Home Epileptogenesis following experimentally induced traumatic brain injury – a systematic review
Article
Licensed
Unlicensed Requires Authentication

Epileptogenesis following experimentally induced traumatic brain injury – a systematic review

  • Shammy Chandel , Sunil Kumar Gupta and Bikash Medhi EMAIL logo
Published/Copyright: November 18, 2015
Become an author with De Gruyter Brill

Abstract

Traumatic brain injury (TBI) is a complex neurotrauma in civilian life and the battlefield with a broad spectrum of symptoms, long-term neuropsychological disability, as well as mortality worldwide. Posttraumatic epilepsy (PTE) is a common outcome of TBI with unknown mechanisms, followed by posttraumatic epileptogenesis. There are numerous rodent models of TBI available with varying pathomechanisms of head injury similar to human TBI, but there is no evidence for an adequate TBI model that can properly mimic all aspects of clinical TBI and the first successive spontaneous focal seizures follow a single episode of neurotrauma with respect to epileptogenesis. This review aims to provide current information regarding the various experimental animal models of TBI relevant to clinical TBI. Mossy fiber sprouting, loss of dentate hilar neurons along with recurrent seizures, and epileptic discharge similar to human PTE have been studied in fluid percussion injury, weight-drop injury, and cortical impact models, but further refinement of animal models and functional test is warranted to better understand the underlying pathophysiology of posttraumatic epileptogenesis. A multifaceted research approach in TBI model may lead to exploration of the potential treatment measures, which are a major challenge to the research community and drug developers. With respect to clinical setting, proper patient data collection, improved clinical trials with advancement in drug delivery strategies, blood-brain barrier permeability, and proper monitoring of level and effects of target drug are also important.


Corresponding author: Bikash Medhi, Department of Pharmacology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh 160012, India, e-mail:

References

Abd-Elfattah Foda, M.A. and Marmarou, A. (1994). A new model of diffuse brain injury in rats: part II: morphological characterization. J. Neurosurg. 80, 301–313.10.3171/jns.1994.80.2.0301Search in Google Scholar

Adams, B., Lee, M., Fahnestoch, M., and Racine, R.J. (1997). Long term potentiation trains induce mossy fibre sprouting. Brain Res. 775, 193–197.10.1016/S0006-8993(97)01061-5Search in Google Scholar

Albert-Weissenberger, C. and Sirén, A.-L. (2010). Experimental traumatic brain injury. Exp. Transl. Stroke Med. 2, 16–24.10.1186/2040-7378-2-16Search in Google Scholar

Albert-Weißenberger, C., Várrallyay, C., Raslan, F., Kleinschnitz, C., and Sirén, A.-L. (2012). An experimental protocol for mimicking pathomechanisms of traumatic brain injury in mice. Exp. Transl. Stroke Med. 4, 1.10.1186/2040-7378-4-1Search in Google Scholar

Andriessen, T.M., Jacobs, B., and Vos, P.E. (2010). Clinical characteristics and pathophysiological mechanisms of focal and diffuse traumatic brain injury. J. Cell. Mol. Med. 14, 2381–2392.10.1111/j.1582-4934.2010.01164.xSearch in Google Scholar

Atkins, C.M., Truettner, J.S., Lotocki, G., Sanchez-Molano, J., Kang, Y., Alonso, O.F., Sick, T.J., Dietrich, W.D., and Bramlett, H.M. (2010). Post-traumatic seizure susceptibility is attenuated by hypothermia therapy. Eur. J. Neurosci. 32, 1912–1920.10.1111/j.1460-9568.2010.07467.xSearch in Google Scholar

Bao, Y.-H., Bramlett, H.M., Atkins, C.M., Truettner, J.S., Lotocki, G., Alonso, O.F., and Dietrich, W.D. (2011). Post-traumatic seizures exacerbate histopathological damage after fluid-percussion brain injury. J. Neurotraum. 28, 35–42.10.1089/neu.2010.1383Search in Google Scholar

Beit-Yannai, E., Zhang, R., Trembovler, V., Samuni, A., and Shohami, E. (1996). Cerebroprotective effect of stable nitroxide radicals in closed head injury in the rat. Brain Res. 717, 22–28.10.1016/0006-8993(95)01492-6Search in Google Scholar

Bellander, B.-M., Holst, H.V., Fredman, P., and Svensson, M. (1996). Activation of the complement cascade and increase of clusterin in the brain following a cortical contusion in the adult rat. J. Neurosurg. 85, 468–475.10.3171/jns.1996.85.3.0468Search in Google Scholar PubMed

Berry, C., Ley, E.J., Tillou, A., Cryer, G., Margulies, D.R., and Salim, A. (2009). The effect of gender on patients with moderate to severe head injuries. J. Trauma Acute Care Surg. 67, 950–953.10.1097/TA.0b013e3181ba3354Search in Google Scholar PubMed

Blaha, M., Schwab, J., Vajnerova, O., Bednar, M., Vajner, L., and Michal, T. (2010). Intracranial pressure and experimental model of diffuse brain injury in rats. J. Korean Neurosurg. Soc. 47, 7–10.10.3340/jkns.2010.47.1.7Search in Google Scholar PubMed PubMed Central

Bolkvadze, T. and Pitkänen, A. (2012). Development of post-traumatic epilepsy after controlled cortical impact and lateral fluid-percussion-induced brain injury in the mouse. J. Neurotrauma 29, 789–812.10.1089/neu.2011.1954Search in Google Scholar PubMed

Bordey, A., Hablitz, J.J., and Sontheimer, H. (2000). Reactive astrocytes show enhanced inwardly rectifying K+ currents in situ. Neuroreport 11, 3151–3155.10.1097/00001756-200009280-00022Search in Google Scholar PubMed

Brabeck, C., Beschorner, R., Conrad, S., Mittelbronn, M., Bekure, K., Meyermann, R., Schluesener, H.J., and Schwab, J.M. (2004). Lesional expression of RhoA and RhoB following traumatic brain injury in humans. J. Neurotrauma 21, 697–706.10.1089/0897715041269597Search in Google Scholar PubMed

Bramlett, H.M. and Dietrich, D.W. (2002). Quantitative structural changes in white and gray matter 1 year following traumatic brain injury in rats. Acta Neuropathol. 103, 607–614.10.1007/s00401-001-0510-8Search in Google Scholar PubMed

Bullock, R., Zauner, A., Woodward, J.J., Myseros, J., Choi, S.C., Ward, J.D., Marmarou, A., and Young, H.F. (1998). Factors affecting excitatory amino acid release following severe human head injury. J Neurosurg. 89, 507–518.10.3171/jns.1998.89.4.0507Search in Google Scholar PubMed

Carbonell, W.S., Maris, D.O., McCALL, T., and Grady, M.S. (1998). Adaptation of the fluid percussion injury model to the mouse. J. Neurotrauma 15, 217–229.10.1089/neu.1998.15.217Search in Google Scholar PubMed

Cernak, I. (2005). Animal models of head trauma. NeuroRx 2, 410–422.10.1602/neurorx.2.3.410Search in Google Scholar PubMed PubMed Central

Cernak, I. and Noble-Haeusslein, L.J. (2010). Traumatic brain injury: an overview of pathobiology with emphasis on military populations. J. Cereb. Blood Flow Metabol. 30, 255–266.10.1038/jcbfm.2009.203Search in Google Scholar PubMed PubMed Central

