Abstract
The Na+ solid state electrolyte Na3PS4 is currently being investigated due to its high ionic conductivity and its synthesis-dependent crystal structure. Na3PS4 adopts a tetragonal low-temperature modification with space group P 4̅21c that transforms to a cubic high-temperature modification with space group I 4̅3m (Tl3VS4 type). These two modifications are related by a group-subgroup scheme. The symmetry reduction proceeds via a translationengleiche transition from I 4̅3m to I 4̅2m and subsequently via a klassengleiche transition to P 4̅21c. The tetragonal phase with space group I 4̅2m corresponds to the K2HgSnSe4 type. The group-subgroup scheme of this tetragonal branch of the Bärnighausen tree is discussed along with the crystal chemical consequences and results of diffraction experiments. The structure of K3SbSe4 (space group R 3c) belongs to the rhombohedral branch of the aristotype Tl3VS4.
References
[1] Y. Lu, L. Li, Q. Zhang, Z. Niu, J. Chen, Joule2018, 2, 1747.10.1016/j.joule.2018.07.028Suche in Google Scholar
[2] Z. Zhang, Y. Shao, B. Lotsch, Y.-S. Hu, H. Li, J. Janek, L. F. Nazar, C.-W. Nan, J. Maier, M. Armand, L. Chen, Energy Environ. Sci. 2018, 11, 1945.10.1039/C8EE01053FSuche in Google Scholar
[3] A. Hayashi, K. Noi, A. Sakuda, M. Tatsumisago, Nat. Commun. 2012, 3, 856.10.1038/ncomms1843Suche in Google Scholar
[4] Z. Yu, S.-L. Shang, J.-H. Seo, D. Wang, X. Luo, Q. Huang, S. Chen, J. Lu, X. Li, Z.-K. Liu, D. Wang, Adv. Mater. 2017, 29, 1605561.10.1002/adma.201605561Suche in Google Scholar
[5] N. J. J. de Klerk, M. Wagemaker, Chem. Mater. 2016, 28, 3122.10.1021/acs.chemmater.6b00698Suche in Google Scholar
[6] C. Yu, S. Ganapathy, N. J. J. de Klerk, E. R. H. van Eck, M. Wagemaker, J. Mater. Chem. A2016, 4, 15095.10.1039/C6TA05896ESuche in Google Scholar
[7] T. Krauskopf, S. P. Culver, W. G. Zeier, Inorg. Chem.2018, 57, 4739.10.1021/acs.inorgchem.8b00458Suche in Google Scholar
[8] L. Maier, J. R. Van Wazer, J. Am. Chem. Soc. 1962, 84, 3054.10.1021/ja00875a004Suche in Google Scholar
[9] M. J. F. Leroy, G. Kaufmann, A. Müller, H. W. Roesky, C. R. Acad. Sc. Paris, Sér. C1968, 267, 563.Suche in Google Scholar
[10] R. Blachnik, U. Rabe, Z. Anorg. Allg. Chem. 1980, 462, 199.10.1002/zaac.19804620122Suche in Google Scholar
[11] M. Jansen, U. Henseler, J. Solid State Chem. 1992, 99, 110.10.1016/0022-4596(92)90295-7Suche in Google Scholar
[12] T. Krauskopf, C. Pompe, M. Kraft, W. G. Zeier, Chem. Mater. 2017, 29, 8859.10.1021/acs.chemmater.7b03474Suche in Google Scholar
[13] M. Vlasse, L. Fournès, C. R. Acad. Sc. Paris, Sér. C1978, 287, 47.Suche in Google Scholar
[14] T. Hahn (Ed.), International Tables for Crystallography, Volume A, Space-Group Symmetry. Kluwer Academic Publishers, Dordrecht, 4. edition, 1996.Suche in Google Scholar
[15] H. Bärnighausen, Commun. Math. Chem. 1980, 9, 139.Suche in Google Scholar
[16] U. Müller, Z. Anorg. Allg. Chem. 2004, 630, 1519.10.1002/zaac.200400250Suche in Google Scholar
[17] U. Müller, Relating Crystal Structures by Group-Subgroup Relations, (Eds. H. Wondratschek and U. Müller), International Tables for Crystallography, Vol. A1, Symmetry Relations Between Space Groups, John Wiley & sons, Ltd., Chichester, 2. edition, pp. 44–56, 2010.10.1107/97809553602060000795Suche in Google Scholar
[18] U. Müller, Symmetriebeziehungen zwischen verwandten Kristallstrukturen, Vieweg+Teubner Verlag, Wiesbaden, 2012.10.1007/978-3-8348-8342-1Suche in Google Scholar
[19] B. Eisenmann, R. Zagler, Z. Naturforsch. 1989, 44b, 249.10.1515/znb-1989-0301Suche in Google Scholar
[20] M. K. Brandmayer, R. Clérac, F. Weigend, S. Dehnen, Chem. Eur. J. 2004, 10, 5147.10.1002/chem.200400521Suche in Google Scholar PubMed
[21] S.-I. Nishimura, N. Tanibata, A. Hayashi, M. Tatsumisago, A. Yamada, J. Mater. Chem. A2017, 5, 25025.10.1039/C7TA08391BSuche in Google Scholar
[22] S.-H. Bo, Y. Wang, J. C. Kim, W. D. Richards, G. Ceder, Chem. Mater. 2016, 28, 252.10.1021/acs.chemmater.5b04013Suche in Google Scholar
