The role of non-receptor protein tyrosine kinases in the excitotoxicity induced by the overactivation of NMDA receptors
Abstract
Protein tyrosine phosphorylation is one of the primary modes of regulation of N-methyl-d-aspartate (NMDA) receptors. The non-receptor tyrosine kinases are one of the two types of protein tyrosine kinases that are involved in this process. The overactivation of NMDA receptors is a primary reason for neuron death following cerebral ischemia. Many studies have illustrated the important role of non-receptor tyrosine kinases in ischemia insults. This review introduces the roles of Src, Fyn, focal adhesion kinase, and proline-rich tyrosine kinase 2 in the excitotoxicity induced by the overactivation of NMDA receptors following cerebral ischemia.
Acknowledgments
The authors acknowledge support from the Natural Science Foundation of China (NSFC 81200886, NSFC 81402886), the Natural Science Foundation of Hebei Province (H2014208004), the Science and Technology Project of Hebei Province (13397703D), the Key Basic Research Program of the Application Foundation Research Project of Hebei Province (14967719D, 15962704D), the State Key Laboratory Breeding Base–Hebei Key Laboratory of Molecular Chemistry for Drug, and Hebei Research Center of Pharmaceutical and Chemical Engineering.
References
Ali, D.W. and Salter, M.W. (2001). NMDA receptor regulation by Src kinase signalling in excitatory synaptic transmission and plasticity. Curr. Opin. Neurobiol. 11, 336–342.10.1016/S0959-4388(00)00216-6Suche in Google Scholar
Bartos, J.A., Ulrich, J.D., Li, H., Beazely, M.A., Chen, Y., Macdonald, J.F., and Hell, J.W. (2010). Postsynaptic clustering and activation of Pyk2 by PSD-95. J. Neurosci. 30, 449–463.10.1523/JNEUROSCI.4992-08.2010Suche in Google Scholar PubMed PubMed Central
Bikis, C., Moris, D., Vasileiou, I., Patsouris, E., and Theocharis, S. (2015). FAK/Src family of kinases: protective or aggravating factor for ischemia reperfusion injury in nervous system? Expert Opin. Ther. Targets 19, 539–549.10.1517/14728222.2014.990374Suche in Google Scholar PubMed
Bongiorno-Borbone, L., Kadare, G., Benfenati, F., and Girault, J.A. (2005). FAK and PYK2 interact with SAP90/PSD-95-Associated Protein-3. Biochem. Biophys. Res. Commun. 337, 641–646.10.1016/j.bbrc.2005.09.099Suche in Google Scholar PubMed
Cao, X., Kambe, F., Yamauchi, M., and Seo, H. (2009). Thyroid-hormone-dependent activation of the phosphoinositide 3-kinase/Akt cascade requires Src and enhances neuronal survival. Biochem. J. 424, 201–209.10.1042/BJ20090643Suche in Google Scholar PubMed
Encinas, M., Tansey, M.G., Tsui-Pierchala, B.A., Comella, J.X., Milbrandt, J., and Johnson, E.M., Jr. (2001). c-Src is required for glial cell line-derived neurotrophic factor (GDNF) family ligand-mediated neuronal survival via a phosphatidylinositol-3 kinase (PI-3K)-dependent pathway. J. Neurosci. 21, 1464–1472.10.1523/JNEUROSCI.21-05-01464.2001Suche in Google Scholar
Encinas, M., Crowder, R.J., Milbrandt, J., and Johnson, E.M., Jr. (2004). Tyrosine 981, a novel ret autophosphorylation site, binds c-Src to mediate neuronal survival. J. Biol. Chem. 279, 18262–18269.10.1074/jbc.M400505200Suche in Google Scholar PubMed