Cernak, I., Merkle, A.C., Koliatsos, V.E., Bilik, J.M., Luong, Q.T., Mahota, T.M., Xu, L., Slack, N., Windle, D., and Ahmed, F.A. (2011). The pathobiology of blast injuries and blast-induced neurotrauma as identified using a new experimental model of injury in mice. Neurobiol. Dis. 41, 538–551.10.1016/j.nbd.2010.10.025Search in Google Scholar PubMed

Cheng, J., Gu, J., Ma, Y., Yang, T., Kuang, Y., Li, B., and Kang, J. (2010). Development of a rat model for studying blast-induced traumatic brain injury. J. Neurol. Sci. 294, 23–28.10.1016/j.jns.2010.04.010Search in Google Scholar

Choi, D.W. (1985). Glutamate neurotoxicity in cortical cell culture is calcium dependent. Neurosci. Let. 58, 293–297.10.1016/0304-3940(85)90069-2Search in Google Scholar

Choi, D.W. and Rothman, S.M. (1990). The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death. An. Rev. Neurosci. 13, 171–182.10.1146/annurev.ne.13.030190.001131Search in Google Scholar

Coutinho-Netto, J., Boyar, M., Abdul-Ghani, A., and Bradford, H. (1982). In vivo inhibition of incorporation of [U-14U] glucose into proteins in experimental focal epilepsy. Epilepsia 23, 383–389.10.1111/j.1528-1157.1982.tb05424.xSearch in Google Scholar

D’Ambrosio, R. and Perucca, E. (2004). Epilepsy after head injury. Curr. Opin. Neurol. 17, 731–735.10.1097/00019052-200412000-00014Search in Google Scholar

D’Ambrosio, R., Maris, D.O., Grady, M.S., Winn, H.R., and Janigro, D. (1999). Impaired K+ homeostasis and altered electro physiological properties of posttraumatic hippocampal glia. J. Neurosci. 19, 8152–8162.10.1523/JNEUROSCI.19-18-08152.1999Search in Google Scholar

D’Ambrosio, R., Fairbanks, J.P., Fender, J.S., Born, D.E., Doyle, D.L., and Miller, J.W. (2004). Post-traumatic epilepsy following fluid percussion injury in the rat. Brain 127, 304–314.10.1093/brain/awh038Search in Google Scholar

Dalby, N.O. and Mody, I. (2001). The process of epileptogenesis: a pathophysiological approach. Curr. Opin. Neurol. 14, 187–192.10.1097/00019052-200104000-00009Search in Google Scholar

Das, B. (2013). Neurological disability: a brewing epidemic. Nat India. doi: 10.1038/nindia.2013.18. Published online 1 February 2013.10.1038/nindia.2013.18Search in Google Scholar

Dash, P.K., Mach, S.A., and Moore, A.N. (2001). Enhanced neurogenesis in the rodent hippocampus following traumatic brain injury. J. Neuro. Res. 63, 313–319.10.1002/1097-4547(20010215)63:4<313::AID-JNR1025>3.0.CO;2-4Search in Google Scholar

Davis, A.R., Shear, D.A., Chen, Z., Lu, X.-C.M., and Tortella, F.C. (2010). A comparison of two cognitive test paradigms in a penetrating brain injury model. J. Neurosci. Methods 189, 84–87.10.1016/j.jneumeth.2010.03.012Search in Google Scholar

DeWitt, D.S. and Prough, D.S. (2009). Blast-induced brain injury and posttraumatic hypotension and hypoxemia. J. Neurotrauma 26, 877–887.10.1089/neu.2007.0439Search in Google Scholar

Dhillon, H., Donaldson, D., Dempsey, R., and Prasad, M.R. (1994). Regional levels of free fatty acids and Evans blue extravasation after experimental brain injury. J. Neurotrauma 11, 405–415.10.1089/neu.1994.11.405Search in Google Scholar

Dikmen, S.S., Machamer, J.E., Powell, J.M., and Temkin, N.R. (2003). Outcome 3 to 5 years after moderate to severe traumatic brain injury. Arch. Phys. Med. Rehabil. 84, 1449–1457.10.1016/S0003-9993(03)00287-9Search in Google Scholar

Ding, J.Y., Kreipke, C.W., Speirs, S.L., Schafer, P., Schafer, S., and Rafols, J.A. (2009). Hypoxia-inducible factor-1α signaling in aquaporin upregulation after traumatic brain injury. Neurosci. Lett. 453, 68–72.10.1016/j.neulet.2009.01.077Search in Google Scholar

Dixon, C.E., Lyeth, B.G., Povlishock, J.T., Findling, R.L., Hamm, R.J., Marmarou, A., Young, H.F., and Hayes, R.L. (1987). A fluid percussion model of experimental brain injury in the rat. J. Neurosurg. 67, 110–119.10.3171/jns.1987.67.1.0110Search in Google Scholar

Dixon, C.E., Clifton, G.L., Lighthall, J.W., Yaghmai, A.A., and Hayes, R.L. (1991). A controlled cortical impact model of traumatic brain injury in the rat. J. Neurosci. Methods 39, 253–262.10.1016/0165-0270(91)90104-8Search in Google Scholar

Dixon, C.E., Kraus, M.F., Kline, A.E., Ma, X., Yan, H.Q., Griffith, R.G., Wolfson, B.M., and Marion, D.W. (1998). Amantadine improves water maze performance without affecting motor behavior following traumatic brain injury in rats. Restor. Neurol. Neurosci. 14, 285–294.Search in Google Scholar

Dröse, S. and Brandt, U. (2012). Molecular mechanisms of superoxide production by the mitochondrial respiratory chain mitochondrial oxidative phosphorylation. New York: Springer, pp. 145–169.10.1007/978-1-4614-3573-0_6Search in Google Scholar PubMed

Duhaime, A.-C. (1994). Exciting your neurons to death: can we prevent cell loss after brain injury? Pediatr Neurosurg. 21, 117–123.10.1159/000120825Search in Google Scholar PubMed

Dudeh, F.E., Obenaus, A., Schweitzes, J.S., and Wuarin, J.P. (1994). Functional significance of hippocampal plasticity in epileptic brain: electro physiologic changes of the dentate granule cells associated with mossy fibre sprouting. Hippocampus 4, 259–265.10.1002/hipo.450040306Search in Google Scholar PubMed

Ender, M.G. (2010). War causes and consequences. Contempt. Socio. 39, 399–402.10.1177/0094306110373236aSearch in Google Scholar

Engström, E.R., Hillered, L., Flink, R., Kihlström, L., Lindquist, C., Nie, J.X., Olsson, Y., and Hans, C. (2001). Extracellular amino acid levels measured with intracerebral microdialysis in the model of posttraumatic epilepsy induced by intracortical iron injection. Epilepsy Res. 43, 135–144.10.1016/S0920-1211(00)00191-1Search in Google Scholar

Faul, M., Xu, L., Wald, M.M., and Coronado, V. (2010). Traumatic Brain Injury in the United States. Atlanta, GA, USA: Centers for Disease Control and Prevention, National Center for Injury Prevention and Control.Search in Google Scholar

