Startseite Angiotensin II-triggered kinase signaling cascade in the central nervous system
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Angiotensin II-triggered kinase signaling cascade in the central nervous system

  • Anjana Bali und Amteshwar Singh Jaggi EMAIL logo
Veröffentlicht/Copyright: 17. November 2015
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Recent studies have projected the renin-angiotensin system as a central component of the physiological and pathological processes of assorted neurological disorders. Its primary effector hormone, angiotensin II (Ang II), not only mediates the physiological effects of vasoconstriction and blood pressure regulation in cardiovascular disease but is also implicated in a much wider range of neuronal activities and diseases, including Alzheimer’s disease, neuronal injury, and cognitive disorders. Ang II produces different actions by acting on its two subtypes of receptors (AT1 and AT2); however, the well-known physiological actions of Ang II are mainly mediated through AT1 receptors. Moreover, recent studies also suggest the important functional role of AT2 receptor in the brain. Ang II acts on AT1 receptors and conducts its functions via MAP kinases (ERK1/2, JNK, and p38MAPK), glycogen synthase kinase, Rho/ROCK kinase, receptor tyrosine kinases (PDGF and EGFR), and nonreceptor tyrosine kinases (Src, Pyk2, and JAK/STAT). AT1R-mediated NADPH oxidase activation also leads to the generation of reactive oxygen species, widely implicated in neuroinflammation. These signaling cascades lead to glutamate excitotoxicity, apoptosis, cerebral infarction, astrocyte proliferation, nociception, neuroinflammation, and progression of other neurological disorders. The present review focuses on the Ang II-triggered signal transduction pathways in central nervous system.


Corresponding author: Amteshwar Singh Jaggi, Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, India, e-mail: ;

Acknowledgments

The authors are grateful to the Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, India, for supporting this study and providing technical facilities for the work.

References

Agarwal, D., Dange, R.B., Raizada, M.K., and Francis, J. (2013). Angiotensin II causes imbalance between pro- and anti-inflammatory cytokines by modulating GSK-3β in neuronal culture. Br. J. Pharmacol. 169, 860–874.10.1111/bph.12177Suche in Google Scholar

Alessi, D.R., Saito, Y., Campbell, D.G., Cohen, P., Sithanandam, G., Rapp, U., Ashworth, A., Marshall, C.J., and Cowley, S. (1994). Identification of the sites in MAP kinase kinase-1 phosphorylated by p74raf-1. EMBO J. 13, 1610–1619.10.1002/j.1460-2075.1994.tb06424.xSuche in Google Scholar

Amano, M., Ito, M., Kimura, K., Fukata, Y., Chihara, K., Nakano, T., Matsuura, Y., Kaibuchi, K. (1996) Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). J Biol Chem. 271, 20246–20249.10.1074/jbc.271.34.20246Suche in Google Scholar

Armando, I., Carranza, A., Nishimura, Y., Hoe, K.L., Barontini, M., Terrón, J.A., Falcón-Neri, A., Ito, T., Juorio, A.V., and Saavedra, J.M. (2001). Peripheral administration of an angiotensin I AT1 receptor antagonist decreases the hypothalamic-pituitary-adrenal response to stress. Endocrinology 142, 3880–3889.10.1210/endo.142.9.8366Suche in Google Scholar

Bali, A. and Jaggi, A.S. (2013). Angiotensin as stress mediator: role of its receptor and interrelationships among other stress mediators and receptors. Pharmacol. Res. 76, 49–57.10.1016/j.phrs.2013.07.004Suche in Google Scholar

Bali, A. and Jaggi, A.S. (2015). Preclinical experimental stress studies: protocols, assessment and comparison. Eur. J. Pharmacol. 746, 282–292.10.1016/j.ejphar.2014.10.017Suche in Google Scholar

Beaulieu, J.M., Gainetdinov, R.R., and Caron, M.G. (2007). The Akt-GSK-3 signaling cascade in the actions of dopamine. Trends Pharmacol. Sci. 28, 166–172.10.1016/j.tips.2007.02.006Suche in Google Scholar

Cai, H., Griendling, K.K., and Harrison, D.G. (2003). The vascular NAD(P)H oxidases as therapeutic targets in cardiovascular diseases. Trends Pharmacol. Sci. 24, 471–478.10.1016/S0165-6147(03)00233-5Suche in Google Scholar

