Abstract
Isomorphic symmetry reductions are a special class of klassengleiche symmetry reductions where the subgroup has the same space group type. The present contribution highlights five different isomorphic transitions of index 5 (i5), all from I 4/m to I 4/m. These superstructure formations allow (i) atom ordering in MoNi4, (ii) vacancy ordering in Nb4N5, KxFe2−ySe2 and Nd10Au3As8O10 and (iii) charge ordering in CsInCl3 (≡Cs2InIInIIICl6). The group-subgroup schemes in the Bärnighausen formalism are discussed along with the crystal chemical consequences.
Acknowledgements
We thank PD Dr. O. Janka for discussion and critical reading of the manuscript.
References
[1] D. M. Adams, Inorganic Solids. J. Wiley & Sons, London-NewYork-Sydney-Toronto, 1974.Search in Google Scholar
[2] A. R. West, Solid State Chemistry and its Applications. J. Wiley & Sons, Chichester-NewYork-Brisbane-Toronto-Singapore, 1990.Search in Google Scholar
[3] U. Müller, Anorganische Strukturchemie. Vieweg + Teubner, 6. Aufl. Wiesbaden, 2008.Search in Google Scholar
[4] U. Müller, Inorganic Structural Chemistry. J. Wiley & Sons, Chichester-NewYork-Brisbane-Toronto-Singapore, 2. edition, 2006.Search in Google Scholar
[5] U. Müller, Symmetriebeziehungen zwischen verwandten Kristallstrukturen. Vieweg + Teubner Verlag, Wiesbaden, 2012.10.1007/978-3-8348-8342-1Search in Google Scholar
[6] P. Villars, K. Cenzual, Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (release 2019/20). ASM International®, Materials Park, Ohio, USA, 2019.Search in Google Scholar
[7] G. J. Miller, Eur. J. Inorg. Chem. 1998, 523.10.1002/(SICI)1099-0682(199805)1998:5<523::AID-EJIC523>3.0.CO;2-LSearch in Google Scholar
[8] M.-K. Han, G. J. Miller, Inorg. Chem. 2008, 47, 515.10.1021/ic701311bSearch in Google Scholar
[9] M. J. Buerger, J. Chem. Phys.1947, 15, 1.10.1063/1.1746278Search in Google Scholar
[10] H. Bärnighausen, Commun. Math. Chem. 1980, 9, 139.Search in Google Scholar
[11] U. Müller, Z. Anorg. Allg. Chem. 2004, 630, 1519.10.1002/zaac.200400250Search in Google Scholar
[12] U. Müller, Relating crystal structures by group-subgroup relations. In International Tables for Crystallography, (Eds. H. Wondratschek and U. Müller), Vol. A1, Symmetry relations between space groups, John Wiley & Sons, Ltd., Chichester, 2. edition, pp. 44–56, 2010.10.1107/97809553602060000795Search in Google Scholar
[13] O. Bock, U. Müller, Acta Crystallogr. 2002, B58, 594.10.1107/S0108768102001490Search in Google Scholar
[14] R.-D. Hoffmann, R. Pöttgen, Z. Kristallogr. 2001, 216, 127.10.1524/zkri.216.3.127.20327Search in Google Scholar
[15] R. Pöttgen, Z. Anorg. Allg. Chem. 2014, 640, 869.10.1002/zaac.201400023Search in Google Scholar
[16] W. H. Baur, Z. Kristallogr. 1994, 209, 143.10.1524/zkri.1994.209.2.143Search in Google Scholar
[17] W. H. Baur, Crystallogr. Rev. 2007, 13, 65.10.1080/08893110701433435Search in Google Scholar
[18] D. Kußmann, R. Pöttgen, U. Ch. Rodewald, C. Rosenhahn, B. D. Mosel, G. Kotzyba, B. Künnen, Z. Naturforsch. 1999, 54b, 1155.10.1515/znb-1999-0911Search in Google Scholar
[19] D. Johrendt, H. Hosono, R.-D. Hoffmann, R. Pöttgen, Z. Kristallogr. 2011, 226, 435.10.1524/zkri.2011.1363Search in Google Scholar
