Crystal-structure of active layers of small molecule organic photovoltaics before and after solvent vapor annealing
-
Marvin Berlinghof
Abstract
It is demonstrated by a detailed structural analysis that the crystallinity and the efficiency of small molecule based organic photovoltaics can be tuned by solvent vapor annealing (SVA). Blends made of the small molecule donor 2,2′-[(3,3′″,3″″,4′-tetraoctyl[2,2′:5′,2″:5″,2′″:5′″,2″″-quinquethiophene]-5,5″″-diyl)bis[(Z)-methylidyne(3-ethyl-4-oxo-5,2-thiazolidinediylidene)]]bis-propanedinitrile (DRCN5T) and the acceptor [6,6]-phenyl C71 butyric acid methyl ester (PC71BM) were annealed using solvent vapors with either a high solubility for the donor (tetrahydrofuran), the acceptor (carbon disulfide) or both (chloroform). The samples were analyzed by grazing-incidence wide-angle X-ray scattering (GIWAXS), electron diffraction, X-ray pole figures, and time-of-flight secondary ion mass spectrometry (ToF-SIMS). A phase separation of DRCN5T and PC71BM is induced by SVA leading to a crystallization of DRCN5T and the formation of a DRCN5T enriched layer. The DRCN5T crystallites possess the two dimensional oblique crystal system with the lattice parameters a = 19.2 Å, c = 27.1 Å, and β = 111.1° for the chloroform case. No major differences in the crystal structure for the other solvent vapors were observed. However, the solvent choice strongly influences the size of the DRCN5T enriched layer. Missing periodicity in the [010]-direction leads to the extinction of all Bragg reflections with k ≠ 0. The annealed samples are randomly orientated with respect to the normal of the substrate (fiber texture).
Acknowledgements
The authors gratefully acknowledge the funding of the Deutsche Forschungsgemeinschaft (DFG) through the “Cluster of Excellence Engineering of Advanced Materials (EAM)”. M.B., C.H., J.W., A.P., T.S., S.R., E.S. and T.U. thank the research training group GRK 1896 “In-Situ Microscopy with Electrons, X-rays, and Scanning Probes” for funding. M.B., J.W., A.P., T.S., and T.U thankfully acknowledge the funding by the research unit FOR 1878 “Functional Molecular Structures on Complex Oxide Surfaces”, the German Federal Ministry of Education and Research (BMBF, project numbers: 05K16WEB, 05K16WE1), and the DFG (INST 90/825-1 FUGG, INST 90/751-1 FUGG, INST 90/827-1 FUGG). S.L., C.H., S.R., E.S., and C.J.B. gratefully thank for financial support provided by the Deutsche Forschungsgemeinschaft (DFG) in the framework of SFB 953 “Synthetic Carbon Allotropes” (project number 182849149). C.J.B. gratefully acknowledge “Solar Energy goes Hybrid” Initiative (SolTech) and the “Solar Factory of the Future” as part of the Energy Campus Nürnberg (EnCN), which is supported by the Bavarian State Government (FKZ 20.2-3410.5-4-5). E.M.S. and would like to thank the Bavarian Equal Opportunities Sponsorship – Förderung von Frauen in Forschung und Lehre (FFL) – promoting equal opportunities for women in research and teaching for funding. R.S. and G.S.D. thank the “High-Performance Center Connected Secure Systems, Munich” for its support. The authors thank Christian Bär, Herbert Lang, and Jürgen Grasser from the workshop of the Institute for Crystallography and Structural Physics (ICSP) at FAU for the construction of the in situ sample cell. We also thank Wolfgang Gruber and Johannes Dallmann (both: ICSP, FAU) for the fruitful discussions about the details of this article. We acknowledge DESY (Hamburg, Germany), a member of the Helmholtz Association HGF, for the provision of experimental facilities. Parts of this research were carried out at PETRA III and we would like to thank Milena Lippmann, Brit Heilmann, and René Kirchhof for assistance in using the P08 beamline and the chemical laboratory of the Deutsches Elektronen-Synchrotron (DESY).