Gingrich, J.R., Pelkey, K.A., Fam, S.R., Huang, Y., Petralia, R.S., Wenthold, R.J., and Salter, M.W. (2004). Unique domain anchoring of Src to synaptic NMDA receptors via the mitochondrial protein NADH dehydrogenase subunit 2. Proc. Natl. Acad. Sci. USA 101, 6237–6242.10.1073/pnas.0401413101Suche in Google Scholar PubMed PubMed Central
Gocek, E., Moulas, A.N., and Studzinski, G.P. (2014). Non-receptor protein tyrosine kinases signaling pathways in normal and cancer cells. Crit. Rev. Clin. Lab. Sci. 51, 125–137.10.3109/10408363.2013.874403Suche in Google Scholar PubMed
Guo, J., Meng, F., Fu, X., Song, B., Yan, X., and Zhang, G. (2004). N-methyl-d-aspartate receptor and L-type voltage-gated Ca2+ channel activation mediate proline-rich tyrosine kinase 2 phosphorylation during cerebral ischemia in rats. Neurosci. Lett. 355, 177–180.10.1016/j.neulet.2003.10.076Suche in Google Scholar PubMed
Hardingham, G.E. and Bading, H. (2010). Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat. Rev. Neurosci. 11, 682–696.10.1038/nrn2911Suche in Google Scholar
Heidinger, V., Manzerra, P., Wang, X.Q., Strasser, U., Yu, S.P., Choi, D.W., and Behrens, M.M. (2002). Metabotropic glutamate receptor 1-induced upregulation of NMDA receptor current: mediation through the Pyk2/Src-family kinase pathway in cortical neurons. J. Neurosci. 22, 5452–5461.10.1523/JNEUROSCI.22-13-05452.2002Suche in Google Scholar
Hossain, M.I., Kamaruddin, M.A., and Cheng, H.C. (2012). Aberrant regulation and function of Src family tyrosine kinases: their potential contributions to glutamate-induced neurotoxicity. Clin. Exp. Pharmacol. Physiol. 39, 684–691.10.1111/j.1440-1681.2011.05621.xSuche in Google Scholar
Hou, X.Y., Zhang, G.Y., and Zong, Y.Y. (2003). Suppression of postsynaptic density protein 95 expression attenuates increased tyrosine phosphorylation of NR2A subunits of N-methyl-d-aspartate receptors and interactions of Src and Fyn with NR2A after transient brain ischemia in rat hippocampus. Neurosci. Lett. 343, 125–128.10.1016/S0304-3940(03)00365-3Suche in Google Scholar
Hou, X.Y., Liu, Y., and Zhang, G.Y. (2007). PP2, a potent inhibitor of Src family kinases, protects against hippocampal CA1 pyramidal cell death after transient global brain ischemia. Neurosci. Lett. 420, 235–239.10.1016/j.neulet.2007.03.048Suche in Google Scholar
Huang, Y., Lu, W., Ali, D.W., Pelkey, K.A., Pitcher, G.M., Lu, Y.M., Aoto, H., Roder, J.C., Sasaki, T., Salter, M.W., et al. (2001). CAKβ/Pyk2 kinase is a signaling link for induction of long-term potentiation in CA1 hippocampus. Neuron 29, 485–496.10.1016/S0896-6273(01)00220-3Suche in Google Scholar
Ittner, L.M., Ke, Y.D., Delerue, F., Bi, M., Gladbach, A., van Eersel, J., Wolfing, H., Chieng, B.C., Christie, M.J., Napier, I.A., et al. (2010). Dendritic function of tau mediates amyloid-β toxicity in Alzheimer’s disease mouse models. Cell 142, 387–397.10.1016/j.cell.2010.06.036Suche in Google Scholar
Jiang, X., Mu, D., Biran, V., Faustino, J., Chang, S., Rincon, C.M., Sheldon, R.A., and Ferriero, D.M. (2008). Activated Src kinases interact with the N-methyl-d-aspartate receptor after neonatal brain ischemia. Ann. Neurol. 63, 632–641.10.1002/ana.21365Suche in Google Scholar