[20] T. Hahn (Ed.), International Tables for Crystallography, Vol. A, Space-Group Symmetry, Kluwer Academic Publishers, Dordrecht, 4. edition, 1996.Search in Google Scholar
[21] V. M. Goldschmidt, Skrift. Norske Vid.-Akad, Matem. Naturvid. Kl., No. 11926, 17.Search in Google Scholar
[22] Y. Billiet, Bull. Soc. Fr. Minér. Cristallogr. 1973, 96, 327.10.3406/bulmi.1973.6843Search in Google Scholar
[23] I. Schellenberg, R.-D. Hoffmann, S. Seidel, C. Schwickert, R. Pöttgen, Z. Naturforsch. 2011, 66b, 985.10.5560/ZNB.2011.66b1179Search in Google Scholar
[24] D. Harker, J. Chem. Phys. 1944, 12, 315.10.1063/1.1723945Search in Google Scholar
[25] N. Terao, J. Less-Common Met. 1971, 23, 159.10.1016/0022-5088(71)90076-2Search in Google Scholar
[26] R. Marchand, F. Tessier, F. J. DiSalvo, J. Mater Chem. 1999, 9, 297.10.1039/a805315dSearch in Google Scholar
[27] T. Bartsch, O. Niehaus, D. Johrendt, Y. Kobayashi, M. Seto, P. M. Abdala, M. Bartsch, H. Zacharias, R.-D. Hoffmann, B. Gerke, U. Ch. Rodewald, R. Pöttgen, Dalton Trans. 2015, 44, 5854.10.1039/C5DT00193ESearch in Google Scholar PubMed
[28] P. Zavalij, W. Bao, X. F. Wang, J. J. Ying, X. H. Chen, D. M. Wang, J. B. He, X. Q. Wang, G. F. Chen, P.-Y. Hsieh, Q. Huang, M. A. Green, Phys. Rev. B2011, 83, 132509.10.1103/PhysRevB.83.132509Search in Google Scholar
[29] D. P. Shoemaker, D. Y. Chung, H. Claus, M. C. Francisco, S. Avci, A. Llobet, M. G. Kanatzidis, Phys. Rev. B2012, 86, 184511.10.1103/PhysRevB.86.184511Search in Google Scholar
[30] Y. Song, H. Cao, B. C. Chakoumakos, Y. Zhao, A. Wang, H. Lei, C. Petrovic, R. J. Birgenau, Phys. Rev. Lett. 2019, 122, 087201.10.1103/PhysRevLett.122.087201Search in Google Scholar PubMed
[31] K. M. McCall, D. Friedrich, D. G. Chica, W. Cai, C. C. Stoumpos, G. C. B. Alexander, S. Deemyad, B. W. Wessels, M. G. Kanatzidis, Chem. Mater. 2019, 31, 9554.10.1021/acs.chemmater.9b04095Search in Google Scholar
[32] U. Häussermann, S. I. Simak, R. Ahuja, B. Johansson, S. Lidin, Angew. Chem. Int. Ed. 1999, 38, 2017.10.1002/(SICI)1521-3773(19990712)38:13/14<2017::AID-ANIE2017>3.0.CO;2-OSearch in Google Scholar
[33] H. Wondratschek, W. Jeitschko, Acta Crystallogr. A1976, 32, 664.10.1107/S056773947600137XSearch in Google Scholar
[34] E. Ruedl, P. Delavignette, S. Amelinckx, Phys. Stat. Sol. b1968, 28, 305.10.1002/pssb.19680280132Search in Google Scholar
[35] G. van Tendeloo, S. Amelinckx, Acta Crystallogr. A1974, 30, 431.10.1107/S0567739474000933Search in Google Scholar
[36] K. Schubert, H. G. Meissner, M. Pötzschke, W. Rossteutscher, E. Stolz, Naturwissenschaften1962, 49, 57.10.1007/BF00595382Search in Google Scholar
[37] M. Pötzschke, K. Schubert, Z. Metallkd. 1962, 53, 474.Search in Google Scholar
[38] R. K. Behrens, W. Jeitschko, Monatsh. Chem. 1987, 118, 43.10.1007/BF00810039Search in Google Scholar
[39] R. K. Behrens, W. Jeitschko, J. Less-Common Met. 1990, 160, 185.10.1016/0022-5088(90)90121-YSearch in Google Scholar
[40] W. Jeitschko, R. Pöttgen, R.-D. Hoffmann, Structural chemistry of hard materials. In Ceramic Hard Materials, (Ed. R. Riedel), Wiley-VCH, Weinheim, pp. 3–40, 2000.10.1002/9783527618217.ch1Search in Google Scholar