References
[1] K. Sun, Z. Xiao, E. Hanssen, M. F. G. Klein, H. H. Dam, M. Pfaff, D. Gerthsen, W. W. H. Wong, D. J. Jones, The role of solvent vapor annealing in highly efficient air-processed small molecule solar cells. J. Mater. Chem. A2014, 2, 9048.10.1039/c4ta01125bSearch in Google Scholar
[2] W. Wang, S. Pröller, M. A. Niedermeier, V. Körstgens, M. Philipp, B. Su, D. Moseguí González, S. Yu, S. V. Roth, P. Müller-Buschbaum, Development of the morphology during functional stack build-up of P3HT:PCBM bulk heterojunction solar cells with inverted geometry. ACS Appl. Mater. Interfaces2015, 7, 602.10.1021/am5067749Search in Google Scholar PubMed
[3] L. Li, G. Lu, X. Yang, Improving performance of polymer photovoltaic devices using an annealing-free approach via construction of ordered aggregates in solution. J. Mater. Chem.2008, 18, 1984.10.1039/b719945gSearch in Google Scholar
[4] J. Min, N. S. Güldal, J. Guo, C. Fang, X. Jiao, H. Hu, T. Heumüller, H. Ade, C. J. Brabec, Gaining further insight into the effects of thermal annealing and solvent vapor annealing on time morphological development and degradation in small molecule solar cells. J. Mater. Chem. A2017, 5, 18101.10.1039/C7TA04769JSearch in Google Scholar
[5] T. Kassar, N. S. Güldal, M. Berlinghof, T. Ameri, A. Kratzer, B. C. Schroeder, G. Li Destri, A. Hirsch, M. Heeney, I. McCulloch, C. J. Brabec, T. Unruh, Real-time investigation of intercalation and structure evolution in printed polymer: fullerene bulk heterojunction thin films. Adv. Energy Mater.2016, 6, 1502025.10.1002/aenm.201502025Search in Google Scholar
[6] N. S. Güldal, M. Berlinghof, T. Kassar, X. Du, X. Jiao, M. Meyer, T. Ameri, A. Osvet, N. Li, G. Li Destri, R. H. Fink, H. Ade, T. Unruh, C. J. Brabec, Controlling additive behavior to reveal an alternative morphology formation mechanism in polymer: fullerene bulk-heterojunctions. J. Mater. Chem. A2016, 4, 16136.10.1039/C6TA07023JSearch in Google Scholar
[7] J. Rivnay, S. C. B. Mannsfeld, C. E. Miller, A. Salleo, M. F. Toney, Quantitative determination of organic semiconductor microstructure from the molecular to device scale. Chem. Rev.2012, 112, 5488.10.1021/cr3001109Search in Google Scholar PubMed
[8] J. A. Bartelt, Z. M. Beiley, E. T. Hoke, W. R. Mateker, J. D. Douglas, B. A. Collins, J. R. Tumbleston, K. R. Graham, A. Amassian, H. Ade, J. M. J. Fréchet, M. F. Toney, M. D. McGehee, The importance of fullerene percolation in the mixed regions of polymer–fullerene bulk heterojunction solar cells. Adv. Energy Mater.2013, 3, 364.10.1002/aenm.201200637Search in Google Scholar
[9] J. Min, X. Jiao, I. Ata, A. Osvet, T. Ameri, P. Bäuerle, H. Ade, C. J. Brabec, Time-dependent morphology evolution of solution-processed small molecule solar cells during solvent vapor annealing. Adv. Energy Mater.2016, 6, 1502579.10.1002/aenm.201502579Search in Google Scholar
[10] J. Min, X. Jiao, V. Sgobba, B. Kan, T. Heumüller, S. Rechberger, E. Spiecker, D. M. Guldi, X. Wan, Y. Chen, H. Ade, C. J. Brabec, High efficiency and stability small molecule solar cells developed by bulk microstructure fine-tuning. Nano Energy2016, 28, 241.10.1016/j.nanoen.2016.08.047Search in Google Scholar
[11] L. Song, W. Wang, E. Barabino, D. Yang, V. Körstgens, P. Zhang, S. V. Roth, P. Müller-Buschbaum, Composition–morphology correlation in PTB7-Th/PC71BM blend films for organic solar cells. ACS Appl. Mater. Interfaces2018, 11, 3125.10.1021/acsami.8b20316Search in Google Scholar PubMed
[12] N. S. Güldal, T. Kassar, M. Berlinghof, T. Unruh, C. J. Brabec, In situ characterization methods for evaluating microstructure formation and drying kinetics of solution-processed organic bulk-heterojunction films. J. Mater. Res.2017, 32, 1855.10.1557/jmr.2017.190Search in Google Scholar
