Abstract
Polycrystalline samples of LaRh2Ga2 with the centrosymmetric CaBe2Ge2 type structure were obtained by arc-melting. Small single crystals were grown through a special annealing sequence in an induction furnace. The structures of two different crystals were refined from diffractometer data, confirming the centrosymmetric structure. The 2c Rh sites were refined with anharmonic atomic displacement parameters.
References
[1] K. R. Andress, E. Alberti, Z. Metallkd. 1935, 27, 126.Search in Google Scholar
[2] Z. Ban, M. Sikirica, Acta Crystallogr. 1965, 18, 594.10.1107/S0365110X6500141XSearch in Google Scholar
[3] G. Just, P. Paufler, J. Alloys Compd.1996, 232, 1.10.1016/0925-8388(95)01939-1Search in Google Scholar
[4] P. Villars, K. Cenzual, Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (release 2019/20), ASM International®, Materials Park, Ohio (USA) 2019.Search in Google Scholar
[5] B. Eisenmann, N. May, W. Müller, H. Schäfer, Z. Naturforsch. 1972, 27b, 1155.10.1515/znb-1972-1008Search in Google Scholar
[6] E. Parthé, L. Gelato, B. Chabot, M. Penzo, K. Cenzual, R. Gladyshevskii, TYPIX–Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types, Gmelin Handbook of Inorganic and Organometallic Chemistry. Springer, Berlin (Germany), 8th edition, 1993.10.1007/978-3-662-10641-9Search in Google Scholar
[7] D. Kußmann, R. Pöttgen, U. Ch. Rodewald, C. Rosenhahn, B. D. Mosel, G. Kotzyba, B. Künnen, Z. Naturforsch. 1999, 54b, 1155.10.1515/znb-1999-0911Search in Google Scholar
[8] A. Szytuła, J. Leciejewicz, Handbook of Crystal Structures and Magnetic Properties of Rare Earth Intermetallics. CRC Press, Boca Raton, USA, 1994.Search in Google Scholar
[9] M. Hirjak, P. Lejay, B. Chevalier, J. Etourneau, P. Hagenmuller, J. Less-Common Met. 1985, 105, 139.10.1016/0022-5088(85)90132-8Search in Google Scholar
[10] T. T. M. Palstra, G. Lu, A. A. Menovsky, G. J. Nieuwenhuys, P. H. Kes, J. A. Mydosh, Phys. Rev. B1986, 34, 4566.10.1103/PhysRevB.34.4566Search in Google Scholar
[11] W. Jeitschko, R. Glaum, L. Boonk, J. Solid State Chem. 1987, 69, 93.10.1016/0022-4596(87)90014-4Search in Google Scholar
[12] M. V. Sadovskii, Phys. Usp.2008, 51, 1201.10.1070/PU2008v051n12ABEH006820Search in Google Scholar
[13] A. L. Ivanovski, Phys. Usp.2008, 51, 1229.10.1070/PU2008v051n12ABEH006703Search in Google Scholar
[14] Yu. A. Izyumov, E. Z. Kurmaev, Phys. Usp.2008, 51, 11261.10.1070/PU2008v051n12ABEH006733Search in Google Scholar
[15] D. C. Johnston, Adv. Phys. 2010, 59, 803.10.1080/00018732.2010.513480Search in Google Scholar
[16] D. Johrendt, H. Hosono, R.-D. Hoffmann, R. Pöttgen, Z. Kristallogr. 2011, 226, 435.10.1524/zkri.2011.1363Search in Google Scholar
[17] M. Rotter, M. Tegel, D. Johrendt, Phys. Rev. Lett. 2008, 101, 107006.10.1103/PhysRevLett.101.107006Search in Google Scholar
[18] M. Rotter, M. Pangerl, M. Tegel, D. Johrendt, Angew. Chem. 2008, 120, 8067.10.1002/ange.200803641Search in Google Scholar
[19] E. Bauer, M. Sigrist (Eds.), Non-Centrosymmetric Superconductors, Springer, Berlin, 2012. DOI: 10.1007/978-3-642-24624–1.10.1007/978-3-642-24624–1Search in Google Scholar
[20] S. Yip, Ann. Rev. Cond. Matter Phys. 2014, 5, 15.10.1146/annurev-conmatphys-031113-133912Search in Google Scholar
[21] R. Pöttgen, Z. Anorg. Allg. Chem. 2014, 640, 869.10.1002/zaac.201400023Search in Google Scholar
[22] W. Dörrscheidt, H. Schäfer, J. Less-Common Met. 1978, 58, 209.10.1016/0022-5088(78)90202-3Search in Google Scholar
[23] P. Haen, P. Lejay, B. Chevalier, B. Lloret, J. Etourneau, M. Sera, J. Less-Common Met. 1985, 110, 321.10.1016/0022-5088(85)90339-XSearch in Google Scholar
[24] N. Kimura, K. Ito, K. Saitoh, Y. Umeda, H. Aoki, T. Terashima, Phys. Rev. Lett. 2005, 95, 247004.10.1103/PhysRevLett.95.247004Search in Google Scholar PubMed
[25] N. Kimura, Y. Muro, H. Aoki, J. Phys. Soc. Jpn. 2007, 76, 051010.10.1143/JPSJ.76.051010Search in Google Scholar