Kalia, L.V. and Salter, M.W. (2003). Interactions between Src family protein tyrosine kinases and PSD-95. Neuropharmacology 45, 720–728.10.1016/S0028-3908(03)00313-7Suche in Google Scholar
Knox, R., Zhao, C., Miguel-Perez, D., Wang, S., Yuan, J., Ferriero, D., and Jiang, X. (2013). Enhanced NMDA receptor tyrosine phosphorylation and increased brain injury following neonatal hypoxia-ischemia in mice with neuronal Fyn overexpression. Neurobiol. Dis. 51, 113–119.10.1016/j.nbd.2012.10.024Suche in Google Scholar PubMed PubMed Central
Kohr, G. and Seeburg, P.H. (1996). Subtype-specific regulation of recombinant NMDA receptor-channels by protein tyrosine kinases of the Src family. J. Physiol. 492, 445–452.10.1113/jphysiol.1996.sp021320Suche in Google Scholar
Liang, S., Pong, K., Gonzales, C., Chen, Y., Ling, H.P., Mark, R.J., Boschelli, F., Boschelli, D.H., Ye, F., Barrios Sosa, A.C., et al. (2009). Neuroprotective profile of novel SRC kinase inhibitors in rodent models of cerebral ischemia. J. Pharmacol. Exp. Ther. 331, 827–835.10.1124/jpet.109.156562Suche in Google Scholar
Lipinski, C.A. and Loftus, J.C. (2010). Targeting Pyk2 for therapeutic intervention. Expert Opin. Ther. Targets 14, 95–108.10.1517/14728220903473194Suche in Google Scholar
Liu, Y., Zhang, G., Gao, C., and Hou, X. (2001). NMDA receptor activation results in tyrosine phosphorylation of NMDA receptor subunit 2A(NR2A) and interaction of Pyk2 and Src with NR2A after transient cerebral ischemia and reperfusion. Brain Res. 909, 51–58.10.1016/S0006-8993(01)02619-1Suche in Google Scholar
Liu, Y., Zhang, G.Y., Hou, X.Y., and Xu, T.L. (2003). Two types of calcium channels regulating activation of proline-rich tyrosine kinase 2 induced by transient brain ischemia in rat hippocampus. Neurosci. Lett. 348, 127–130.10.1016/S0304-3940(03)00618-9Suche in Google Scholar
Ma, J. and Zhang, G.Y. (2003). Lithium reduced N-methyl-d-aspartate receptor subunit 2A tyrosine phosphorylation and its interactions with Src and Fyn mediated by PSD-95 in rat hippocampus following cerebral ischemia. Neurosci. Lett. 348, 185–189.10.1016/S0304-3940(03)00784-5Suche in Google Scholar
Ma, J., Zhang, G.Y., Liu, Y., Yan, J.Z., and Hao, Z.B. (2004). Lithium suppressed Tyr-402 phosphorylation of proline-rich tyrosine kinase (Pyk2) and interactions of Pyk2 and PSD-95 with NR2A in rat hippocampus following cerebral ischemia. Neurosci. Res. 49, 357–362.10.1016/j.neures.2004.04.004Suche in Google Scholar PubMed
Nakazawa, T., Komai, S., Tezuka, T., Hisatsune, C., Umemori, H., Semba, K., Mishina, M., Manabe, T., and Yamamoto, T. (2001). Characterization of Fyn-mediated tyrosine phosphorylation sites on GluR epsilon 2 (NR2B) subunit of the N-methyl-d-aspartate receptor. J. Biol. Chem. 276, 693–699.10.1074/jbc.M008085200Suche in Google Scholar PubMed
Park, S.Y., Avraham, H.K., and Avraham, S. (2004). RAFTK/Pyk2 activation is mediated by trans-acting autophosphorylation in a Src-independent manner. J. Biol. Chem. 279, 33315–33322.10.1074/jbc.M313527200Suche in Google Scholar PubMed
