Startseite Naturwissenschaften Laboratory synthesis and characterization of Knasibfite K3Na4[SiF6]3[BF4] and the homologous Ge compound K3Na4[GeF6]3[BF4]
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Laboratory synthesis and characterization of Knasibfite K3Na4[SiF6]3[BF4] and the homologous Ge compound K3Na4[GeF6]3[BF4]

  • Jascha Bandemehr , Josefin Klippstein , Sergei I. Ivlev , Malte Sachs und Florian Kraus EMAIL logo
Veröffentlicht/Copyright: 29. Februar 2020

Abstract

Herein we present the synthesis, crystal structure, and the infrared and Raman spectra of K3Na4[SiF6]3[BF4]. The compound also occurs in nature as the mineral Knasibfite. We obtained it from the reaction of stoichiometric amounts of SiO2, Na[BF4], K2CO3, and Na2CO3 in hydrofluoric acid at room temperature. Hydrofluorothermal synthesis at 200 °C lead to a product of higher purity. Knasibfite is colorless and crystallizes in space group Im 2m with a = 5.546(2), b = 9.261(2), c = 17.184(4) Å, V = 882.5(4) Å3, Z = 2, at T = 400(2) K. At 342 K a phase transition to a monoclinic structure was observed (I 2, a = 5.5003(6), b = 9.0890(9), c = 17.0048(2) Å, β = 90.041(9)°, V = 852.2(2) Å3, Z = 2, T = 100(2) K). By replacing SiO2 with GeO2 as a starting material K3Na4[GeF6]3[BF4] was obtained. This compound also crystallizes in form of two polymorphs, both of which are isotypic to the respective ones of K3Na4[SiF6]3[BF4].


Dedicated to: Prof. Dr. Ulrich Müller on the Occasion of his 80th Birthday.



Corresponding author: Prof. Dr. Florian Kraus, Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Str. 4, 35032 Marburg, Germany

Acknowledgements

We want to thank the DFG for funding, the X-ray facilities of Philipps University of Marburg (PUM), for their services, H. L. Deubner (PUM) for measuring Raman spectra and the department of Dr. Linne (PUM) for elemental analysis.

References

[1] F. Demartin, C. M. Gramaccioli, I. Campostrini, P. Orlandi, Can. Mineral.2008, 46, 447.10.3749/canmin.46.2.447Suche in Google Scholar

[2] S. Adachi, ECS J. Solid State Sci. Technol.2020, 9, 016001.10.1149/2.0022001JSSSuche in Google Scholar

[3] C. M. Gramaccioli, I. Campostrini, Can. Mineral.2007, 45, 1275.10.2113/gscanmin.45.5.1275Suche in Google Scholar

[4] G. D. Brunton, Acta Crystallogr. B1969, 25, 2161.10.1107/S0567740869005309Suche in Google Scholar

[5] V. Gaumet, M. El Ghozzi, D. Avignant, Eur. J. Solid State Inorg. Chem.1997, 34, 283.Suche in Google Scholar

[6] B. Ducourant, R. Fourcade, E. Philippot, G. Mascherpa, Rev. Chim. Miner.1975, 12, 553.Suche in Google Scholar

[7] D. J. M. Bevan, S. E. Lawton, Acta Crystallogr. B1986, 42, 55.10.1107/S0108768186098580Suche in Google Scholar

[8] A. Zalkin, J. D. Forrester, D. H. Templeton, Acta Crystallogr.1964, 17, 1408.10.1107/S0365110X64003516Suche in Google Scholar

[9] F. Averdunk, R. Hoppe, Z. Anorg. Allg. Chem.1990, 582, 111.10.1002/zaac.19905820114Suche in Google Scholar

[10] J. B. Bates, A. S. Quist, G. E. Boyd, J. Chem. Phys.1971, 54, 124.10.1063/1.1674581Suche in Google Scholar

[11] W. Zhang, Q. Jing, Y. Fang, Z. Chen, Z. Anorg. Allg. Chem.2017, 643, 1739.10.1002/zaac.201700322Suche in Google Scholar

[12] P. Benkič, Z. Mazej, Z. Anorg. Allg. Chem.2001, 627, 1952.10.1002/1521-3749(200108)627:8<1952::AID-ZAAC1952>3.0.CO;2-OSuche in Google Scholar

[13] H. Poulet, J. P. Mathieu, J. Raman Spectrosc.1976, 5, 193.10.1002/jrs.1250050210Suche in Google Scholar