[23] S.-H. Bo, Y. Wang, G. Ceder, J. Mater. Chem. A2016, 4, 9044.10.1039/C6TA03027KSuche in Google Scholar
[24] H. A. Graf, H. Schäfer, Z. Anorg. Allg. Chem. 1976, 425, 67.10.1002/zaac.19764250109Suche in Google Scholar
[25] A. Banerjee, K. H. Park, J. W. Heo, Y. J. Nam, C. K. Moon, S. M. Oh, S.-T. Hong, Y. S. Jung, Angew. Chem. Int. Ed. 2016, 55, 9634.10.1002/anie.201604158Suche in Google Scholar
[26] C. Crevecoeur, Acta Crystallogr. 1964, 17, 757.10.1107/S0365110X64001864Suche in Google Scholar
[27] V. Schmidt, W. Rüdorff, Z. Naturforsch. 1973, 28b, 25.10.1515/znb-1973-1-208Suche in Google Scholar
[28] L. Fournès, M. Vlasse, Rev. Chim. Miner. 1978, 15, 542.Suche in Google Scholar
[29] Y. V. Voroshilov, Z. Z. Kish, E. E. Semrad, V. I. Tkachenko, Russ. J. Inorg. Chem. 1980, 25, 1441.Suche in Google Scholar
[30] K. Zitter, J. Schmand, R. Schöllhorn, Mater. Res. Bull. 1985, 20, 787.10.1016/0025-5408(85)90057-1Suche in Google Scholar
[31] G. I. Makovetskii, E. I. Kasinskii, Inorg. Mater. 1986, 22, 1575.Suche in Google Scholar
[32] H. Graf, H. Schäfer, A. Weiss, Z. Naturforsch. 1969, 24b, 1345.10.1515/znb-1969-1030Suche in Google Scholar
[33] A. Choudhury, L. A. Polyakova, S. Strobel, P. Dorhout, J. Solid State Chem. 2007, 180, 1381.10.1016/j.jssc.2007.02.002Suche in Google Scholar
[34] J. Li, H.-Y. Guo, D. M. Proserpio, A. Sironi, J. Solid State Chem. 1995, 117, 247.10.1006/jssc.1995.1270Suche in Google Scholar
[35] P. Villars, K. Cenzual, Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (release 2018/19), ASM International®, Materials Park, Ohio, USA, 2018.Suche in Google Scholar
[36] M. Yu. Mozolyuk, L. V. Piskach, A. O. Fedorchuk, I. D. Olekseyuk, O. V. Parasyuk, Mater. Res. Bull. 2012, 47, 3830.10.1016/j.materresbull.2012.03.056Suche in Google Scholar
[37] M. Yu. Mozolyuk, L. V. Piskach, A. O. Fedorchuk, I. D. Olekseyuk, O. V. Parasyuk, Chem. Met. Alloys2013, 6, 55.10.30970/cma6.0229Suche in Google Scholar
[38] M. A. McGuire, T. J. Scheidemantel, J. V. Badding, F. J. DiSalvo, Chem. Mater. 2005, 17, 6186.10.1021/cm0518067Suche in Google Scholar
[39] T. Famprikis, J. A. Dawson, F. Fauth, O. Clemens, E. Suard, B. Fleutot, M. Courty, J.-N. Chotard, M. S. Islam, C. Masquelier, ACS Mater. Lett. 2019, 1, 641.10.1021/acsmaterialslett.9b00322Suche in Google Scholar
[40] D. M. Wiench, M. Jansen, Z. Anorg. Allg. Chem. 1980, 461, 101.10.1002/zaac.19804610116Suche in Google Scholar
[41] E. Lissel, M. Jansen, E. Jansen, G. Will, Z. Kristallogr. 1990, 192, 233.10.1524/zkri.1990.192.3-4.233Suche in Google Scholar
©2020 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Graphical Synopsis
- Inorganic Crystal Structures
- The polymorphs of the Na+ ion conductor Na3PS4 viewed from the perspective of a group-subgroup scheme
- Twinned olivenite from Cap Garonne, Mine du Pradet – structure and magnetic behavior
- Crystal-structure of active layers of small molecule organic photovoltaics before and after solvent vapor annealing
- Group-subgroup schemes for MoNi4, Nb4N5, KxFe2−ySe2, Nd10Au3As8O10 and CsInCl3: i5 superstructures of I 4/m allowing atom, charge or vacancy ordering
- Centrosymmetric LaRh2Ga2
- Organic and Metalorganic Crystal Structures
- Fibril formation through self-assembly of a simple glycine derivative and X-ray diffraction study
Artikel in diesem Heft
- Frontmatter
- Graphical Synopsis
- Inorganic Crystal Structures
- The polymorphs of the Na+ ion conductor Na3PS4 viewed from the perspective of a group-subgroup scheme
- Twinned olivenite from Cap Garonne, Mine du Pradet – structure and magnetic behavior
- Crystal-structure of active layers of small molecule organic photovoltaics before and after solvent vapor annealing
- Group-subgroup schemes for MoNi4, Nb4N5, KxFe2−ySe2, Nd10Au3As8O10 and CsInCl3: i5 superstructures of I 4/m allowing atom, charge or vacancy ordering
- Centrosymmetric LaRh2Ga2
- Organic and Metalorganic Crystal Structures
- Fibril formation through self-assembly of a simple glycine derivative and X-ray diffraction study