Chen, Z.Y. and Yao, W.J. (2013). Role of Rho/ROCK in the migration of vascular smooth muscle cells. Sheng Li KeXue Jin Zhan 44, 269–274.Suche in Google Scholar

Chen, M., Liu, A., Ouyang, Y., Huang, Y., Chao, X., and Pi, R. (2013). Fasudil and its analogs: a new powerful weapon in the long war against central nervous system disorders? Expert. Opin. Investig. Drugs 22, 537–550.10.1517/13543784.2013.778242Suche in Google Scholar PubMed

Cheng, W.H., Lu, P.J., Ho, W.Y., Tung, C.S., Cheng, P.W., Hsiao, M., and Tseng, C.J. (2010). Angiotensin II inhibits neuronal nitric oxide synthase activation through the ERK1/2-RSK signaling pathway to modulate central control of blood pressure. Circ. Res. 106, 788–795.10.1161/CIRCRESAHA.109.208439Suche in Google Scholar PubMed

Clark, M.A., Landrum, M.H., Tallant, E.A. (2001) Angiotensin II activates mitogen-activated protein kinases and stimulates growth in rat medullary astrocytes. Faseb Journal. 15, A1169.Suche in Google Scholar

Clark, M.A. and Gonzalez, N. (2007a). Angiotensin II stimulates rat astrocyte mitogen-activated protein kinase activity and growth through EGF and PDGF receptor transactivation. Regul. Pept. 144, 115–122.10.1016/j.regpep.2007.07.001Suche in Google Scholar

Clark, M.A. and Gonzalez, N. (2007b). Src and Pyk 2 mediate angiotensin II effects in cultured rat astrocytes. Regul. Pept. 143, 47–55.10.1016/j.regpep.2007.02.008Suche in Google Scholar

Coble, J.P., Johnson, R.F., Cassell, M.D., Johnson, A.K., Grobe, J.L., and Sigmund, C.D. (2014a). Activity of protein kinase C-α within the subfornical organ is necessary for fluid intake in response to brainangiotensin. Hypertension 64, 141–148.10.1161/HYPERTENSIONAHA.114.03461Suche in Google Scholar

Coble, J.P., Cassell, M.D., Davis, D.R., Grobe, J.L., and Sigmund, C.D. (2014b). Activation of the renin-angiotensin system, specifically in the subfornical organ is sufficient to induce fluid intake. Am. J. Physiol. Regul. Integr. Comp. Physiol. 307, R376–R386.10.1152/ajpregu.00216.2014Suche in Google Scholar

Dasari, V.R., Veeravalli, K.K., Saving, K.L., Gujrati, M., Fassett, D., Klopfenstein, J.D., Dinh, D.H., and Rao J.S. (2008). Neuroprotection by cord blood stem cells against glutamate-induced apoptosis is mediated by Akt pathway. Neurobiol. Dis. 32, 486–498.10.1016/j.nbd.2008.09.005Suche in Google Scholar

Davies, N.M., Kehoe, P.G., Ben-Shlomo, Y., Martin, R.M. (2011) Associations of anti-hypertensive treatments with Alzheimer’s disease, vascular dementia, and other dementias. J Alzheimers Dis. 26, 699–708.10.3233/JAD-2011-110347Suche in Google Scholar

Delaney, J., Chiarello, R., Villar, D., Kandalam, U., Castejon, A.M., and Clark, M.A. (2008). Regulation of c-fos, c-jun and c-myc gene expression by angiotensin II in primary cultured rat astrocytes: role of ERK1/2 MAP kinases. Neurochem. Res. 33, 545–550.10.1007/s11064-007-9474-ySuche in Google Scholar

Eddleston, M. and Mucke, L. (1993). Molecular profile of reactive astrocytes – implications for their role in neurologic disease. Neuroscience 54, 15–36.10.1016/0306-4522(93)90380-XSuche in Google Scholar

Eguchi, S., Iwasaki, H., Inagami, T., Numaguchi, K., Yamakawa, T., Motley, E.D., Owada, K.M., Marumo, F., and Hirata, Y. (1999). Involvement of PYK2 in angiotensin II signaling of vascular smooth muscle cells. Hypertensión 33, 201–206.10.1161/01.HYP.33.1.201Suche in Google Scholar

Endoh, T. (2005). Involvement of Src tyrosine kinase and mitogen-activated protein kinase in the facilitation of calcium channels in rat nucleus of the tractussolitarius by angiotensin II. J. Physiol. 568, 851–865.10.1113/jphysiol.2005.095307Suche in Google Scholar PubMed PubMed Central