Feeney, D.M., Boyeson, M.G., Linn, R.T., Murray, H.M., and Dail, W.G. (1981). Responses to cortical injury: I. Methodology and local effects of contusions in the rat. Brain Res. 211, 67–77.10.1016/0006-8993(81)90067-6Search in Google Scholar

Flanagan, S.R., Hibbard, M.R., and Gordon, W.A. (2005). The impact of age on traumatic brain injury. Physical Med. Rehab. Clinics N. Am. 16, 163–177.10.1016/j.pmr.2004.06.012Search in Google Scholar PubMed

Flierl, M.A., Stahel, P.F., Beauchamp, K.M., Morgan, S.J., Smith, W.R., and Shohami, E. (2009). Mouse closed head injury model induced by a weight-drop device. Nat. Protocols 4, 1328–1337.10.1038/nprot.2009.148Search in Google Scholar PubMed

Floyd, C.L., Golden, K.M., Black, R.T., Hamm, R.J., and Lyeth, B.G. (2002). Craniectomy position affects Morris water maze performance and hippocampal cell loss after parasagittal fluid percussion. J. Neurotrauma 19, 303–316.10.1089/089771502753594873Search in Google Scholar PubMed

Floyd, C.L., Gorin, F.A., and Lyeth, B.G. (2005). Mechanical strain injury increases intracellular sodium and reverses Na+/Ca2+ exchange in cortical astrocytes. Glia 51, 35–46.10.1002/glia.20183Search in Google Scholar PubMed PubMed Central

Fox, G.B., LeVasseur, R.A., and Faden, A.I. (1999). Behavioral responses of C57BL/6, FVB/N, and 129/SvEMS mouse strains to traumatic brain injury: implications for gene targeting approaches to neurotrauma. J. Neurotrauma 16, 377–389.10.1089/neu.1999.16.377Search in Google Scholar PubMed

Garga, N. and Lowenstein, D.H. (2006). Posttraumatic epilepsy: a major problem in desperate need of major advances. Epilepsy Curr. 6, 1–5.10.1111/j.1535-7511.2005.00083.xSearch in Google Scholar PubMed PubMed Central

Giralt, M., Penkowa, M., Lago, N., Molinero, A., and Hidalgo, J. (2002). Metallothionein-1+2 protect the CNS after a focal brain injury. Exp. Neurol. 173, 114–128.10.1006/exnr.2001.7772Search in Google Scholar PubMed

Golarai, G., Greenwood, A.C., Feeney, D.M., and Connor, J.A. (2001). Physiological and structural evidence for hippocampal involvement in persistent seizure susceptibility after traumatic brain injury. J. Neurosci. 21, 8523–8537.10.1523/JNEUROSCI.21-21-08523.2001Search in Google Scholar

Goldstein, L.E., Fisher, A.M., Tagge, C.A., Zhang, X.-L., Velisek, L., Sullivan, J.A., Upreti, C., Kracht, J.M., Ericsson, M., and Wojnarowicz, M.W. (2012). Chronic traumatic encephalopathy in blast-exposed military veterans and a blast neurotrauma mouse model. Sci. Translat. Med. 4, 134ra160–134ra160.Search in Google Scholar

Graber, K.D. and Prince, D.A. (1999). Tetradorin prevents posttraumatic epileptogenesis in rats. Ann. Neurol. 49, 234–242.10.1002/1531-8249(199908)46:2<234::AID-ANA13>3.0.CO;2-QSearch in Google Scholar

Griesbach, G.S., Sutton, R.L., Hovda, D.A., Ying, Z., and Gomez-Pinilla, F. (2009). Controlled contusion injury alters molecular systems associated with cognitive performance. J. Neurosci. Res. 87, 795–805.10.1002/jnr.21893Search in Google Scholar

Griesemer, D. and Mautes, A.M. (2007). Closed head injury causes hyperexcitability in rat hippocampal CA1 but not in CA3 pyramidal cells. J. Neurotrauma 24, 1823–1832.10.1089/neu.2006.0237Search in Google Scholar

Gurdjian, E., Lissner, H., Webster, J., Latimer, F., and Haddad, B. (1954). Studies on experimental concussion relation of physiologic effect to time duration of intracranial pressure increase at impact. Neurology 4, 674–674.10.1212/WNL.4.9.674Search in Google Scholar

Hall, E.D., Sullivan, P.G., Gibson, T.R., Pavel, K.M., Thompson, B.M., and Scheff, S.W. (2005). Spatial and temporal characteristics of neurodegeneration after controlled cortical impact in mice: more than a focal brain injury. J. Neurotrauma 22, 252–265.10.1089/neu.2005.22.252Search in Google Scholar

Hardman, J.M. and Manoukian, A. (2002). Pathology of head trauma. Neuroimag. Clin. N. Am. 12, 175–187.10.1016/S1052-5149(02)00009-6Search in Google Scholar

Härtl, R., Medary, M., Ruge, M., Arfors, K., and Ghajar, J. (1997). Blood-brain barrier breakdown occurs early after traumatic brain injury and is not related to white blood cell adherence Brain Edema X. Vienna: Springer, pp. 240–242.10.1007/978-3-7091-6837-0_74Search in Google Scholar

Hauser, W.A., Annegers, J.F., and Kurland, L.T. (1991). Prevalence of epilepsy in Rochester, Minnesota: 1940–1980. Epilepsia 32, 429–445.10.1111/j.1528-1157.1991.tb04675.xSearch in Google Scholar

Hayes, R.L., Stalhammar, D., Povlishock, J.T., Allen, A.M., Galinat, B.J., Becker, D.P., and Stonnington, H.H. (1987). A new model of concussive brain injury in the cat produced by extradural fluid volume loading: II. Physiological and neuropathological observations. Brain Injury 1, 93–112.10.3109/02699058709034449Search in Google Scholar

Hazra, R., Ray, K., and Guha, D. (2007). Inhibitory role of Acorus calamus in ferric chloride-induced epileptogenesis in rat. Hum. Exp. Toxicol. 26, 947–953.10.1177/0960327107087791Search in Google Scholar PubMed

Hicks, R., Soares, H., Smith, D., and McIntosh, T. (1996). Temporal and spatial characterization of neuronal injury following lateral fluid-percussion brain injury in the rat. Acta Neuropathol. 91, 236–246.10.1007/s004010050421Search in Google Scholar PubMed

Hoane, M.R., Lasley, L.A., and Akstulewicz, S.L. (2004). Middle age increases tissue vulnerability and impairs sensorimotor and cognitive recovery following traumatic brain injury in the rat. Behavioural Brain Res. 153, 189–197.10.1016/j.bbr.2003.11.012Search in Google Scholar PubMed

Hoshino, S., Tamaoka, A., Takahashi, M., Kobayashi, S., Furukawa, T., Oaki, Y., Mori, O., Matsuno, S., Shoji, S.i., and Inomata, M. (1998). Emergence of immunoreactivities for phosphorylated tau and amyloid-β protein in chronic stage of fluid percussion injury in rat brain. Neuroreport 9, 1879–1883.10.1097/00001756-199806010-00039Search in Google Scholar PubMed

Hunt, R.F., Scheff, S.W., and Smith, B.N. (2009). Posttraumatic epilepsy after controlled cortical impact injury in mice. Exp Neurol. 215, 243–252.10.1016/j.expneurol.2008.10.005Search in Google Scholar PubMed PubMed Central