[14] STOE WinXPOW, STOE & Cie GmbH, Darmstadt, Germany, 2015.Suche in Google Scholar

[15] V. Petříček, M. Dušek, L. Palatinus, Z. Kristallogr. – Cryst. Mater.2014, 229, 345.10.1515/zkri-2014-1737Suche in Google Scholar

[16] C. Cipriani, Rend. Soc. Mineral. Ital.1955, 11, 58.10.1111/j.1540-4560.1955.tb00308.xSuche in Google Scholar

[17] H. Bode, R. Brockmann, Z. Anorg. Allg. Chem.1952, 269, 173.10.1002/zaac.19522690403Suche in Google Scholar

[18] X-Area, STOE & Cie GmbH, Darmstadt, Germany, 2018.Suche in Google Scholar

[19] X-RED32, STOE & Cie GmbH, Darmstadt, Germany, 2012.Suche in Google Scholar

[20] X-SHAPE, STOE & Cie GmbH, Darmstadt, Germany, 2013.Suche in Google Scholar

[21] G. M. Sheldrick, Acta Crystallogr. A2015, 71, 3.10.1107/S2053273314026370Suche in Google Scholar PubMed PubMed Central

[22] C. B. Hübschle, G. M. Sheldrick, B. Dittrich, J. Appl. Crystallogr.2011, 44, 1281.10.1107/S0021889811043202Suche in Google Scholar PubMed PubMed Central

[23] G. M. Sheldrick, Acta Crystallogr. C2015, 71, 3.10.1107/S2053229614024218Suche in Google Scholar PubMed PubMed Central

[24] K. Brandenburg, H. Putz, Diamond – Crystal and Molecular Structure Visualization, Crystal Impact GbR, Bonn, 2019.Suche in Google Scholar

[25] STARe V14.00, Mettler-Toledo GmbH, Analytical, Schwerzenbach, Switzerland, n.d.Suche in Google Scholar

[26] I. Vasilief, QtiPlot, Bucuresti, Romania, 2017.Suche in Google Scholar

[27] OPUS V7.2, Bruker Optik GmbH, Ettlingen, Germany, 2012.Suche in Google Scholar

[28] AccuPyc II 1340 V1.09, Micromeritics Instrument Corp., 2013.Suche in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/zkri-2019-0068).


Received: 2019-12-09
Accepted: 2020-02-11
Published Online: 2020-02-29
Published in Print: 2020-09-25

©2020 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. In this issue
  3. Original papers
  4. Ulrich Müller zum 80. Geburtstag gewidmet
  5. Laboratory synthesis and characterization of Knasibfite K3Na4[SiF6]3[BF4] and the homologous Ge compound K3Na4[GeF6]3[BF4]
  6. The crystal structures of α-Rb7Sb3Br16, α- and β-Tl7Bi3Br16 and their relationship to close packings of spheres
  7. Beryllium triflates: synthesis and structure of BeL2(OTf)2 (L=H2O, THF, nBu2O)
  8. Synthesis and crystal structures of two layered Cu(I) and Ag(I) iodidometalates
  9. New mixed-valent alkali chain sulfido ferrates A1+x[FeS2] (A = K, Rb, Cs; x = 0.333–0.787)
  10. Structure solution of incommensurately modulated La6MnSb15
  11. Polymorphs of VO(PO3)2: synthesis and crystal structure refinement revisited
  12. On tungstates of divalent cations (III) – Pb5O2[WO6]
  13. Hydrogen order in hydrides of Laves phases
  14. High-pressure synthesis of SmGe3
  15. The complete series of sodium rare-earth metal(III) chloride oxotellurates(IV) Na2RE3Cl3[TeO3]4 (RE = Y, La–Nd, Sm–Lu)
  16. Structural diversity of salts of terpyridine derivatives with europium(III) located in both, cation and anion, in comparison to molecular complexes
  17. Elucidating structure–property relationships in imidazolium-based halide ionic liquids: crystal structures and thermal behavior
  18. Syntheses and crystal structures of the manganese hydroxide halides Mn5(OH)6Cl4, Mn5(OH)7I3, and Mn7(OH)10I4
  19. Site-preferential copper substitution for silicon leads to Cu-chains in the new ternary silicide Ir4−xCuSi2
  20. Syntheses and crystal structures of solvate complexes of alkaline earth and lanthanoid metal iodides with N,N-dimethylformamide
Heruntergeladen am 30.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/zkri-2019-0068/html?lang=de
Button zum nach oben scrollen