Gendron, L., Laflamme, L., Rivard, N., Asselin, C., Payet, M.D., and Gallo-Payet, N. (1999). Signals from the AT2 (angiotensin type 2) receptor of angiotensin II inhibit p21ras and activate MAPK (mitogen-activated protein kinase) to induce morphological neuronal differentiation in NG108-15 cells. Mol. Endocrinol. 13, 1615–1626.10.1210/mend.13.9.0344Suche in Google Scholar PubMed

Gendron, L., Oligny, J.F., Payet, M.D., and Gallo-Payet, N. (2003). Cyclic AMP-independent involvement of Rap1/B-Raf in the angiotensin II AT2 receptor signaling pathway in NG108-15 cells. J. Biol. Chem. 278, 3606–3614.10.1074/jbc.M202446200Suche in Google Scholar PubMed

Gong, W.K., Lü, J., Wang, F., Wang, B., Wang, M.Y., and Huang, H.P. (2015). Effects of angiotensin type 2 receptor on secretion of the locus coeruleus in stress-induced hypertension rats. Brain Res. Bull. 111, 62–68.10.1016/j.brainresbull.2014.12.011Suche in Google Scholar PubMed

Gould, T.D. and Manji, H.K. (2005). Glycogen synthase kinase-3: a putative molecular target for lithium mimetic drugs. Neuropsychopharmacology 30, 1223–1237.10.1038/sj.npp.1300731Suche in Google Scholar PubMed

Guan, R., Xu, X., Chen, M., Hu, H., Ge, H., Wen, S., Zhou, S., and Pi, R. (2013). Advances in the studies of roles of Rho/Rho-kinase in diseases and the development of its inhibitors. Eur. J. Med. Chem. 70, 613–622.10.1016/j.ejmech.2013.10.048Suche in Google Scholar PubMed

Guimond, M.O., Roberge, C., and Gallo-Payet, N. (2010). Fyn is involved in angiotensin II type 2 receptor-induced neurite outgrowth, but not in p42/p44mapk in NG108-15 cells. Mol. Cell Neurosci. 45, 201–212.10.1016/j.mcn.2010.06.011Suche in Google Scholar PubMed

Higuchi, S., Ohtsu, H., Suzuki, H., Shirai, H., Frank, G.D., and Eguchi, S. (2007). Angiotensin II signal transduction through the AT1 receptor: novel insights into mechanisms and pathophysiology. Clin. Sci. (Lond). 112, 417–428.10.1042/CS20060342Suche in Google Scholar PubMed

Hu, S., Cui, W., Mak, S., Tang, J., Choi, C., Pang, Y., and Han, Y. (2013). Bis(propyl)-cognitin protects against glutamateinduced neuro-excitotoxicity via concurrent regulation of NO, MAPK/ERK and PI3-K/Akt/ GSK3β pathways. Neurochem. Int. 62, 468–477.10.1016/j.neuint.2013.01.022Suche in Google Scholar PubMed

Hubbard, S.R. and Till, J.H. (2000). Protein tyrosine kinase structure and function. Annu. Rev. Biochem. 69, 373–398.10.1146/annurev.biochem.69.1.373Suche in Google Scholar PubMed

Joglar, B., Rodriguez-Pallares, J., Rodriguez-Perez, A.I., Rey, P., Guerra, M.J., and Labandeira-Garcia, J.L. (2009). The inflammatory response in the MPTP model of Parkinson’s disease is mediated by brain angiotensin: relevance to progression of the disease. J. Neurochem. 109, 656–669.10.1111/j.1471-4159.2009.05999.xSuche in Google Scholar PubMed

Jope, R.S. (1999). Anti-bipolar therapy: mechanism of action of lithium. Mol. Psychiatry 4, 117–128.10.1038/sj.mp.4000494Suche in Google Scholar

Jope, R.S. and Johnson, G.V. (2004). The glamour and gloom of glycogen synthase kinase-3. Trends Biochem. Sci. 29, 95–102.10.1016/j.tibs.2003.12.004Suche in Google Scholar

Jope, R.S. and Roh, M.S. (2006). Glycogen synthase kinase-3 (GSK3) in psychiatric diseases and therapeutic interventions. Curr. Drug Targets 7, 1421–1434.10.2174/1389450110607011421Suche in Google Scholar