Hunt, R.F., Boychuk, J.A., and Smith, B.N. (2013). Neural circuit mechanisms of post-traumatic epilepsy. Front Cell Neurosci. 7, 89.10.3389/fncel.2013.00089Search in Google Scholar PubMed PubMed Central

Hyder, A.A., Wunderlich, C.A., Puvanachandra, P., Gururaj, G., and Kobusingye, O.C. (2007). The impact of traumatic brain injuries: a global perspective. Neuro. Rehab. 22, 341–354.10.3233/NRE-2007-22502Search in Google Scholar

Israelsson, C., Wang, Y., Kylberg, A., Pick, C.G., Hoffer, B.J., and Ebendal, T. (2009). Closed head injury in a mouse model results in molecular changes indicating inflammatory responses. J. Neurotraum. 26, 1307–1314.10.1089/neu.2008.0676Search in Google Scholar PubMed PubMed Central

Jayakumar, A.R., Tong, X.Y., Ruiz-Cordero, R., Bregy, A., Bethea, J.R., Bramlett, H.M., and Norenberg, M.D. (2014). Activation of NF-κB mediates astrocyte swelling and brain edema in traumatic brain injury. J. Neurotraum. 31, 1249–1257.10.1089/neu.2013.3169Search in Google Scholar PubMed PubMed Central

Jensen, F.E. (2009). Introduction posttraumatic epilepsy: treatable epileptogenesis. Epilepsia 50, 1–3.10.1111/j.1528-1167.2008.02003.xSearch in Google Scholar PubMed PubMed Central

Jiang, Q., Qu, C., Chopp, M., Ding, G.L., Davarani, S.P.N., Helpern, J.A., Jensen, J.H., Zhang, Z.G., Li, L., and Lu, M. (2011). MRI evaluation of axonal reorganization after bone marrow stromal cell treatment of traumatic brain injury. NMR Biomed. 24, 1119–1128.10.1002/nbm.1667Search in Google Scholar PubMed PubMed Central

Johnson, V.E., Stewart, W., and Smith, D.H. (2013). Axonal pathology in traumatic brain injury. Exp. Neurol. 246, 35–43.10.1016/j.expneurol.2012.01.013Search in Google Scholar PubMed PubMed Central

Kabadi, S.V. and Faden, A.I. (2014). Neuroprotective strategies for traumatic brain injury: improving clinical translation. Int. J. Mol. Sci. 15, 1216–1236.10.3390/ijms15011216Search in Google Scholar PubMed PubMed Central

Kabadi, S.V., Hilton, G.D., Stoica, B.A., Zapple, D.N., and Faden, A.I. (2010). Fluid-percussion-induced traumatic brain injury model in rats. Nat. Protocols 5, 1552–1563.10.1038/nprot.2010.112Search in Google Scholar PubMed PubMed Central

Kane, M.J., Angoa-Pérez, M., Briggs, D.I., Viano, D.C., Kreipke, C.W., and Kuhn, D.M. (2012). A mouse model of human repetitive mild traumatic brain injury. J. Neurosci. Methods 203, 41–49.10.1016/j.jneumeth.2011.09.003Search in Google Scholar PubMed PubMed Central

Keel, M. and Trentz, O. (2005). Pathophysiology of polytrauma. Injury 36, 691–709.10.1016/j.injury.2004.12.037Search in Google Scholar PubMed

Kharatishvili, I. and Pitkänen, A. (2010). Association of the severity of cortical damage with the occurrence of spontaneous seizures and hyperexcitability in an animal model of posttraumatic epilepsy. Epilepsy Res. 90, 47–59.10.1016/j.eplepsyres.2010.03.007Search in Google Scholar PubMed

Kharatishvili, I., Nissinen, J., McIntosh, T., and Pitkänen, A. (2006). A model of posttraumatic epilepsy induced by lateral fluid-percussion brain injury in rats. Neurosci. 140, 685–697.10.1016/j.neuroscience.2006.03.012Search in Google Scholar PubMed

Kochanek, P.M., Hendrich, K.S., Dixon, C.E., Schiding, J.K., Williams, D.S., and Ho, C. (2002). Cerebral blood flow at one year after controlled cortical impact in rats: assessment by magnetic resonance imaging. J. Neurotraum. 19, 1029–1037.10.1089/089771502760341947Search in Google Scholar PubMed

Koliatsos, V.E., Cernak, I., Xu, L., Song, Y., Savonenko, A., Crain, B.J., Eberhart, C.G., Frangakis, C.E., Melnikova, T., and Kim, H. (2011). A mouse model of blast injury to brain: initial pathological, neuropathological, and behavioral characterization. J. Neuropathol. Exp. Neurol. 70, 399–416.10.1097/NEN.0b013e3182189f06Search in Google Scholar PubMed

Koshinaga, M., Katayama, Y., Fukushima, M., Oshima, H., Suma, T., and Takahata, T. (2000). Rapid and widespread microglial activation induced by traumatic brain injury in rat brain slices. J. Neurotraum. 17, 185–192.10.1089/neu.2000.17.185Search in Google Scholar

Kowaltowski, A.J. and Vercesi, A.E. (1999). Mitochondrial damage induced by conditions of oxidative stress. Free Radic. Biol. Med. 26, 463–471.10.1016/S0891-5849(98)00216-0Search in Google Scholar

Kowaltowski, A.J., Castilho, R.F., and Vercesi, A.E. (1995). Ca (2+)-induced mitochondrial membrane permeabilization: role of coenzyme Q redox state. Am. J. Physiol. Cell Physiol. 269, C141–C147.10.1152/ajpcell.1995.269.1.C141Search in Google Scholar PubMed

Kuehn, R., Simard, P.F., Driscoll, I., Keledjian, K., Ivanova, S., Tosun, C., Williams, A., Bochicchio, G., Gerzanich, V., and Simard, J.M. (2011). Rodent model of direct cranial blast injury. J. Neurotraum. 28, 2155–2169.10.1089/neu.2010.1532Search in Google Scholar PubMed

Langlois, J.A., Rutland-Brown, W., and Thomas, K.E. (2004). Traumatic brain injury in the United States: emergency department visits, hospitalizations, and deaths. Department of Health and Human Services, Centers for Disease Control and Prevention, Division of Acute Care, Rehabilitation Research and Disability Prevention, National Center for Injury Prevention and Control. CDC Atlanta, Georgia, USA.Search in Google Scholar

Laurer, H.L., and McIntosh, T.K. (1999). Experimental models of brain trauma. Curr. Opin. Neurol. 12, 715–721.10.1097/00019052-199912000-00010Search in Google Scholar PubMed

Lawrence, T. (2009). The nuclear factor NF-κB pathway in inflammation. Cold Spring Harb. Perspect Biol. 1, a001651.10.1101/cshperspect.a001651Search in Google Scholar PubMed PubMed Central

Lee, L.L., Galo, E., Lyeth, B.G., Muizelaar, J.P., and Berman, R.F. (2004). Neuroprotection in the rat lateral fluid percussion model of traumatic brain injury by SNX-185, an N-type voltage-gated calcium channel blocker. Exp. Neurol. 190, 70–78.10.1016/j.expneurol.2004.07.003Search in Google Scholar PubMed