[41] R. Hoppe, E. Seipp, R. Baier, J. Solid State Chem. 1988, 72, 52.10.1016/0022-4596(88)90008-4Search in Google Scholar
[42] O. Reckeweg, J. C. Molstad, F. J. DiSalvo, J. Alloys Compd. 2001, 315, 134.10.1016/S0925-8388(00)01413-4Search in Google Scholar
[43] E. Hilti, Naturwissenschaften1968, 55, 130.10.1007/BF00624245Search in Google Scholar
[44] D. Watanabe, O. Terasaki, A. Jostsons, J. R. Castles, J. Phys. Soc. Jpn. 1968, 25, 292.10.1143/JPSJ.25.292Search in Google Scholar
[45] K. Becker, F. Ebert, Z. Phys. 1925, 31, 268.10.1007/BF02980580Search in Google Scholar
[46] G. Brauer, H. Kirner, Z. Anorg. Allg. Chem. 1964, 328, 34.10.1002/zaac.19643280105Search in Google Scholar
[47] N. C. Tombs, H. P. Rooksby, Nature1950, 165, 442.10.1038/165442b0Search in Google Scholar
[48] J. C. Gilles, C. R. Séances Acad. Sci., Ser. C1968, 266, 546.Search in Google Scholar
[49] A. Fontbonne, J. C. Gilles, Rev. Int. Hautes Tempér. Réfract. 1969, 6, 181.Search in Google Scholar
[50] J. Grins, P.-O. Käll, G. Svensson, J. Mater. Chem. 1994, 4, 1293.10.1039/JM9940401293Search in Google Scholar
[51] A. Tyutyunnik, J. Grins, G. Svensson, Mater. Res. Bull. 1998, 33, 1035.10.1016/S0025-5408(98)00070-1Search in Google Scholar
[52] Z. Bhan, M. Sikirica, Acta Crystallogr. 1965, 18, 594.10.1107/S0365110X6500141XSearch in Google Scholar
[53] K. R. Andress, E. Alberti, Z. Metallkd. 1935, 27, 126.Search in Google Scholar
[54] D. C. Johnston, Adv. Phys. 2010, 59, 803.10.1080/00018732.2010.513480Search in Google Scholar
[55] H. Hosono, A. Yamamoto, H. Hiramatsu, Y. Ma, Mater. Today2018, 21, 278.10.1016/j.mattod.2017.09.006Search in Google Scholar
[56] J. Guo, S. Jin, G. Wang, S. Wang, K. Zhu, T. Zhou, M. He, X. Chen, Phys. Rev. B2010, 82, 180520.10.1103/PhysRevB.82.180520Search in Google Scholar
[57] M. Rotter, M. Tegel, D. Johrendt, I. Schellenberg, W. Hermes, R. Pöttgen, Phys. Rev. B2008, 78, 020503.10.1103/PhysRevB.78.020503Search in Google Scholar
[58] H. Cao, C. Cantoni, A. F. May, M. A. McGuire, B. C. Chakoumakos, S. J. Pennycook, R. Custelcean, A. S. Sefat, B. C. Sales, Phys. Rev. B2012, 85, 054515.10.1103/PhysRevB.85.054515Search in Google Scholar
[59] E. Biehl, H. J. Deiseroth, Z. Anorg. Allg. Chem. 1999, 625, 389.10.1002/(SICI)1521-3749(199903)625:3<389::AID-ZAAC389>3.0.CO;2-9Search in Google Scholar
[60] E. Todorov, S. C. Sevov, J. Solid State Chem. 2000, 149, 419.10.1006/jssc.1999.8569Search in Google Scholar
[61] Y. V. Verbovytskyy, A. P. Goncalves, Solid State Phneom. 2012, 194, 5.10.4028/www.scientific.net/SSP.194.5Search in Google Scholar
[62] R. V. Gumeniuk, L. G. Akselrud, Yu. B. Kuz’ma, Z. Naturforsch. 2005, 60b, 929.10.1515/znb-2005-0903Search in Google Scholar
[63] C. Löhnert, T. Stürzer, M. Tegel, R. Frankowsky, G. Friedrichs, D. Johrendt, Angew. Chem. Int. Ed. 2011, 50, 9195.10.1002/anie.201104436Search in Google Scholar
[64] C. Hieke, J. Lippmann, L. Wehner, T. Stürzer, G. Friederichs, F. Nitsche, F. Winter, R. Pöttgen, D. Johrendt, Phil. Mag. 2013, 93, 3680.10.1080/14786435.2013.816450Search in Google Scholar
[65] E. G. Steward, H. P. Rooksby, Acta Crystallogr. 1951, 4, 503.10.1107/S0365110X51001719Search in Google Scholar