Justicia, C., Gabriel, C., and Planas, A.M. (2000). Activation of the JAK/STAT pathway following transient focal cerebral ischemia: signaling through Jak1 and Stat3 in astrocytes. Glia 30, 253–270.10.1002/(SICI)1098-1136(200005)30:3<253::AID-GLIA5>3.0.CO;2-OSuche in Google Scholar

Kaminska, B., Gozdz, A., Zawadzka, M., Ellert-Miklaszewska, A., and Lipko, M. (2009). MAPK signal transduction underlying brain inflammation and gliosis as therapeutic target. Anat. Rec. (Hoboken) 292, 1902–1913.10.1002/ar.21047Suche in Google Scholar

Kandalam, U. and Clark, M.A. (2010). Angiotensin II activates JAK2/STAT3 pathway and induces interleukin-6 production in cultured rat brainstem astrocytes. Regul. Pept. 159, 110–116.10.1016/j.regpep.2009.09.001Suche in Google Scholar

Kim, E.K. and Choi, E.J. (2010). Pathological roles of MAPK signaling pathways in human diseases. Biochim. Biophys. Acta. 1802, 396–405.10.1016/j.bbadis.2009.12.009Suche in Google Scholar

Klein, P.S. and Melton, D.A. (1996). A molecular mechanism for the effect of lithium on development. Proc. Natl. Acad. Sci. USA 93, 8455–8459.10.4324/9781315054308-24Suche in Google Scholar

Kozak, W., Kozak, A., Johnson, M.H., Elewa, H.F., and Fagan, S.C. (2008). Vascular protection with candesartan after experimental acute stroke in hypertensive rats: a dose-response study. J. Pharamcol. Exp. Ther. 326, 773–782.10.1124/jpet.108.139618Suche in Google Scholar

Kyriakis, J.M., App, H., Zhang, X.F., Banerjee, P., Brautigan, D.L., Rapp, U.R., and Avruch, J. (1992). Raf-1 activates MAP kinase-kinase. Nature 358, 417–421.10.1038/358417a0Suche in Google Scholar

Lal, H., Ahmad, F., Woodgett, J., and Force, T. (2015). The GSK-3 family as therapeutic target for myocardial diseases. Circ. Res. 116, 138–149.10.1161/CIRCRESAHA.116.303613Suche in Google Scholar PubMed PubMed Central

Lee, B.H. and Kim, Y.K. (2009). Increased plasma brain-derived neurotropic factor, not nerve growth factor-Beta, in schizophrenia patients with better response to risperidone treatment. Neuropsychobiology 59, 51–58.10.1159/000205518Suche in Google Scholar PubMed

Lee, J.H., Lee, E.O., Kang, J.L., and Chong, Y.H. (2008a). Concomitant degradation of beta-catenin and GSK-3 beta potently contributes to glutamate-induced neurotoxicity in rat hippocampal slice cultures. J. Neurochem. 106, 1066–1077.10.1111/j.1471-4159.2008.05444.xSuche in Google Scholar PubMed

Lee, M.H., El-Shewy, H.M., Luttrell, D.K., and Luttrell, L.M. (2008b). Role of beta-arrestin-mediated desensitization and signaling in the control of angiotensin AT1a receptor-stimulated transcription. J. Biol. Chem. 283, 2088–2097.10.1074/jbc.M706892200Suche in Google Scholar PubMed

Leung, T., Chen, X.Q., Manser, E., and Lim, L. (1996). The p160 RhoA-binding kinase ROK alpha is a member of a kinase family and is involved in the reorganization of the cytoskeleton. Mol. Cell. Biol. 16, 5313–5327.10.1128/MCB.16.10.5313Suche in Google Scholar PubMed PubMed Central

Li, X., Bijur, G.N., and Jope, R.S. (2002). Glycogen synthase kinase-3beta, mood stabilizers, and neuroprotection. Bipolar. Disord. 4, 137–144.10.1034/j.1399-5618.2002.40201.xSuche in Google Scholar PubMed PubMed Central

Li, N.C., Lee, A., Whitmer, R.A., Kivipelto, M., Lawler, E., Kazis, L.E., Wolozin, B. (2010). Use of angiotensin receptor blockers and risk of dementia in a predominantly male population: prospective cohort analysis. BMJ. 12, b5465.10.1136/bmj.b5465Suche in Google Scholar PubMed PubMed Central