Levin, H.S., Gary Jr, H.E., Eisenberg, H.M., Ruff, R.M., Barth, J.T., Kreutzer, J., High Jr, W.M., Portman, S., Foulkes, M.A., and Jane, J.A. (1990). Neurobehavioral outcome 1 year after severe head injury: experience of the Traumatic Coma Data Bank. J. Neurosurg. 73, 699–709.10.3171/jns.1990.73.5.0699Search in Google Scholar PubMed

Li, L., Chopp, M., Ding, G.L., Qu, C.S., Li, Q.J., Lu, M., Wang, S., Nejad-Davarani, S.P., Mahmood, A., and Jiang, Q. (2012). MRI measurement of angiogenesis and the therapeutic effect of acute marrow stromal cell administration on traumatic brain injury. J. Cereb. Blood Flow Metabol. 32, 2023–2032.10.1038/jcbfm.2012.106Search in Google Scholar PubMed PubMed Central

Lindh, C., Wennersten, A., Arnberg, F., Holmin, S., and Mathiesen, T. (2008). Differences in cell death between high and low energy brain injury in adult rats. Acta Neurochirurg. 150, 1269–1275.10.1007/s00701-008-0147-7Search in Google Scholar PubMed

Liu, Y.R., Cardamone, L., Hogan, R.E., Gregoire, M.-C., Williams, J.P., Hicks, R.J., Binns, D., Koe, A., Jones, N.C., and Myers, D.E. (2010). Progressive metabolic and structural cerebral perturbations after traumatic brain injury: an in vivo imaging study in the rat. J. Nuclear Med. 51, 1788–1795.10.2967/jnumed.110.078626Search in Google Scholar

Löscher, W., Klitgaard, H., Twyman, R.E., and Schmidt, D. (2013). New avenues for anti-epileptic drug discovery and development. Nat. Rev. Drug Disc 12, 757–776.10.1038/nrd4126Search in Google Scholar

Lowenstein, D.H. (2009). Epilepsy after head injury: an overview. Epilepsia 50, 4–9.10.1111/j.1528-1167.2008.02004.xSearch in Google Scholar

Lowenstein, D.H., Thomas, M.J., Smith, D.H., and McIntosh, T.K. (1992). Selective vulnerability of dentate hilar neurons following traumatic brain injury: a potential link between head trauma and disorders of the hippocampus. J. Neurosci. 12, 4841–4853.10.1523/JNEUROSCI.12-12-04846.1992Search in Google Scholar

Lu, J., Marmarou, A., Lapane, K., Turf, E., and Wilson, L. (2010). A method for reducing misclassification in the extended Glasgow outcome score. J. Neurotraum. 27, 843–852.10.1089/neu.2010.1293Search in Google Scholar

Lu, X.-C.M., Mountney, A., Chen, Z., Wei, G., Cao, Y., Leung, L.Y., Khatri, V., Cunningham, T., and Tortella, F.C. (2013). Similarities and differences of acute nonconvulsive seizures and other epileptic activities following penetrating and ischemic brain injuries in rats. J. Neurotraum. 30, 580–590.10.1089/neu.2012.2641Search in Google Scholar

Maas, A.I., Lingsma, H., and Group, I.S. (2008a). New approaches to increase statistical power in TBI trials: insights from the IMPACT study. Springer. Acta Neurochir. (Suppl) 101, 119–124.10.1007/978-3-211-78205-7_20Search in Google Scholar

Maas, A.I., Stocchetti, N., and Bullock, R. (2008b). Moderate and severe traumatic brain injury in adults. Lancet Neurol. 7, 728–741.10.1016/S1474-4422(08)70164-9Search in Google Scholar

Mao, H., Zhang, L., Yang, K.H., and King, A.I. (2006). Application of a finite element model of the brain to study traumatic brain injury mechanisms in the rat. Stapp Car Crash J. 50, 583.10.4271/2006-22-0022Search in Google Scholar

Margulies, S. and Hicks, R. (2009). Combination therapies for traumatic brain injury: prospective considerations. J. Neurotraum. 26, 925–939.10.1089/neu.2008.0794Search in Google Scholar PubMed PubMed Central

Marklund, N. and Hillered, L. (2011). Animal modelling of traumatic brain injury in preclinical drug development: where do we go from here? Brit. J. Pharmacol. 164, 1207–1229.10.1111/j.1476-5381.2010.01163.xSearch in Google Scholar

Marmarou, A., Foda, M.A.A.-E., Brink, W.v.d., Campbell, J., Kita, H., and Demetriadou, K. (1994). A new model of diffuse brain injury in rats: part I: pathophysiology and biomechanics. J. Neurosurg. 80, 291–300.10.3171/jns.1994.80.2.0291Search in Google Scholar

Marmarou, C.R., Prieto, R., Taya, K., Young, H.F., and Marmarou, A. (2009). Marmarou weight drop injury model. Animal Models of Acute Neurological Injuries. J. Chen, Z.C. Xu, and X.M. Xu, J.H. Zhang, eds. (Totowa, NJ, USA: Humana Press), pp. 393–407.10.1007/978-1-60327-185-1_34Search in Google Scholar

Mautes, A.E., Thome, D., Stewdel, W.I., Nacimiento, A. C., Yang, Y., Shohami, E. (2001). Changes in regional energy metabolism after closed head injury in the rat. J. Mol. Neurosci. 16, 33–39.10.1385/JMN:16:1:33Search in Google Scholar

McAllister, T.W. (2011). Neurobiological consequences of traumatic brain injury. Dialogues Clin. Neurosci. 13, 287–300.10.31887/DCNS.2011.13.2/tmcallisterSearch in Google Scholar

McIntosh, T.K., Noble, L., Andrews, B., and Faden, A.I. (1987). Traumatic brain injury in the rat: characterization of a midline fluid-percussion model. Central Nervous Sys. Trauma. 4, 119–134.10.1089/cns.1987.4.119Search in Google Scholar

McIntosh, T., Vink, R., Noble, L., Yamakami, I., Fernyak, S., Soares, H., and Faden, A. (1989). Traumatic brain injury in the rat: characterization of a lateral fluid-percussion model. Neurosci. 28, 233–244.10.1016/0306-4522(89)90247-9Search in Google Scholar

McIntosh, T.K., Smith, D.H., Meaney, D.F., Kotapka, M.J., Gennarelli, T.A., and Graham, D.I. (1996). Neuropathological sequelae of traumatic brain injury: relationship to neurochemical and biomechanical mechanisms. Lab. Invest. 74, 315–342.Search in Google Scholar

McNamara, K.C., Lisembee, A.M., and Lifshitz, J. (2010). The whisker nuisance task identifies a late-onset, persistent sensory sensitivity in diffuse brain-injured rats. J. Neurotraum. 27, 695–706.10.1089/neu.2009.1237Search in Google Scholar

Mendes Arent, A., Souza, L.F.d., Walz, R., and Dafre, A.L. (2014). Perspectives on molecular biomarkers of oxidative stress and antioxidant strategies in traumatic brain injury. Bio Med. Res. Int. 2014, 18.10.1155/2014/723060Search in Google Scholar PubMed PubMed Central