[13] J. Fang, D. Deng, Z. Wang, M. A. Adil, T. Xiao, Y. Wang, G. Lu, Y. Zhang, J. Zhang, W. Ma, Z. Wei, Critical role of vertical phase separation in small-molecule organic solar cells. ACS Appl. Mater. Interfaces2018, 10, 12913.10.1021/acsami.8b00886Search in Google Scholar PubMed
[14] M. T. Lloyd, A. C. Mayer, S. Subramanian, D. A. Mourey, D. J. Herman, A. V. Bapat, J. E. Anthony, G. G. Malliaras, Efficient solution-processed photovoltaic cells based on an anthradithiophene/fullerene blend. J. Am. Chem. Soc.2007, 129, 9144.10.1021/ja072147xSearch in Google Scholar PubMed
[15] B. A. Gregg, Evolution of photophysical and photovoltaic properties of perylene bis(phenethylimide) films upon solvent vapor annealing. J. Phys. Chem.1996, 100, 852.10.1021/jp952557kSearch in Google Scholar
[16] W. Deng, K. Gao, J. Yan, Q. Liang, Y. Xie, Z. He, H. Wu, X. Peng, Y. Cao, Origin of reduced open-circuit voltage in highly efficient small-molecule-based solar cells upon solvent vapor annealing. ACS Appl. Mater. Interfaces2018, 10, 8141.10.1021/acsami.7b17546Search in Google Scholar PubMed
[17] V. S. Gevaerts, E. M. Herzig, M. Kirkus, K. H. Hendriks, M. M. Wienk, J. Perlich, P. Müller-Buschbaum, R. A. J. Jansen, Influence of the position of the side chain on crystallization and solar cell performance of DPP-based small molecules. Chem. Mater.2013, 26, 916.10.1021/cm4034484Search in Google Scholar
[18] B. Kan, M. Li, Q. Zhang, F. Liu, X. Wan, Y. Wang, W. Ni, G. Long, X. Yang, H. Feng, Y. Zuo, M. Zhang, F. Huang, Y. Cao, T. P. Russel, Y. Chen, A series of simple oligomer-like small molecules based on oligothiophenes for solution-processed solar cells with high efficiency. J. Am. Chem. Soc.2015, 137, 3886.10.1021/jacs.5b00305Search in Google Scholar PubMed
[19] Y. Akiyama, H. Tachibana, R. Azumi, T. Miyadera, M. Chikamatsu, T. Koganezawa, S. Yagi, H. Yaguchi, Effects of solvent vapor annealing on organic photovoltaics with a new type of solution-processable oligothiophene-based electronic donor material. Jpn. J. Appl. Phys.2018, 57, 08RE09.10.7567/JJAP.57.08RE09Search in Google Scholar
[20] Q. Zhang, Y. Wang, B. Kan, X. Wan, F. Liu, W. Ni, H. Feng, T. P. Russel, Y. Chen, A solution-processed high performance organic solar cell using a small molecule with the thieno[3,2-b]thiophene central unit. Chem. Commun.2015, 51, 15268.10.1039/C5CC06009ESearch in Google Scholar PubMed
[21] Q. Zhang, B. Kan, F. Liu, G. Long, X. Wan, X. Chen, Y. Zuo, W. Ni, H. Zhang, M. Li, Z. Hu, F. Huang, Y. Cao, Z. Liang, M. Zhang, T. P. Russel, Y. Chen, Small-molecule solar cells with efficiency over 9%. Nat. Photonics2015, 9, 35.10.1038/nphoton.2014.269Search in Google Scholar
[22] D. T. Duong, B. Walker, J. Lin, C. Kim, J. Love, B. Purushothaman, J. E. Anthony, T.-Q. Nguyen, Molecular solubility and hansen solubility parameters for the analysis of phase separation in bulk heterojunctions. J. Polym. Sci. B2012, 50, 1405.10.1002/polb.23153Search in Google Scholar
[23] M. Berlinghof, C. Bär, D. Haas, F. Bertram, S. Langner, A. Osvet, A. Chumakov, J. Will, T. Schindler, T. Zech, C. J. Brabec, T. Unruh, Flexible sample cell for real-time GISAXS, GIWAXS and XRR: design and construction. J. Synchrotron Rad.2018, 25, 1664.10.1107/S1600577518013218Search in Google Scholar PubMed
[24] Bronkhorst High-Tech, B.V. FLUIDAT® on the Net, https://www.fluidat.com/, accessed: 08, 2017, 2017.Search in Google Scholar
[25] O. H. Seeck, C. Deiter, K. Pflaum, F. Bertram, A. Beerlink, H. Franz, J. Horbach, H. Schulte-Schrepping, B. M. Murphy, M. Greve, O. Magnussen, The high-resolution diffraction beamline P08 at PETRA III. J. Synchrotron Rad.2012, 19, 30.10.1107/S0909049511047236Search in Google Scholar PubMed
[26] A. K. Hailey, A. M. Hiszpanski, D. M. Smilgies, Y. L. Loo, The Diffraction Pattern Calculator (DPC) toolkit: a user-friendly approach to unit-cell lattice parameter identification of two-dimensional grazing-incidence wide-angle X-ray scattering data. J. Appl. Crystallogr.2014, 47, 2090.10.1107/S1600576714022006Search in Google Scholar PubMed PubMed Central