Ma, F.Y., Grattan, D.R., Bobrovskaya, L., Dunkley, P.R., and Bunn, S.J. (2004). Angiotensin II regulates tyrosine hydroxylase activity and mRNA expression in rat mediobasal hypothalamic cultures: the role of specific protein kinases. J. Neurochem. 90, 431–441.10.1111/j.1471-4159.2004.02492.xSuche in Google Scholar PubMed

Maddahi, A. and Edvinsson, L. (2010). Cerebral ischemia induces microvascular pro-inflammatory cytokine expression via the MEK/ERK pathway. J. Neuroinflammation. 7, 14.10.1186/1742-2094-8-18Suche in Google Scholar

Matavelli, L.C. and Siragy, H.M. (2015). AT2 receptor activities and pathophysiological implications. J. Cardiovasc. Pharmacol. 65, 226–232.10.1097/FJC.0000000000000208Suche in Google Scholar PubMed PubMed Central

Meister, M., Tomasovic, A., Banning, A., and Tikkanen R. (2013). Mitogen-activated protein (MAP) kinase scaffolding proteins: a recount. Int. J. Mol. Sci. 14, 4854–4884.10.3390/ijms14034854Suche in Google Scholar

Mueller, B.K., Mack, H., and Teusch, N. (2005). Rho kinase, a promising drug target for neurological disorders. Nat. Rev. Drug Discov. 4, 387–398.10.1038/nrd1719Suche in Google Scholar

Nakagawa, O., Fujisawa, K., Ishizaki, T., Saito, Y., Nakao, K., and Narumiya, S. (1996). ROCK-I and ROCK-II, two isoforms of Rho-associated coiled-coil forming protein serine/threonine kinase in mice. FEBS Lett. 392, 189–193.10.1016/0014-5793(96)00811-3Suche in Google Scholar

Nasr, S.J., Crayton, J.W., Agarwal, B., Wendt, B., and Kora, R. (2011). Lower frequency of antidepressant use in patients on renin-angiotensin-aldosterone system modifying medications. Cell. Mol. Neurobiol. 31, 615–618.10.1007/s10571-011-9656-7Suche in Google Scholar PubMed

Nemoto, W., Nakagawasai, O., Yaoita, F., Kanno, S., Yomogida, S., Ishikawa, M., Tadano, T., and Tan-No, K. (2013). Angiotensin II produces nociceptive behavior through spinal AT1 receptor-mediated p38 mitogen-activated protein kinase activation in mice. Mol. Pain. 9, 38.10.1186/1744-8069-9-38Suche in Google Scholar PubMed PubMed Central

Nishimoto, T., Kihara, T., Akaike, A., Niidome, T., and Sugimoto, H. (2008). Alpha-Amino-3-hydroxy-5-methyl-4-isoxazole propionate attenuates glutamate-induced caspase-3 cleavage via regulation of glycogen synthase kinase 3beta. J. Neurosci. Res. 86, 1096–1105.10.1002/jnr.21567Suche in Google Scholar PubMed

Ohtsu, H., Suzuki, H., Nakashima, H., Dhobale, S., Frank, G.D., Motley, E.D., and Eguchi, S. (2006). Angiotensin II signal transduction through small GTP-binding proteins: mechanism and significance in vascular smooth muscle cells. Hypertension 48, 534–540.10.1161/01.HYP.0000237975.90870.ebSuche in Google Scholar PubMed

Olson, M.F., Ashworth, A., and Hall, A. (1995). An essential role for Rho, Rac, and Cdc42GTPases in cell cycle progression through G1. Science 269, 1270–1272.10.1126/science.7652575Suche in Google Scholar PubMed

Omura-Matsuoka, E., Yagita, Y., Sasaki, T., Terasaki, Y., Oyama, N., Sugiyama, Y., Okazaki, S., Sakoda, S., and Kitagawa, K. (2009). Postischemic administration of angiotensin II type 1 receptor blocker reduces cerebral infarction size in hypertensive rats. Hypertens. Res. 32, 548–553.10.1038/hr.2009.69Suche in Google Scholar PubMed

Pang, T., Wang, J., Benicky, J., Sánchez-Lemus, E., and Saavedra, J.M. (2012). Telmisartan directly ameliorates the neuronal inflammatory response to IL-1β partly through the JNK/c-Jun and NADPH oxidase pathways. J. Neuroinflamm. 9, 102.10.1186/1742-2094-9-102Suche in Google Scholar PubMed PubMed Central