Menon, D.K., Schwab, K., Wright, D.W., and Maas, A.I. (2010). Position statement: definition of traumatic brain injury. Arch. Phys. Med. Rehabil. 91, 1637–1640.10.1016/j.apmr.2010.05.017Search in Google Scholar PubMed

Mikawa, S., Kinouchi, H., Kamii, H., Gobbel, G.T., Chen, S.F., Carlson, E., Epstein, C.J., and Chan, P.H. (1996). Attenuation of acute and chronic damage following traumatic brain injury in copper, zinc-superoxide dismutase transgenic mice. J. Neurosurg. 85, 885–891.10.3171/jns.1996.85.5.0885Search in Google Scholar

Miyazaki, S., Katayama, Y., Lyeth, B., Jenkins, L., DeWitt, D., Goldberg, S., Newlon, P., and Hayes, R. (1992). Enduring suppression of hippocampal long-term potentiation following traumatic brain injury in rat. Brain Res. 585, 335–339.10.1016/0006-8993(92)91232-4Search in Google Scholar

Morales, D., Marklund, N., Lebold, D., Thompson, H., Pitkanen, A., Maxwell, W., Longhi, L., Laurer, H., Maegele, M., and Neugebauer, E. (2005). Experimental models of traumatic brain injury: do we really need to build a better mousetrap? Neurosci. 136, 971–989.10.1016/j.neuroscience.2005.08.030Search in Google Scholar

Morrison III, B., Saatman, K.E., Meaney, D.F., and McIntosh, T.K. (1998). In vitro central nervous system models of mechanically induced trauma: a review. J. Neurotraum. 15, 911–928.10.1089/neu.1998.15.911Search in Google Scholar

Nilsson, P., Gazelius, B., Carlson, H., and Hillered, L. (1996). Continuous measurement of changes in regional cerebral blood flow following cortical compression contusion trauma in the rat. J. Neurotraum. 13, 201–207.10.1089/neu.1996.13.201Search in Google Scholar

Noebels, J.L., Avoli, M., Rogawski, M.A., Olsen, R.W., Delgado-Escueta, A.V., Pitkänen, A., and Bolkvadze, T. (2012). Jasper’s Basic Mechanisms of the Epilepsies, 4th edition. Head Trauma and Epilepsy. J. L. Noebels, M. Avoli, M. A. Rogawski, R. W. Olsen, and A. V. Delgado-Escueta, eds. (Bethesda, MD, USA: National Center for Biotechnology Information).10.1093/med/9780199746545.001.0001Search in Google Scholar

Nortje, J. and Menon, D.K. (2004). Traumatic brain injury: physiology, mechanisms, and outcome. Curr. Opin. Neurol. 17, 711–718.10.1097/00019052-200412000-00011Search in Google Scholar

O’Neill, L.A. and Kaltschmidt, C. (1997). NF-kB: a crucial transcription factor for glial and neuronal cell function. Trends Neurosci. 20, 252–258.10.1016/S0166-2236(96)01035-1Search in Google Scholar

Paschen, W. (2003). Endoplasmic reticulum: a primary target in various acute disorders and degenerative diseases of the brain. Cell Calcium 34, 365–383.10.1016/S0143-4160(03)00139-8Search in Google Scholar

Penkowa, M., Giralt, M., Carrasco, J., Hadberg, H., and Hidalgo, J. (2000). Impaired inflammatory response and increased oxidative stress and neurodegeneration after brain injury in interleukin-6-deficient mice. Glia 32, 271–285.10.1002/1098-1136(200012)32:3<271::AID-GLIA70>3.0.CO;2-5Search in Google Scholar

Pifarré, P., Prado, J., Giralt, M., Molinero, A., Hidalgo, J., and Garcia, A. (2010). Cyclic GMP phosphodiesterase inhibition alters the glial inflammatory response, reduces oxidative stress and cell death and increases angiogenesis following focal brain injury. J. Neurochem. 112, 807–817.10.1111/j.1471-4159.2009.06518.xSearch in Google Scholar

Pitkänen, A. and Bolkvadze, T. (2010). Head trauma and epilepsy. Jas. Basic Mech. Epilepsia 51 (Suppl. 5), 31.10.1093/med/9780199746545.003.0025Search in Google Scholar

Pitkänen, A. and Immonen, R. (2014). Epilepsy related to traumatic brain injury. Neurotherapeut 11, 286–296.10.1007/s13311-014-0260-7Search in Google Scholar

Pitkänen, A. and Sutula, T.P. (2002). Is epilepsy a progressive disorder? Prospects for new therapeutic approaches in temporal-lobe epilepsy. Lancet Neurol. 1, 173–181.10.1016/S1474-4422(02)00073-XSearch in Google Scholar

Pitkänen, A., Kharatishvili, I., Karhunen, H., Lukasiuk, K., Immonen, R., Nairismägi, J., Gröhn, O., and Nissinen, J. (2007). Epileptogenesis in experimental models. Epilepsia 48, 13–20.10.1111/j.1528-1167.2007.01063.xSearch in Google Scholar PubMed

Pitkänen, A., Immonen, R.J., Gröhn, O.H., and Kharatishvili, I. (2009). From traumatic brain injury to posttraumatic epilepsy: what animal models tell us about the process and treatment options. Epilepsia 50, 21–29.10.1111/j.1528-1167.2008.02007.xSearch in Google Scholar PubMed

Plantman, S., Ng, K.C., Lu, J., Davidsson, J., and Risling, M. (2012). Characterization of a novel rat model of penetrating traumatic brain injury. J. Neurotraum. 29, 1219–1232.10.1089/neu.2011.2182Search in Google Scholar PubMed

Prins, M.L., and Hovda, D.A. (2003). Developing experimental models to address traumatic brain injury in children. J. Neurotraum. 20, 123–137.10.1089/08977150360547053Search in Google Scholar PubMed

Raghavendra Rao, V.L., Dhodda, V.K., Song, G., Bowen, K.K., and Dempsey, R.J. (2003). Traumatic brain injury-induced acute gene expression changes in rat cerebral cortex identified by GeneChip analysis. J. Neurosci. Res. 71, 208–219.10.1002/jnr.10486Search in Google Scholar PubMed

Rákos, G., Kis, Z., Nagy, D., Lür, G., Farkas, T., Hortobágyi, T., Vécsei, L., and Toldi, J. (2007). Evans Blue fluorescence permits the rapid visualization of non-intact cells in the perilesional rim of cold-injured rat brain. Acta Neurobiol. Exp. 67, 149–154.10.55782/ane-2007-1642Search in Google Scholar

Rao, V.L., Dogan, A., Bowen, K.K., Todd, K.G., and Dempsey, R.J. (2001). Antisense knockdown of glial glutamate transporter GLT-1 exacerbates hippocampal neuronal damage following traumatic brain injury in the rat brain. Eur. J. Neurosci. 13, 119–128.10.1046/j.1460-9568.2001.01367.xSearch in Google Scholar

Raslan, F., Schwarz, T., Meuth, S.G., Austinat, M., Bader, M., Renné, T., Roosen, K., Stoll, G., Sirén, A.-L., and Kleinschnitz, C. (2010). Inhibition of bradykinin receptor B1 protects mice from focal brain injury by reducing blood-brain barrier leakage and inflammation. J. Cerebral Blood Flow Metabol. 30, 1477–1486.10.1038/jcbfm.2010.28Search in Google Scholar PubMed PubMed Central

