance Network Model, Xidian University Press, Xi’an 2011.Suche in Google Scholar

[3] P. V. Mieghem, Graph Spectra of Complex Networks, Cambridge University Press, Cambridge 2010.10.1017/CBO9780511921681Suche in Google Scholar

[4] D. J. Klein, Resistance-distance sum rules, Croat. Chem. Acta 75, 633 (2002).Suche in Google Scholar

[5] H. Y. Chen and F. J. Zhang, J. Math. Chem. 44, 405 (2008).10.1007/s10910-007-9317-8Suche in Google Scholar

[6] H. Y. Chen, Discrete Appl. Math. 155, 1691 (2010).10.1016/j.dam.2010.05.020Suche in Google Scholar

[7] H. Y. Chen and F. J. Zhang, Discrete Appl. Math. 155, 654 (2007).10.1016/j.dam.2006.09.008Suche in Google Scholar

[8] W. J. Xiao and I. Gutman, Theor. Chem. Acc. 110, 284 (2003).10.1007/s00214-003-0460-4Suche in Google Scholar

[9] R. B. Bapat, I. Gutman, and W. J. Xiao, Z. Naturforsch. 58a, 494 (2003).10.1515/zna-2003-9-1003Suche in Google Scholar

[10] F. Y. Wu, J. Phys. A: Math. Gen. 37, 6653 (2004).10.1088/0305-4470/37/26/004Suche in Google Scholar

[11] Y. J. Yang and D. J. Klein, Discrete Appl. Math. 161, 2702 (2013).10.1016/j.dam.2012.07.015Suche in Google Scholar

[12] N. S. Izmailian, R. Kenna, and F. Y. Wu, J. Phys. A: Math. Theor. 47, 035003 (2014).10.1088/1751-8113/47/3/035003Suche in Google Scholar

[13] W. J. Tzeng and F. Y. Wu, J. Phys. A: Math. Gen. 39, 8579 (2006).10.1088/0305-4470/39/27/002Suche in Google Scholar

[14] E. G. Chatzarakis and M. M. Kantonidou, Int. J. Electr. Eng. Educ. 44, 64 (2007).10.7227/IJEEE.44.1.7Suche in Google Scholar

[15] Y. J. Yang and H. P. Zhang, J. Phys. A: Math. Theor. 41, 445203 (2008).10.1088/1751-8113/41/44/445203Suche in Google Scholar

[16] Y. J. Yang and D. J. Klein, J. Phys. A: Math. Theor 47, 375203 (2014).10.1088/1751-8113/47/37/375203Suche in Google Scholar

[17] Y. J. Yang, Digest J. Nanomater. Biostruct. 7, 593 (2012).Suche in Google Scholar

[18] J. W. Essam and F. Y. Wu, J. Phys. A: Math. Theor. 42, 025205 (2009).10.1088/1751-8113/42/2/025205Suche in Google Scholar

[19] M. A. Jafarizadeh, R. Sufiani, and S. Jafarizadeh, J. Stat. Phys. 139, 177 (2010).10.1007/s10955-009-9909-8Suche in Google Scholar

[20] N. S. Izmailian and M. C. Huang, Phys. Rev. E 82, 011125 (2010).10.1103/PhysRevE.82.011125Suche in Google Scholar PubMed

[21] Z.-Z. Tan, L. Zhou, and J. H. Yang, J. Phys. A: Math. Theor. 46, 195202 (2013).10.1088/1751-8113/46/19/195202Suche in Google Scholar

[22] N. Chair, Ann. Phys. 327, 3116 (2012).10.1016/j.aop.2012.09.002Suche in Google Scholar

[23] L. Sun, W. Wang, J. Zhou, and C. Bu, Linear Multilinear A. 63, 523 (2015).10.1080/03081087.2013.877011Suche in Google Scholar

[24] J. Zhou, Z. Wang, and C. Bu, Electron. J. Comb. 23, P1.41 (2016).10.37236/5295Suche in Google Scholar

[25] A. Ghosh, S. Boyd, and A. Saberi, SIAM Rev. 50, 37 (2008).10.1137/050645452Suche in Google Scholar

[26] H. P. Zhang and Y. J. Yang, Int. J. Quantum Chem. 107, 330 (2007).10.1002/qua.21068Suche in Google Scholar

[27] X. Gao, Y. Luo, and W. Liu, Discrete Appl. Math. 159, 2050 (2011).10.1016/j.dam.2011.06.027Suche in Google Scholar

[28] X. Gao, Y. Luo, and W. Liu, Discrete Appl. Math. 160, 560 (2012).10.1016/j.dam.2011.11.011Suche in Google Scholar

[29] J. L. Palacios, Int. J. Quant. Chem. 81, 135 (2001).10.1002/1097-461X(2001)81:2<135::AID-QUA4>3.0.CO;2-GSuche in Google Scholar

[30] C. Arauz, Discr. Appl. Math. 160, 1429 (2012).10.1016/j.dam.2012.02.008Suche in Google Scholar

[31] L. Ye, Linear Multilinear A. 59, 645 (2011).10.1080/03081081003794233Suche in Google Scholar

[32] J. B. Liu, X. F. Pan, J. D. Cao, and X. Huang, Math. Probl. Eng. 2014, Article ID 286876, 8 pp.Suche in Google Scholar

[33] Y. Yang and H. Zhang, Int. J. Quantum Chem. 108, 503 (2008).10.1002/qua.21537Suche in Google Scholar

[34] J. B. Liu, J. Cao, X.-F.Pan, and A. Elaiw, Discr. Dynam. Nat. Soc. 2013 (2013), Article ID 543189, 7 pp.10.1155/2013/543189Suche in Google Scholar

[35] J. Liu, X.-F. Pan, Y. Wang, and J. Cao, Math. Probl. Eng. 2014 (2014), Article ID 380874, 9 pp.10.1186/1687-2770-2014-96Suche in Google Scholar

[36] I. Gutman and B. Mohar, J. Chem. Inform. Comput. Sci. 36, 982 (1996).10.1021/ci960007tSuche in Google Scholar

[37] H.-Y. Zhu, D. J. Klein, and I. Lukovits, J. Chem. Inform. Comput. Sci. 36, 420 (1996).10.1021/ci950116sSuche in Google Scholar

[38] D. M. Cardoso, M. A. A. de Freitas, and E. A. Martins, and M. Robbiano, Discr. Math. 313, 733 (2013).10.1016/j.disc.2012.10.016Suche in Google Scholar

[39] A. J. Schwenk, in: Graphs Combinatorics (Eds. R. Bary, F. Harary), Lecture Notes in Mathematics, vol. 406, Springer-Verlag, Berlin 1974, pp. 153–172.10.1007/BFb0066438Suche in Google Scholar

[40] D. Cvetković, P. Rowlinson, and S. Simić, An Introduction to the Theory of Graph Spectra, Cambridge University Press, New York 2010.10.1017/CBO9780511801518Suche in Google Scholar

[41] M. Fiedler, Czech. Math. J. 23, 298 (1973).10.21136/CMJ.1973.101168Suche in Google Scholar

[42] F. Harary, Graph Theory, Addison-Wesley, Reading, MA 1969.10.21236/AD0705364Suche in Google Scholar

Received: 2016-8-8
Accepted: 2016-11-3
Published Online: 2017-1-7
Published in Print: 2017-3-1

©2017 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 24.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zna-2016-0295/html
Button zum nach oben scrollen