Pang, T., Sun, L.X., Wang, T., Jiang, Z.Z., Liao, H., and Zhang, L.Y. (2014). Telmisartan protects central neurons against nutrient deprivation-induced apoptosis in vitro through activation of PPARγ and the Akt/GSK-3β pathway. Acta Pharmacol. Sin. 35, 727–737.10.1038/aps.2013.199Suche in Google Scholar PubMed PubMed Central

Phiel, C.J. and Klein, P.S. (2001). Molecular targets of lithium action. Annu. Rev. Pharmacol. Toxicol. 41, 789–813.10.1146/annurev.pharmtox.41.1.789Suche in Google Scholar PubMed

Phillips, M.I. (1997). Functions of angiotensin in the central nervous system. Annu. Rev. Physiol. 3, 103–126.10.1146/annurev.ph.49.030187.002213Suche in Google Scholar PubMed

Phillips, M.I. and de Oliveira, E.M. (2008). Brain renin angiotensin in disease. J. Mol. Med. (Berl). 86, 715–722.10.1007/s00109-008-0331-5Suche in Google Scholar PubMed PubMed Central

Plouffe, B., Guimond, M.O., Beaudry, H., and Gallo-Payet, N. (2006). Role of tyrosine kinase receptors in angiotensin II AT2 receptor signaling: involvement in neurite outgrowth and in p42/p44mapk activation in NG108-15 cells. Endocrinology 147, 4646–4654.10.1210/en.2005-1315Suche in Google Scholar PubMed

Rey, P., Lopez-Real, A., Sanchez-Iglesias, S., Muñoz, A., Soto-Otero, R., and Labandeira-Garcia, J.L. (2007). Angiotensin type-1-receptor antagonists reduce 6-hydroxydopamine toxicity for dopaminergic neurons. Neurobiol. Aging 28, 555–567.10.1016/j.neurobiolaging.2006.02.018Suche in Google Scholar PubMed

Rocic, P., Govindarajan, G., Sabri, A., and Lucchesi P.A. (2001). A role for PYK2 in regulation of ERK1/2 MAP kinases and PI 3-kinase by ANG II in vascular smooth muscle. Am. J. Physiol. Cell Physiol. 280, C90–C909.10.1152/ajpcell.2001.280.1.C90Suche in Google Scholar PubMed

Rodriguez-Pallares, J., Rey, P., Parga, J.A., Muñoz, A., Guerra, M.J., and Labandeira-Garcia, J.L. (2008). Brain angiotensin enhances dopaminergic cell death via microglial activation and NADPH-derived ROS. Neurobiol. Dis. 31, 58–73.10.1016/j.nbd.2008.03.003Suche in Google Scholar PubMed

Rodriguez-Perez, A.I., Borrajo, A., Rodriguez-Pallares, J., Guerra, M.J., and Labandeira-Garcia, J.L. (2014). Interaction between NADPH-oxidase and Rho-kinase in angiotensin II-induced microglial activation. Glia. 63, 466–482.10.1002/glia.22765Suche in Google Scholar PubMed

Saavedra, J.M. (1992). Brain and pituitary angiotensin. Endocr. Rev. 18, 21–53.10.1210/edrv-13-2-329Suche in Google Scholar PubMed

Sagara, Y., Hirooka, Y., Nozoe, M., Ito, K., Kimura, Y., and Sunagawa, K. (2007). Pressor response induced by central angiotensin II is mediated by activation of Rho/Rho-kinase pathway via AT1 receptors. J. Hypertens. 25, 399–406.10.1097/HJH.0b013e328010b87fSuche in Google Scholar

Sakai, K., Agassandian, K., Morimoto, S., Sinnayah, P., Cassell, M.D., Davisson, R.L., and Sigmund, C.D. (2007). Local production of angiotensin II in the subfornical organ causes elevated drinking. J. Clin. Invest. 117, 1088–1095.10.1172/JCI31242Suche in Google Scholar

Satoh, K., Fukumoto, Y., and Shimokawa, H. (2011). Rho-kinase: important new therapeutic target in cardiovascular diseases, Am. J. Physiol. Heart Circ. Physiol. 301, H287–eH296.10.1152/ajpheart.00327.2011Suche in Google Scholar

Saxena, A., Bachelor, M., Park, Y.H., Carreno, F.R., Nedungadi, T.P., and Cunningham, J.T. (2014). Angiotensin II induces membrane trafficking of natively expressed transient receptor potential vanilloid type 4 channels in hypothalamic 4B cells. Am. J. Physiol. Regul. Integr. Comp. Physiol. 307, R945–R955.10.1152/ajpregu.00224.2014Suche in Google Scholar

