Abstract
H/D and 12C/13C vapour pressure isotope effects (VPIEs) in liquid fluoroform (CHF3) were studied at the MPW1PW91/6-31 ++ G(d) level of theory. The CHF3 monomer and CHF3 molecules surrounded by other CHF3 molecules in every direction in CHF3 clusters were used as model molecules of vapour and liquid CHF3. Although experimental results in which the vapour pressure of liquid 12CHF3 is higher than that of liquid 12CDF3 and the vapour pressure of liquid 13CHF3 is higher than that of liquid 12CHF3 between 125 and 212 K were qualitatively reproduced, the present calculations overestimated the H/D VPIE and underestimated the 12C/13C VPIE. Temperature-dependent intermolecular interactions between hydrogen and fluorine atoms of neighbouring molecules were required to explain the temperature dependences of both H/D and 12C/13C VPIEs.
Acknowledgement
This work was in part supported by JSPS KAKENHI Grant Number JP15K06670.
References
[1] J. Bigeleisen, J. Chem. Phys. 34, 1485 (1961).10.1063/1.1701033Search in Google Scholar
[2] M. J. Stern, W. A. Van Hook, and M. Wolfsberg, J. Chem. Phys. 39, 3179 (1963).10.1063/1.1734180Search in Google Scholar
[3] J. Bigeleisen and M. G. Mayer, J. Chem. Phys. 15, 261 (1947).10.1063/1.1746492Search in Google Scholar
[4] T. Oi and A. Otsubo, J. Nucl. Sci. Technol. 47, 323 (2010).10.1080/18811248.2010.9711961Search in Google Scholar
[5] T. Oi and A. Otsubo, Z. Naturforsch. 66a, 242 (2011).10.1515/zna-2011-3-415Search in Google Scholar
[6] T. Oi, Z. Naturforsch. 66a, 569 (2011).10.5560/zna.2011-0019Search in Google Scholar
[7] T. Oi, K. Sato, and K. Umemura, Z. Naturforsch. 68a, 362 (2013).10.5560/zna.2012-0122Search in Google Scholar
[8] T. Oi and H. Morimoto, Z. Phys. Chem. 227, 807 (2013).10.1524/zpch.2013.0376Search in Google Scholar
[9] L. Borodinsky, H. J. Wieck, D. Mayfield, and T. Ishida, J. Chem. Phys. 68, 3279 (1978).10.1063/1.436133Search in Google Scholar
[10] A. Popowicz, T. Oi, J. Shulman, and T. Ishida, J. Chem. Phys. 76, 3732 (1982).10.1063/1.443411Search in Google Scholar
[11] A. Popowicz and T. Ishida, Chem. Phys. Lett. 83, 520 (1981).10.1016/0009-2614(81)85514-5Search in Google Scholar
[12] S. Tsuzuki, T. Uchimaru, M. Mikami, and S. Urata, J. Phys. Chem. A, 107, 7962 (2003).10.1021/jp035531zSearch in Google Scholar
[13] E. Kryachko and S. Scheiner, J. Phys. Chem. A, 108, 2527 (2004).10.1021/jp0365108Search in Google Scholar
[14] L. Pejov and K. Hermansson, J. Chem. Phys. 119, 313 (2003).10.1063/1.1571517Search in Google Scholar
[15] P. Hobza and Z. Havlas, Chem. Rev. 100, 4253 (2000).10.1021/cr990050qSearch in Google Scholar
[16] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, et al. Gaussian Inc., Gaussian 09, Rev. B.01, Wallingford, CT, USA 2010.Search in Google Scholar
[17] S. Yanase and T. Oi, Chem. Phys. Lett. 440, 19 (2007).10.1016/j.cplett.2007.04.004Search in Google Scholar
[18] B. H. Torrie, O. S. Binbrek, and B. M. Powell, Mol. Phys. 87, 1007 (1996).10.1080/00268979600100691Search in Google Scholar
[19] A. Ruoff, H. Bürger, and S. Biedermann, Spectrochim. Acta 27A, 1359 (1971).10.1016/0584-8539(71)80088-0Search in Google Scholar
[20] H. F. Chambers, R. W. Kirk, J. K. Thompson, M. J. Warner, and P. M. Wilt, J. Mol. Spectrosc. 58, 76 (1975).10.1016/0022-2852(75)90157-5Search in Google Scholar
