Startseite On the Heisenberg Supermagnet Model in (2+1)-Dimensions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

On the Heisenberg Supermagnet Model in (2+1)-Dimensions

  • Zhao-Wen Yan EMAIL logo
Veröffentlicht/Copyright: 7. Februar 2017

Abstract

The Heisenberg supermagnet model is an important supersymmetric integrable system in (1+1)-dimensions. We construct two types of the (2+1)-dimensional integrable Heisenberg supermagnet models with the quadratic constraints and investigate the integrability of the systems. In terms of the gage transformation, we derive their gage equivalent counterparts. Furthermore, we also construct new solutions of the supersymmetric integrable systems by means of the Bäcklund transformations.

Acknowledgments

This work is partially supported by the National Natural Science Foundation of China (Grant No.11605096, 11547101, and 11601247). The author thanks the valuable suggestions of the referees.

References

[1] L. Martina, O. K. Pashaev, and G. Soliani, Phys. Rev. D 58, 084025 (1998).10.1103/PhysRevD.58.084025Suche in Google Scholar

[2] M. Kruczenski, Phys. Rev. Lett. 93, 161602 (2004).10.1103/PhysRevLett.93.161602Suche in Google Scholar

[3] V. A. Kazakov, A. Marshakov, J. A. Minahan, and K. Zarembo, J. High Energy Phys. 05, 024 (2004).10.1088/1126-6708/2004/05/024Suche in Google Scholar

[4] M. Lakshmanan, Phys. Lett. A 61, 53 (1977).10.1016/0375-9601(77)90262-6Suche in Google Scholar

[5] V. E. Zakharov and L. A. Takhtadzhyan, Theor. Math. Phys. 38, 17 (1979).10.1007/BF01030253Suche in Google Scholar

[6] L. A. Takhtajan, Phys. Lett. A 64, 235 (1977).10.1016/0375-9601(77)90727-7Suche in Google Scholar

[7] M. Lakshmanan, K. Porsezian, and M. Daniel, Phys. Lett. A 133, 483 (1988).10.1016/0375-9601(88)90520-8Suche in Google Scholar

[8] D. G. Zhang and G. X. Yang, J. Phys. A 23, 2133 (1990).10.1088/0305-4470/23/11/033Suche in Google Scholar

[9] K. Porsezian, M. Daniel, and M. Lakshmanan, J. Math. Phys. 33, 1807 (1992).10.1063/1.529658Suche in Google Scholar

[10] K. Porsezian, Chaos, Soliton. Fract. 9, 1709 (1998).10.1016/S0960-0779(97)00132-XSuche in Google Scholar

[11] M. Lakshmanan and S. Ganesan, J. Phys. Soc. Jpn. 52, 4031 (1983).10.1143/JPSJ.52.4031Suche in Google Scholar

[12] W. Z. Zhao, Y. Q. Bai, and K. Wu, Phys. Lett. A 352, 64 (2006).10.1016/j.physleta.2005.09.088Suche in Google Scholar

[13] Y. Ishimori, Prog. Theor. Phys. 72, 33 (1984).10.1143/PTP.72.33Suche in Google Scholar

[14] R. Myrzakulov, On Some Integrable and Nonintegrable Soliton Equations of Magnets I−IV, HEPI, Alma-Ata 1987.Suche in Google Scholar

[15] M. Lakshmanan, R. Myrzakulov, S. Vijayalakshmi, and A. K. Danlybaeva, J. Math. Phys. 39, 3765 (1998).10.1063/1.532466Suche in Google Scholar

[16] R. Myrzakulov, G. N. Nugmanova, and R. N. Syzdykova, J. Phys. A 31, 9535 (1998).10.1088/0305-4470/31/47/013Suche in Google Scholar

[17] P. Di Vecchia and S. Ferrara, Nucl. Phys. B 130, 93 (1977).10.1016/0550-3213(77)90394-7Suche in Google Scholar

[18] P. Mathieu, J. Math. Phys. 29, 2499 (1988).10.1063/1.528090Suche in Google Scholar

[19] S. Bellucci, E. Ivanov, S. Krivonos, and A. Pichugin, Phys. Lett. B 312, 463 (1993).10.1016/0370-2693(93)90983-OSuche in Google Scholar

[20] D. Sarma, Nucl. Phys. B 681, 351 (2004).10.1016/j.nuclphysb.2003.11.042Suche in Google Scholar

[21] Yu. Manin and A. Radul, Commun. Math. Phys. 98, 65 (1985).10.1007/BF01211044Suche in Google Scholar

[22] A. LeClair, Nucl. Phys. B 314, 425 (1989).10.1016/0550-3213(89)90160-0Suche in Google Scholar

[23] Z. Popowicz, Phys. Lett. A 354, 110 (2006).10.1016/j.physleta.2006.01.027Suche in Google Scholar

[24] M. Saha and A. Roy Chowdhury, Int. J. Theor. Phys. 38, (1999) 2037.10.1023/A:1026605819631Suche in Google Scholar

[25] Z. W. Yan, M. L. Li, K. Wu, and W. Z. Zhao, J. Math. Phys. 54, 033506 (2013).10.1063/1.4795405Suche in Google Scholar

[26] V. G. Makhankov and O. K. Pashaev, Phys. Lett. A 141, 285 (1989).10.1016/0375-9601(89)90486-6Suche in Google Scholar

[27] V. G. Makhankov and O. K. Pashaev, J. Math. Phys. 33, 2923 (1992).10.1063/1.529561Suche in Google Scholar

[28] J. F. Guo, S. K. Wang, K. Wu, Z. W. Yan, and W. Z. Zhao, J. Math. Phys. 50, 113502 (2009).10.1063/1.3251299Suche in Google Scholar

[29] Z. W. Yan and Gegenhasi, J. Nonlinear Math. Phys. 23, 335 (2016).10.1080/14029251.2016.1199495Suche in Google Scholar

[30] Z. W. Yan, M. R. Chen, K. Wu, and W. Z. Zhao, J. Phys. Soc. Jpn. 81, 094006 (2012).10.1143/JPSJ.81.094006Suche in Google Scholar

[31] K. R. Esmakhanova, G. N. Nugmanova, W. Z. Zhao, and K. Wu, Integrable inhomogeneous Lakshmanan-Myrzakulov equation, arXiv:nlin/0604034v1.Suche in Google Scholar

[32] R. Myrzakulov, G. K. Mamyrbekova, G. N. Nugmanova, and M. Lakshmanan, Symmetry 7, 1352 (2015).10.3390/sym7031352Suche in Google Scholar

Received: 2016-10-15
Accepted: 2017-1-5
Published Online: 2017-2-7
Published in Print: 2017-4-1

©2017 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 15.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zna-2016-0397/html?lang=de
Button zum nach oben scrollen