Paul, R., Zhang, Z.G., Eliceiri, B.P., Jiang, Q., Boccia, A.D., Zhang, R.L., Chopp, M., and Cheresh, D.A. (2001). Src deficiency or blockade of Src activity in mice provides cerebral protection following stroke. Nat. Med. 7, 222–227.10.1038/84675Suche in Google Scholar PubMed
Prybylowski, K., Chang, K., Sans, N., Kan, L., Vicini, S., and Wenthold, R.J. (2005). The synaptic localization of NR2B-containing NMDA receptors is controlled by interactions with PDZ proteins and AP-2. Neuron 47, 845–857.10.1016/j.neuron.2005.08.016Suche in Google Scholar
Sato, Y., Tao, Y.X., Su, Q., and Johns, R.A. (2008). Post-synaptic density-93 mediates tyrosine-phosphorylation of the N-methyl-d-aspartate receptors. Neuroscience 153, 700–708.10.1016/j.neuroscience.2008.03.006Suche in Google Scholar
Schenone, S., Brullo, C., Musumeci, F., Biava, M., Falchi, F., and Botta, M. (2011). Fyn kinase in brain diseases and cancer: the search for inhibitors. Curr. Med. Chem. 18, 2921–2942.10.2174/092986711796150531Suche in Google Scholar
Seabold, G.K., Burette, A., Lim, I.A., Weinberg, R.J., and Hell, J.W. (2003). Interaction of the tyrosine kinase Pyk2 with the N-methyl-d-aspartate receptor complex via the Src homology 3 domains of PSD-95 and SAP102. J. Biol. Chem. 278, 15040–15048.10.1074/jbc.M212825200Suche in Google Scholar
Shani, V., Bromberg, Y., Sperling, O., and Zoref-Shani, E. (2009). Involvement of Src tyrosine kinases (SFKs) and of focal adhesion kinase (FAK) in the injurious mechanism in rat primary neuronal cultures exposed to chemical ischemia. J. Mol. Neurosci. 37, 50–59.10.1007/s12031-008-9113-3Suche in Google Scholar
Tezuka, T., Umemori, H., Akiyama, T., Nakanishi, S., and Yamamoto, T. (1999). PSD-95 promotes Fyn-mediated tyrosine phosphorylation of the N-methyl-d-aspartate receptor subunit NR2A. Proc. Natl. Acad. Sci. USA 96, 435–440.10.1073/pnas.96.2.435Suche in Google Scholar
Xu, F., Plummer, M.R., Len, G.W., Nakazawa, T., Yamamoto, T., Black, I.B., and Wu, K. (2006). Brain-derived neurotrophic factor rapidly increases NMDA receptor channel activity through Fyn-mediated phosphorylation. Brain Res. 1121, 22–34.10.1016/j.brainres.2006.08.129Suche in Google Scholar
Xu, J., Kurup, P., Bartos, J.A., Patriarchi, T., Hell, J.W., and Lombroso, P.J. (2012). Striatal-enriched protein-tyrosine phosphatase (STEP) regulates Pyk2 kinase activity. J. Biol. Chem. 287, 20942–20956.10.1074/jbc.M112.368654Suche in Google Scholar
Yan, J.Z., Liu, Y., Zong, Y.Y., and Zhang, G.Y. (2012). Knock-down of postsynaptic density protein 95 expression by antisense oligonucleotides protects against apoptosis-like cell death induced by oxygen-glucose deprivation in vitro. Neurosci. Bull. 28, 69–76.10.1007/s12264-012-1065-5Suche in Google Scholar
Zalewska, T., Ziemka-Nalecz, M., Sarnowska, A., and Domanska-Janik, K. (2003). Transient forebrain ischemia modulates signal transduction from extracellular matrix in gerbil hippocampus. Brain Res. 977, 62–69.10.1016/S0006-8993(03)02742-2Suche in Google Scholar
Zalewska, T., Makarewicz, D., Janik, B., and Ziemka-Nalecz, M. (2005a). Neonatal cerebral hypoxia-ischemia: involvement of FAK-dependent pathway. Int. J. Dev. Neurosci. 23, 657–662.10.1016/j.ijdevneu.2005.05.010Suche in Google Scholar PubMed