Redecker, C., Luhmann, H.J., Hagemann, G., Fritschy, J.-M., and Witte, O.W. (2000). Differential downregulation of GABAA receptor subunits in widespread brain regions in the freeze-lesion model of focal cortical malformations. J. Neurosci. 20, 5045–5053.10.1523/JNEUROSCI.20-13-05045.2000Search in Google Scholar

Reid, W.M., Rolfe, A., Register, D., Levasseur, J.E., Churn, S.B., and Sun, D. (2010). Strain-related differences after experimental traumatic brain injury in rats. J. Neurotraum. 27, 1243–1253.10.1089/neu.2010.1270Search in Google Scholar

Reneer, D.V., Hisel, R.D., Hoffman, J.M., Kryscio, R.J., Lusk, B.T., and Geddes, J.W. (2011). A multi-mode shock tube for investigation of blast-induced traumatic brain injury. J. Neurotraum. 28, 95–104.10.1089/neu.2010.1513Search in Google Scholar

Risling, M. and Davidsson, J. (2012). Experimental animal models for studies on the mechanisms of blast-induced neurotrauma. Front Neurol. 3, 30.10.3389/fneur.2012.00030Search in Google Scholar

Roozenbeek, B., Maas, A.I., and Menon, D.K. (2013). Changing patterns in the epidemiology of traumatic brain injury. Nat. Rev. Neurol. 9, 231–236.10.1038/nrneurol.2013.22Search in Google Scholar

Säljö, A., Svensson, B., Mayorga, M., Hamberger, A., and Bolouri, H. (2009). Low-level blasts raise intracranial pressure and impair cognitive function in rats. J. Neurotraum. 26, 1345–1352.10.1089/neu.2008.0856Search in Google Scholar

Samuels, C.N., Kamlien, E., Flink, R. Lindholm, D., and Ronne-Engström, E. (2000). Decreased cortical levels of astrocytic glutamate transport protein in a sat model of post traumatic epilepsy. Neurosci. Lett. 289, 185–188.10.1016/S0304-3940(00)01284-2Search in Google Scholar

Sandhir, R., Onyszchuk, G., and Berman, N.E. (2008). Exacerbated glial response in the aged mouse hippocampus following controlled cortical impact injury. Exp. Neurol. 213, 372–380.10.1016/j.expneurol.2008.06.013Search in Google Scholar PubMed PubMed Central

Santha, K.V., Ratzliff, A.D., Jeng, J., Toth, Z., and Soltesz, I. (2001). Long term hyper excitability in the hippocampus after experimental head trauma. Ann. Neurol. 50, 708–717.10.1002/ana.1230Search in Google Scholar PubMed

Schmidt, R.H., Schoten, K.J., and Maughan, P.H. (2000). Cognitive impairment and synaptosomal choline uptake in rats following impact acceleration injury. J. Neurotraum. 17, 1129–1139.10.1089/neu.2000.17.1129Search in Google Scholar PubMed

Schwartzhain, P.A., Baraban, S.C., and Hochman, D.W. (1998). Osmolarity, ionic flux and changes in brain excitability. Epilepsy Res. 32, 275–285.10.1016/S0920-1211(98)00058-8Search in Google Scholar

Shapira, Y., Shohami, E., Sidi, A., Soffer, D., Freeman, S., and Cotev, S. (1988). Experimental closed head injury in rats: mechanical, pathophysiologic, and neurologic properties. Crit. Care Med. 16, 258–265.10.1097/00003246-198803000-00010Search in Google Scholar PubMed

Shear, D.A., Williams, A.J., Sharrow, K., Lu, X.-C.M., and Tortella, F.C. (2009). Neuroprotective profile of dextromethorphan in an experimental model of penetrating ballistic-like brain injury. Pharmacol. Biochem. Behav. 94, 56–62.10.1016/j.pbb.2009.07.006Search in Google Scholar PubMed

Shear, D.A., Lu, X.-C.M., Bombard, M.C., Pedersen, R., Chen, Z., Davis, A., and Tortella, F.C. (2010). Longitudinal characterization of motor and cognitive deficits in a model of penetrating ballistic-like brain injury. J. Neurotraum. 27, 1911–1923.10.1089/neu.2010.1399Search in Google Scholar PubMed

Shear, D.A., Lu, X.-C.M., Pedersen, R., Wei, G., Chen, Z., Davis, A., Yao, C., Dave, J., and Tortella, F.C. (2011). Severity profile of penetrating ballistic-like brain injury on neurofunctional outcome, blood-brain barrier permeability, and brain edema formation. J. Neurotraum. 28, 2185–2195.10.1089/neu.2011.1916Search in Google Scholar PubMed

Shohami, E., Shapira, Y., and Cotev, S. (1988). Experimental closed head injury in rats: prostaglandin production in a noninjured zone. Neurosurg. 22, 859–863.10.1097/00006123-198805000-00009Search in Google Scholar

Silva, L.F.A., Hoffmann, M.S., Rambo, L.M., Ribeiro, L.R., Lima, F.D., Furian, A.F., Oliveira, M.S., Fighera, M.R., and Royes, L.F.F. (2011). The involvement of Na+, K+-ATPase activity and free radical generation in the susceptibility to pentylenetetrazol-induced seizures after experimental traumatic brain injury. J. Neurol. Sci. 308, 35–40.10.1016/j.jns.2011.06.030Search in Google Scholar PubMed

Sirén, A.-L., Radyushkin, K., Boretius, S., Kämmer, D., Riechers, C.-C., Natt, O., Sargin, D., Watanabe, T., Sperling, S., and Michaelis, T. (2006). Global brain atrophy after unilateral parietal lesion and its prevention by erythropoietin. Brain 129, 480–489.10.1093/brain/awh703Search in Google Scholar PubMed

Skandsen, T., Lund, T.I., Fredriksli, O., and Vik, A. (2008). Global outcome, productivity and epilepsy 3–8 years after severe head injury. The impact of injury severity. Clinic Rehab. 22, 653–662.10.1177/0269215508089067Search in Google Scholar PubMed

Statler, K.D., Swank, S., Abildskov, T., Bigler, E.D., and White, H.S. (2008). Traumatic brain injury during development reduces minimal clonic seizure thresholds at maturity. Epilepsy Res. 80, 163–170.10.1016/j.eplepsyres.2008.04.001Search in Google Scholar PubMed PubMed Central

Statler, K., Scheerlinck, P., Pouliot, W., Hamilton, M., White, H., and Dudek, F. (2009). A potential model of pediatric posttraumatic epilepsy. Epilepsy Res. 86, 221–223.10.1016/j.eplepsyres.2009.05.006Search in Google Scholar PubMed PubMed Central

Stein, D. (2011). Progesterone in the treatment of acute traumatic brain injury: a clinical perspective and update. Neurosci. 191, 101–106.10.1016/j.neuroscience.2011.04.013Search in Google Scholar PubMed

Sullivan, P., Rabchevsky, A., Waldmeier, P., and Springer, J. (2005). Mitochondrial permeability transition in CNS trauma: cause or effect of neuronal cell death? J. Neurosci. Res. 79, 231–239.10.1002/jnr.20292Search in Google Scholar PubMed