[21] N. J. Fyke, P. Lockett, J. K. Thompson, and P. M. Wilt, J. Mol. Spectrosc. 58, 87 (1975).10.1016/0022-2852(75)90158-7Search in Google Scholar
[22] R. W. Kirk and P. M. Wilt, J. Mol. Spectrosc. 58, 102 (1975).10.1016/0022-2852(75)90159-9Search in Google Scholar
[23] V. Galasso, G. De Alti, and G. Costa, Spectrochim. Acta 21, 669 (1965).10.1016/0371-1951(65)80024-8Search in Google Scholar
[24] R. D’Cunha, J. Mol. Spectrosc. 43, 282 (1972).10.1016/0022-2852(72)90024-0Search in Google Scholar
[25] A. S. Rodgers, J. Chao, R. C. Wilhoit, and B. J. Zwolinski, J. Phys. Chem. Ref. Data 3, 117 (1974).10.1063/1.3253135Search in Google Scholar
[26] G. Glockler and W. F. Efgell, J. Chem. Phys. 9, 224 (1941).10.1063/1.1750882Search in Google Scholar
[27] D. H. Rank, E. R. Shull, and E. L. Pace, J. Chem. Phys. 18, 885 (1950).10.1063/1.1747791Search in Google Scholar
[28] T. Oi, J. Shulman, A. Popowicz, and T. Ishida, J. Phys. Chem. 87, 3153 (1983).10.1021/j100239a038Search in Google Scholar
[29] A. Kanungo, T. Oi, A. Popowicz, and T. Ishida, J. Phys. Chem. 91, 4198 (1987).10.1021/j100299a049Search in Google Scholar
©2017 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Hydrogen and Carbon Vapour Pressure Isotope Effects in Liquid Fluoroform Studied by Density Functional Theory
- Analytic Approximations to Nonlinear Boundary Value Problems Modeling Beam-Type Nano-Electromechanical Systems
- Resistance Distances and Kirchhoff Index in Generalised Join Graphs
- Residual Symmetries and Interaction Solutions for the Classical Korteweg-de Vries Equation
- Nanofluidic Transport over a Curved Surface with Viscous Dissipation and Convective Mass Flux
- Reconstruction of f(T) Gravity with Interacting Variable-Generalised Chaplygin Gas and the Thermodynamics with Corrected Entropies
- Peristaltic Flow of Rabinowitsch Fluid in a Curved Channel: Mathematical Analysis Revisited
- Analysis of the Laminar Newtonian Fluid Flow Through a Thin Fracture Modelled as a Fluid-Saturated Sparsely Packed Porous Medium
- Lie Symmetries and Conservation Laws of the Generalised Foam-Drainage Equation
- Lie Symmetry Analysis, Analytical Solutions, and Conservation Laws of the Generalised Whitham–Broer–Kaup–Like Equations
- Discrete and Semidiscrete Models for AKNS Equation
Articles in the same Issue
- Frontmatter
- Hydrogen and Carbon Vapour Pressure Isotope Effects in Liquid Fluoroform Studied by Density Functional Theory
- Analytic Approximations to Nonlinear Boundary Value Problems Modeling Beam-Type Nano-Electromechanical Systems
- Resistance Distances and Kirchhoff Index in Generalised Join Graphs
- Residual Symmetries and Interaction Solutions for the Classical Korteweg-de Vries Equation
- Nanofluidic Transport over a Curved Surface with Viscous Dissipation and Convective Mass Flux
- Reconstruction of f(T) Gravity with Interacting Variable-Generalised Chaplygin Gas and the Thermodynamics with Corrected Entropies
- Peristaltic Flow of Rabinowitsch Fluid in a Curved Channel: Mathematical Analysis Revisited
- Analysis of the Laminar Newtonian Fluid Flow Through a Thin Fracture Modelled as a Fluid-Saturated Sparsely Packed Porous Medium
- Lie Symmetries and Conservation Laws of the Generalised Foam-Drainage Equation
- Lie Symmetry Analysis, Analytical Solutions, and Conservation Laws of the Generalised Whitham–Broer–Kaup–Like Equations
- Discrete and Semidiscrete Models for AKNS Equation