[66] N. Elliott, L. Pauling, J. Am. Chem. Soc. 1938, 60, 1846.10.1021/ja01275a037Search in Google Scholar
[67] D. Reinen, H. Weitzel, Z. Anorg. Allg. Chem. 1976, 424, 31.10.1002/zaac.19764240107Search in Google Scholar
[68] G. Blasse, J. Inorg. Nucl. Chem. 1965, 27, 993.10.1016/0022-1902(65)80409-2Search in Google Scholar
[69] M. F. Kupriyanov, E. G. Fesenko, Sov. Phys. Crystallogr. 1962, 7, 358.Search in Google Scholar
[70] X. Tan, P. W. Stephens, M. Hendrickx, J. Hadermann, C. U. Segre, M. Croft, C.-J. Kang, Z. Deng, S. H. Lapidus, S. W. Kim, C. Jin, G. Kotliar, M. Greenblatt, Chem. Mater. 2019, 31, 1981.10.1021/acs.chemmater.8b04771Search in Google Scholar
[71] M. Retuerto, T. Emge, J. Hadermann, P. W. Stephens, M. R. Li, Z. P. Yin, M. Croft, A. Ignatov, S. J. Zhang, Z. Yuan, C. Jin, J. W. Simonson, M. C. Aronson, A. Pan, D. N. Basov, G. Kotliar, M. Greenblatt, Chem. Mater. 2013, 25, 4071.10.1021/cm402423xSearch in Google Scholar
[72] G. Siebert, R. Hoppe, Z. Anorg. Allg. Chem. 1972, 391, 117.10.1002/zaac.19723910205Search in Google Scholar
[73] A. Tressaud, S. Khaïroun, J. P. Chaminade, M. Couzi, Phys. Stat. Sol. A1986, 98, 417.10.1002/pssa.2210980212Search in Google Scholar
[74] M. Couzi, S. Khaïroun, A. Tressaud, Phys. Stat. Sol. A1986, 98, 423.10.1002/pssa.2210980213Search in Google Scholar
[75] F. J. Zúñiga, A. Tressaud, J. Darriet, J. Solid State Chem. 2006, 179, 3607.10.1016/j.jssc.2006.07.032Search in Google Scholar
[76] I. Hernández, F. Rodríguez, A. Tressaud, Inorg. Chem. 2008, 47, 10288.10.1021/ic800606hSearch in Google Scholar PubMed
[77] G. King, A. M. Abakumov, P. M. Woodward, A. Llobet, A. A. Tsirlin, D. Batuk, E. V. Antipov, Inorg. Chem. 2011, 50, 7792.10.1021/ic200956aSearch in Google Scholar PubMed
©2020 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Graphical Synopsis
- Inorganic Crystal Structures
- The polymorphs of the Na+ ion conductor Na3PS4 viewed from the perspective of a group-subgroup scheme
- Twinned olivenite from Cap Garonne, Mine du Pradet – structure and magnetic behavior
- Crystal-structure of active layers of small molecule organic photovoltaics before and after solvent vapor annealing
- Group-subgroup schemes for MoNi4, Nb4N5, KxFe2−ySe2, Nd10Au3As8O10 and CsInCl3: i5 superstructures of I 4/m allowing atom, charge or vacancy ordering
- Centrosymmetric LaRh2Ga2
- Organic and Metalorganic Crystal Structures
- Fibril formation through self-assembly of a simple glycine derivative and X-ray diffraction study
Articles in the same Issue
- Frontmatter
- Graphical Synopsis
- Inorganic Crystal Structures
- The polymorphs of the Na+ ion conductor Na3PS4 viewed from the perspective of a group-subgroup scheme
- Twinned olivenite from Cap Garonne, Mine du Pradet – structure and magnetic behavior
- Crystal-structure of active layers of small molecule organic photovoltaics before and after solvent vapor annealing
- Group-subgroup schemes for MoNi4, Nb4N5, KxFe2−ySe2, Nd10Au3As8O10 and CsInCl3: i5 superstructures of I 4/m allowing atom, charge or vacancy ordering
- Centrosymmetric LaRh2Ga2
- Organic and Metalorganic Crystal Structures
- Fibril formation through self-assembly of a simple glycine derivative and X-ray diffraction study