Sundaramurthy, A., Alai, A., Ganpule, S., Holmberg, A., Plougonven, E., and Chandra, N. (2012). Blast-induced biomechanical loading of the rat: an experimental and anatomically accurate computational blast injury model. J. Neurotraum. 29, 2352–2364.10.1089/neu.2012.2413Search in Google Scholar PubMed

Tabatabaei, S. and Seddighi, A. (2008). Pediatric head injury. Iran J. Child Neurol. 2, 7–13.Search in Google Scholar

Tan, A.A., Quigley, A., Smith, D.C., and Hoane, M.R. (2009). Strain differences in response to traumatic brain injury in Long-Evans compared to Sprague-Dawley rats. J. Neurotraum. 26, 539–548.10.1089/neu.2008.0611Search in Google Scholar PubMed PubMed Central

Temkin, N.R. (2001). Antiepileptogenesis and seizure prevention trials with antiepileptic drugs: meta-analysis of controlled trials. Epilepsia 42, 515–524.10.1046/j.1528-1157.2001.28900.xSearch in Google Scholar PubMed

Temhin, N.R., Jarell, A.D., and Andereson, G.D. (2001). Anti epileptogenic agents: how close are we? Drugs 61, 1045–1055.10.2165/00003495-200161080-00002Search in Google Scholar PubMed

Tengvar, C. and Olsson, Y. (1982). Uptake of macromolecules into neurons from a focal vasogenic cerebral edema and subsequent axonal spread to other brain regions. Acta Neuropathol. 57, 233–235.10.1007/BF00685395Search in Google Scholar PubMed

Thompson, H.J., Lifshitz, J., Marklund, N., Grady, M.S., Graham, D.I., Hovda, D.A., and McIntosh, T.K. (2005). Lateral fluid percussion brain injury: a 15-year review and evaluation. J. Neurotraum. 22, 42–75.10.1089/neu.2005.22.42Search in Google Scholar PubMed

Umschwief, G., Na’ama, A.S., Alexandrovich, A.G., Trembovler, V., Horowitz, M., and Shohami, E. (2010). Heat acclimation provides sustained improvement in functional recovery and attenuates apoptosis after traumatic brain injury. J. Cereb. Blood. Flow Metab. 30, 616–627.10.1038/jcbfm.2009.234Search in Google Scholar PubMed PubMed Central

Unterberg, A., Stover, J., Kress, B., and Kiening, K. (2004). Edema and brain trauma. Neuroscience 129, 1019–1027.10.1016/j.neuroscience.2004.06.046Search in Google Scholar

Vink, R., Mullins, P.G., Temple, M.D., Bao, W., and Faden, A.I. (2001). Small shifts in craniotomy position in the lateral fluid percussion injury model are associated with differential lesion development. J. Neurotraum. 18, 839–847.10.1089/089771501316919201Search in Google Scholar

Wang, H.-C. and Ma, Y.-B. (2010). Experimental models of traumatic axonal injury. J. Clin. Neurosci. 17, 157–162.10.1016/j.jocn.2009.07.099Search in Google Scholar

Weaver, D.F. (2003). Epileptogenesis, ictogenesis and the design of future antiepileptic drugs. Canad. J. Neurol. Sci. 30, 4–7.10.1017/S0317167100002353Search in Google Scholar

Wei, G., Lu, X.-C.M., Yang, X., and Tortella, F.C. (2010). Intracranial pressure following penetrating ballistic-like brain injury in rats. J. Neurotraum. 27, 1635–1641.10.1089/neu.2010.1378Search in Google Scholar

Werner, C., and Engelhard, K. (2007). Pathophysiology of traumatic brain injury. Br. J. Anaesthesia 99, 4–9.10.1093/bja/aem131Search in Google Scholar

White, H.S. (2002). Animal models of epileptogenesis. Neurology 59, S7–S14.10.1212/WNL.59.9_suppl_5.S7Search in Google Scholar

Williams, A.J., Hartings, J.A., Lu, X.-C.M., Rolli, M.L., Dave, J.R., and Tortella, F.C. (2005). Characterization of a new rat model of penetrating ballistic brain injury. J. Neurotraum. 22, 313–331.10.1089/neu.2005.22.313Search in Google Scholar

Williams, A.J., Hartings, J.A., Lu, X.-C.M., Rolli, M.L., and Tortella, F.C. (2006). Penetrating ballistic-like brain injury in the rat: differential time courses of hemorrhage, cell death, inflammation, and remote degeneration. J. Neurotraum. 23, 1828–1846.10.1089/neu.2006.23.1828Search in Google Scholar

Willmore, L.J. and Rubin, J.J. (1984). Effects of antiperoxidants on FeCl2-induced lipid peroxidation and focal edema in rat brain. Exp. Neurol. 83, 62–70.10.1016/0014-4886(84)90046-3Search in Google Scholar

Willmore, L.J., Sypert, G.W., Munson, J., and Hurd, R.W. (1978). Chronic focal epileptiform discharges induced by injection of iron into rat and cat cortex. Science 200, 1501–1503.10.1126/science.96527Search in Google Scholar

Xie, Y.-F., MacDonald, J.F., and Jackson, M.F. (2010). TRPM2, calcium and neurodegenerative diseases. Int. J. Physiol. Pathophysiol. Pharmacol. 2, 95–103.Search in Google Scholar

Xiong, Y., Gu, Q., Peterson, P., Muizelaar, J., and Lee, C. (1997). Mitochondrial dysfunction and calcium perturbation induced by traumatic brain injury. J. Neurotraum. 14, 23–34.10.1089/neu.1997.14.23Search in Google Scholar

Xiong, Y., Mahmood, A., and Chopp, M. (2009). Emerging treatments for traumatic brain injury. Expert Opin. Emerg. Drugs 14, 67–84.10.1517/14728210902769601Search in Google Scholar

Xiong, Y., Mahmood, A., and Chopp, M. (2013). Animal models of traumatic brain injury. Nature Rev. Neurosci. 14, 128–142.10.1038/nrn3407Search in Google Scholar

Yamaki, T., Murakami, N., Iwamoto, Y., Sakakibara, T., Kobori, N., Ueda, S., Kikuchi, T., and Uwahodo, Y. (1997). Evaluation of learning and memory dysfunction and histological findings in rats with chronic stage contusion and diffuse axonal injury. Brain Res. 752, 151–160.10.1016/S0006-8993(96)01469-2Search in Google Scholar

Ziebell, J.M., and Morganti-Kossmann, M.C. (2010). Involvement of pro-and anti-inflammatory cytokines and chemokines in the pathophysiology of traumatic brain injury. Neurotherapeut 7, 22–30.10.1016/j.nurt.2009.10.016Search in Google Scholar

Zohar, O., Schreiber, S., Getslev, V., Schwartz, J., Mullins, P., and Pick, C. (2003). Closed-head minimal traumatic brain injury produces long-term cognitive deficits in mice. Neurosci. 118, 949–955.10.1016/S0306-4522(03)00048-4Search in Google Scholar

Received: 2015-9-18
Accepted: 2015-10-21
Published Online: 2015-11-18
Published in Print: 2016-4-1

©2016 by De Gruyter

Downloaded on 26.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/revneuro-2015-0050/html
Scroll to top button