[27] G. Benecke, W. Wagermaier, C. Li, M. Schwartzkopf, G. Flucke, R. Hoerth, I. Zizak, M. Burghammer, E. Metwalli, P. Müller-Buschbaum, M. Trebbin, S. Förster, O. Paris, S. V. Roth, P. Fratzl, A customizable software for fast reduction and analysis of large X-ray scattering data sets: applications of the new DPDAK package to small-angle X-ray scattering and grazing-incidence small-angle X-ray scattering. J. Appl. Crystallogr.2014, 47, 1797.10.1107/S1600576714019773Search in Google Scholar PubMed PubMed Central
[28] K. Nagao, E. Kagami, X-ray thin film measurement techniques VII. Pole figure measurement. Rigaku J.2011, 27, 6.Search in Google Scholar
[29] D. A. Scherlis, N. Marzari, π-Stacking in charged thiophene oligomers. J. Phys. Chem. B2004, 108, 17791.10.1021/jp0477598Search in Google Scholar
[30] D. A. Scherlis, J.-L. Fattebert, N. Marzari, Stacking of oligo- and polythiophene cations in solution: surface tension and dielectric saturation. J. Chem. Phys.2006, 124, 194902.10.1063/1.2198811Search in Google Scholar PubMed
[31] A. Leitmannova Liu, Ed. Advances in Planar Lipid Bilayers and Liposomes, Vol. 5, Academic Press, London, UK, 1st edition, 2006, Chapter 9.Search in Google Scholar
[32] K. Yager, Atomic scattering factors, http://gisaxs.com/index.php/Atomic_scattering_factors#Related_forms, accessed: 08, 2018, 2018.Search in Google Scholar
[33] A. F. Huq, A. Karim, Comparative solvent quality dependent crystallization in solvent vapor annealing of P3HT: PCBM thin films by in-situ GIWAXS. Polymer2019, 165, 101.10.1016/j.polymer.2018.12.034Search in Google Scholar
[34] M. A. Ruderer, S. Guo, R. Meier, H.-Y. Chiang, V. Körstgens, J. Wiedersich, J. Perlich, S. V. Roth, P. Müller-Buschbaum, Solvent-induced morphology in polymer-based systems for organic photovoltaics. Adv. Funct. Mater.2011, 21, 3382.10.1002/adfm.201100945Search in Google Scholar
[35] W. Wang, S. Guo, E. M. Herzig, K. Sarkar, M. Schindler, D. Magerl, M. Philipp, J. Perlich, P. Müller-Buschbaum, Investigation of morphological degradation of P3HT:PCBM bulk heterojunction films exposed to long-term host solvent vapor. J. Mater. Chem. A2016, 4, 3743.10.1039/C5TA09873DSearch in Google Scholar
Supplementary Material
The online version of this article offers supplementary material (https://doi.org/10.1515/zkri-2019-0055).
©2020 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Graphical Synopsis
- Inorganic Crystal Structures
- The polymorphs of the Na+ ion conductor Na3PS4 viewed from the perspective of a group-subgroup scheme
- Twinned olivenite from Cap Garonne, Mine du Pradet – structure and magnetic behavior
- Crystal-structure of active layers of small molecule organic photovoltaics before and after solvent vapor annealing
- Group-subgroup schemes for MoNi4, Nb4N5, KxFe2−ySe2, Nd10Au3As8O10 and CsInCl3: i5 superstructures of I 4/m allowing atom, charge or vacancy ordering
- Centrosymmetric LaRh2Ga2
- Organic and Metalorganic Crystal Structures
- Fibril formation through self-assembly of a simple glycine derivative and X-ray diffraction study
Articles in the same Issue
- Frontmatter
- Graphical Synopsis
- Inorganic Crystal Structures
- The polymorphs of the Na+ ion conductor Na3PS4 viewed from the perspective of a group-subgroup scheme
- Twinned olivenite from Cap Garonne, Mine du Pradet – structure and magnetic behavior
- Crystal-structure of active layers of small molecule organic photovoltaics before and after solvent vapor annealing
- Group-subgroup schemes for MoNi4, Nb4N5, KxFe2−ySe2, Nd10Au3As8O10 and CsInCl3: i5 superstructures of I 4/m allowing atom, charge or vacancy ordering
- Centrosymmetric LaRh2Ga2
- Organic and Metalorganic Crystal Structures
- Fibril formation through self-assembly of a simple glycine derivative and X-ray diffraction study