Sayeski, P.P. and Ali, M.S. (2003). The critical role of c-Src and the Shc/Grb2/ERK2 signaling pathway in angiotensin II-dependent VSMC proliferation. Exp. Cell. Res. 287, 339–349.10.1016/S0014-4827(03)00154-XSuche in Google Scholar

Seger, R. and Krebs, E.G. (1995). The MAPK signaling cascade. FASEB J. 9, 726–735.10.1016/B978-0-12-394447-4.30014-1Suche in Google Scholar

Seguin, L.R., Villarreal, R.S., and Ciuffo, G.M. (2012). AT2 receptors recruit c-Src, SHP-1 and FAK upon activation by Ang II in PND15 rat hindbrain. Neurochem. Int. 60, 199–207.10.1016/j.neuint.2011.11.008Suche in Google Scholar

Sheikh, A.M., Nagai, A., Ryu, J.K., McLarnon, J.G., Kim, S.U., and Masuda, J. (2009). Lysophosphatidylcholine induces glial cell activation: role of rho kinase. Glia 57, 898–907.10.1002/glia.20815Suche in Google Scholar

Shenkar, R., Yum, H.K., Arcaroli, J., Kupfner, J., and Abraham, E. (2001). Interactions between CBP, NF-kappaB, and CREB in the lungs after hemorrhage and endotoxemia. Am. J. Physiol. Lung Cell. Mol. Physiol. 281, L418–L426.10.1152/ajplung.2001.281.2.L418Suche in Google Scholar

Simpson, J.B. and Routtenberg, A. (1975). Subfornical organ lesions reduce intravenous angiotensin-induced drinking. Brain Res. 88, 154–161.10.1016/0006-8993(75)90965-8Suche in Google Scholar

Simpson, J.B., Epstein, A.N., and Camardo, J.S. Jr. (1978). Localization of receptors for the dipsogenic action of angiotensin II in the subfornical organ of rat. J. Comp. Physiol. Psychol. 92, 581–601.10.1037/h0077503Suche in Google Scholar

Stornetta, R.L., Hawelu-Johnson, C.L., Guyenet, P.G., and Lynch, K.R. (1988). Astrocytes synthesize angiotensinogen in brain. Science 242, 1444–1446.10.1126/science.3201232Suche in Google Scholar

Sutton, L.P., Honardoust, D., Mouyal, J., Rajakumar, N., and Rushlow, W.J. (2007). Activation of the canonical Wnt pathway by the antipsychotics haloperidol and clozapine involves dishevelled-3. J. Neurochem. 102, 153–169.10.1111/j.1471-4159.2007.04527.xSuche in Google Scholar

Tallant, E.A. and Higson, J.T. (1997). Angiotensin II activates distinct signal transduction pathways in astrocytes isolated from neonatal rat brain. Glia 19, 333–342.10.1002/(SICI)1098-1136(199704)19:4<333::AID-GLIA6>3.0.CO;2-YSuche in Google Scholar

Tian, M., Zhu, D., Xie, W., and Shi, J. (2012). Central angiotensin II-induced Alzheimer-like tau phosphorylation in normal rat brains. FEBS Lett. 586, 3737–3745.10.1016/j.febslet.2012.09.004Suche in Google Scholar

Touyz, R.M., He, G., El Mabrouk, M., Diep, Q., Mardigyan, V., and Schiffrin E.L. (2001). Differential activation of extracellular signal-regulated protein kinase 1/2 and p38 mitogen activated-protein kinase by AT1 receptors in vascular smooth muscle cells from Wistar-Kyoto rats and spontaneously hypertensive rats. J. Hypertens. 19, 553–559.10.1097/00004872-200103001-00006Suche in Google Scholar

Ueda, Y., Hirai, S., Osada, S., Suzuki, A., Mizuno, K., and Ohno, S. (1996). Protein kinase C activates the MEK-ERK pathway in a manner independent of Ras and dependent on Raf. J. Biol. Chem. 271, 23512–23519.10.1074/jbc.271.38.23512Suche in Google Scholar

Umschweif, G., Liraz-Zaltsman, S., Shabashov, D., Alexandrovich, A., Trembovler, V., Horowitz, M., and Shohami, E. (2014). Angiotensin receptor type 2 activation induces neuroprotection and neurogenesis after traumatic brain injury. Neurotherapeutics 11, 665–678.10.1007/s13311-014-0286-xSuche in Google Scholar