[26] J. F. Landaeta, D. Subero, D. Catalá, S. V. Taylor, N. Kimura, R. Settai, Y. Ōnuki, M. Sigrist, I. Bonalde, Phys. Rev. B2018, 97, 104513.10.1103/PhysRevB.97.104513Search in Google Scholar
[27] M. Feig, M. Nicklas, M. Bobnar, W. Schnelle, U. Schwarz, A. Leithe-Jasper, C. Hennig, R. Gumeniuk, Phys. Rev. B2018, 98, 184516.10.1103/PhysRevB.98.184516Search in Google Scholar
[28] Y. Nakayama, T. Muranaka, Inorg. Chem. 2019, 58, 12733.10.1021/acs.inorgchem.9b01342Search in Google Scholar PubMed
[29] R. Pöttgen, Th. Gulden, A. Simon, GIT Labor-Fachzeitschrift1999, 43, 133.Search in Google Scholar
[30] D. Niepmann, Yu. M. Prots’, R. Pöttgen, W. Jeitschko, J. Solid State Chem. 2000, 154, 329.10.1006/jssc.2000.8789Search in Google Scholar
[31] https://www.gardnerweb.com/articles/heat-treat-colors-for-steel; 07.11.2019.Search in Google Scholar
[32] S. Seidel, R. Pöttgen, Z. Kristallogr., submitted for publication.Search in Google Scholar
[33] K. Yvon, W. Jeitschko, E. Parthé, J. Appl. Crystallogr. 1977, 10, 73.10.1107/S0021889877012898Search in Google Scholar
[34] L. Palatinus, G. Chapuis, J. Appl. Crystallogr.2007, 40, 78610.1107/S0021889807029238Search in Google Scholar
[35] V. Petříček, M. Dušek, L. Palatinus, Z. Kristallogr.2014, 229, 345.10.1515/zkri-2014-1737Search in Google Scholar
[36] U. H. Zucker, H. Schulz, Acta Crystallogr.1982, A38, 563.10.1107/S0567739482001211Search in Google Scholar
[37] J. Emsley, The Elements, Oxford University Press, Oxford, 1999.Search in Google Scholar
[38] S. Seidel, U. Ch. Rodewald, O. Janka, R. Pöttgen, Z. Kristallogr. 2017, 232, 365.10.1515/zkri-2016-2017Search in Google Scholar
[39] J. Donohue, The Structures of the Elements, Wiley, New York (USA) 1974.Search in Google Scholar
[40] D. Johrendt, C. Felser, O. Jepsen, O. K. Andersen, A. Mewis, J. Rouxel, J. Solid State Chem. 1997, 130, 254.10.1006/jssc.1997.7300Search in Google Scholar
[41] S. Seidel, R.-D. Hoffmann, R. Pöttgen, Z. Kristallogr. 2014, 229, 421.10.1515/zkri-2014-1742Search in Google Scholar
[42] S. Seidel, O. Niehaus, S. F. Matar, O. Janka, B. Gerke, U. Ch. Rodewald, R. Pöttgen, Z. Naturforsch. 2014, 69b, 1105.10.5560/znb.2014-4119Search in Google Scholar
[43] V. K. Anand, D. T. Adroja, A. Bhattacharyya, B. Klemke, B. Lake, J. Phys.: Condens. Matter2017, 29, 135601.10.1088/1361-648X/aa5b5dSearch in Google Scholar PubMed
[44] S. Nesterenko, V. Avzuragova, A. Tursina, D. Kaczorowski, J. Alloys Compd. 2017, 717, 136.10.1016/j.jallcom.2017.05.095Search in Google Scholar
©2020 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Graphical Synopsis
- Inorganic Crystal Structures
- The polymorphs of the Na+ ion conductor Na3PS4 viewed from the perspective of a group-subgroup scheme
- Twinned olivenite from Cap Garonne, Mine du Pradet – structure and magnetic behavior
- Crystal-structure of active layers of small molecule organic photovoltaics before and after solvent vapor annealing
- Group-subgroup schemes for MoNi4, Nb4N5, KxFe2−ySe2, Nd10Au3As8O10 and CsInCl3: i5 superstructures of I 4/m allowing atom, charge or vacancy ordering
- Centrosymmetric LaRh2Ga2
- Organic and Metalorganic Crystal Structures
- Fibril formation through self-assembly of a simple glycine derivative and X-ray diffraction study
Articles in the same Issue
- Frontmatter
- Graphical Synopsis
- Inorganic Crystal Structures
- The polymorphs of the Na+ ion conductor Na3PS4 viewed from the perspective of a group-subgroup scheme
- Twinned olivenite from Cap Garonne, Mine du Pradet – structure and magnetic behavior
- Crystal-structure of active layers of small molecule organic photovoltaics before and after solvent vapor annealing
- Group-subgroup schemes for MoNi4, Nb4N5, KxFe2−ySe2, Nd10Au3As8O10 and CsInCl3: i5 superstructures of I 4/m allowing atom, charge or vacancy ordering
- Centrosymmetric LaRh2Ga2
- Organic and Metalorganic Crystal Structures
- Fibril formation through self-assembly of a simple glycine derivative and X-ray diffraction study