Zalewska, T., Ziemka-Nalecz, M., and Domanska-Janik, K. (2005b). Transient forebrain ischemia effects interaction of Src, FAK, and PYK2 with the NR2B subunit of N-methyl-d-aspartate receptor in gerbil hippocampus. Brain Res. 1042, 214–223.10.1016/j.brainres.2005.02.025Suche in Google Scholar PubMed
Zhang, F., Guo, A., Liu, C., Comb, M., and Hu, B. (2013). Phosphorylation and assembly of glutamate receptors after brain ischemia. Stroke 44, 170–176.10.1161/STROKEAHA.112.667253Suche in Google Scholar PubMed PubMed Central
Zhang, M., Li, Q., Chen, L., Li, J., Zhang, X., Chen, X., Zhang, Q., Shao, Y., and Xu, Y. (2014). PSD-93 deletion inhibits Fyn-mediated phosphorylation of NR2B and protects against focal cerebral ischemia. Neurobiol. Dis. 68C, 104–111.10.1016/j.nbd.2014.04.010Suche in Google Scholar PubMed
Zhao, C., Du, C.P., Peng, Y., Xu, Z., Sun, C.C., Liu, Y., and Hou, X.Y. (2015). The upregulation of NR2A-containing N-methyl-d-aspartate receptor function by tyrosine phosphorylation of postsynaptic density 95 via facilitating Src/proline-rich tyrosine kinase 2 activation. Mol. Neurobiol. 51, 500–511.10.1007/s12035-014-8796-4Suche in Google Scholar PubMed
Ziemka-Nalecz, M. and Zalewska, T. (2007). Transient forebrain ischemia effects FAK-coupled signaling in gerbil hippocampus. Neurochem. Int. 51, 405–411.10.1016/j.neuint.2007.04.008Suche in Google Scholar PubMed
©2016 by De Gruyter
Artikel in diesem Heft
- Frontmatter
- The difference between electrical microstimulation and direct electrical stimulation – towards new opportunities for innovative functional brain mapping?
- Co-transplantation of autologous OM-MSCs and OM-OECs: a novel approach for spinal cord injury
- Molecular mechanisms of estrogen for neuroprotection in spinal cord injury and traumatic brain injury
- The role of non-receptor protein tyrosine kinases in the excitotoxicity induced by the overactivation of NMDA receptors
- Phosphene perception is due to the ultra-weak photon emission produced in various parts of the visual system: glutamate in the focus
- Angiotensin II-triggered kinase signaling cascade in the central nervous system
- Functional outcome after intracerebral haemorrhage – a review of the potential role of antiapoptotic agents
- Epileptogenesis following experimentally induced traumatic brain injury – a systematic review
Artikel in diesem Heft
- Frontmatter
- The difference between electrical microstimulation and direct electrical stimulation – towards new opportunities for innovative functional brain mapping?
- Co-transplantation of autologous OM-MSCs and OM-OECs: a novel approach for spinal cord injury
- Molecular mechanisms of estrogen for neuroprotection in spinal cord injury and traumatic brain injury
- The role of non-receptor protein tyrosine kinases in the excitotoxicity induced by the overactivation of NMDA receptors
- Phosphene perception is due to the ultra-weak photon emission produced in various parts of the visual system: glutamate in the focus
- Angiotensin II-triggered kinase signaling cascade in the central nervous system
- Functional outcome after intracerebral haemorrhage – a review of the potential role of antiapoptotic agents
- Epileptogenesis following experimentally induced traumatic brain injury – a systematic review