Villar-Cheda, B., Dominguez-Meijide, A., Joglar, B., Rodriguez-Perez, A.I., Guerra, M.J., and Labandeira-Garcia, J.L. (2012). Involvement of microglial RhoA/Rho-kinase pathway activation in the dopaminergic neuron death. Role of angiotensin via angiotensin type 1 receptors. Neurobiol. Dis. 47, 268–279.10.1016/j.nbd.2012.04.010Suche in Google Scholar

Wang, J., Pang, T., Hafko, R., Benicky, J., Sanchez-Lemus, E., and Saavedra, J.M. (2014). Telmisartan ameliorates glutamate-induced neurotoxicity: roles of AT(1) receptor blockade and PPARγ activation. Neuropharmacology 79, 249–261.10.1016/j.neuropharm.2013.11.022Suche in Google Scholar

Wei, S.G., Yu, Y., Zhang, Z.H., Weiss, R.M., and Felder, R.B. (2008). Angiotensin II-triggered p44/42 mitogen-activated protein kinase mediates sympathetic excitation in heart failure rats. Hypertension 52, 342–350.10.1161/HYPERTENSIONAHA.108.110445Suche in Google Scholar PubMed PubMed Central

Weng, H.R., Gao, M., and Maixner, D.W. (2014). Glycogen synthase kinase 3 beta regulates glial glutamate transporter protein expression in the spinal dorsal horn in rats with neuropathic pain. Exp. Neurol. 252, 18–27.10.1016/j.expneurol.2013.11.018Suche in Google Scholar PubMed PubMed Central

Wright, J.W. and Harding, J.W. (2013). The brain renin-angiotensin system: a diversity of functions and implications for CNS diseases. Pflüger’s Arch. 465, 133–151.10.1007/s00424-012-1102-2Suche in Google Scholar PubMed

Yagita, Y., Kitagawa, K., Sasaki, T., Terasaki, Y., Todo, K., Omura-Matsuoka, E., Kaibuchi, K., and Hori, M. (2007). Rho-kinase activation in endothelial cells contributes to expansion of infarction after focal cerebral ischemia. J. Neurosci. Res. 85, 2460–2469.10.1002/jnr.21375Suche in Google Scholar PubMed

Yu, Y., Xue, B.J., Zhang, Z.H., Wei, S.G., Beltz, T.G., Guo, F., Johnson, A.K., and Felder, R.B. (2013). Early interference with p44/42 mitogen-activated protein kinase signaling in hypothalamic paraventricular nucleus attenuates angiotensin II-induced hypertension. Hypertension 61, 842–849.10.1161/HYPERTENSIONAHA.111.00080Suche in Google Scholar PubMed PubMed Central

Zhang, T.L., Fu, J.L., Geng, Z., Yang, J.J., and Sun, X.J. (2012a). The neuroprotective effect of losartan through inhibiting AT1/ASK1/MKK4/JNK3 pathway following cerebral I/R in rat hippocampal CA1 region. CNS Neurosci. Ther. 18, 981–987.10.1111/cns.12015Suche in Google Scholar PubMed PubMed Central

Zhang, Z.H., Yu, Y., Wei, S.G., and Felder, R.B. (2012b). Aldosterone-induced brain MAPK signaling and sympathetic excitation are angiotensin II type-1 receptor dependent. Am. J. Physiol. Heart Circ. Physiol. 302, H742–H751.10.1152/ajpheart.00856.2011Suche in Google Scholar PubMed PubMed Central

Zou, Y., Komuro, I., Yamazaki, T., Aikawa, R., Kudoh, S., Shiojima, I., Hiroi, Y., Mizuno, T., and Yazaki Y. (1996). Protein kinase C, but not tyrosine kinases or Ras, plays a critical role in angiotensin II-induced activation of Raf-1 kinase and extracellular signal-regulated protein kinases in cardiac myocytes. J. Biol. Chem. 271, 33592–33597.10.1074/jbc.271.52.33592Suche in Google Scholar PubMed

Received: 2015-8-17
Accepted: 2015-9-26
Published Online: 2015-11-17
Published in Print: 2016-4-1

©2016 by De Gruyter

Heruntergeladen am 21.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/revneuro-2015-0041/html
Button zum nach oben scrollen