Home Graphene-based nanocomposites for gas sensors: challenges and opportunities
Article
Licensed
Unlicensed Requires Authentication

Graphene-based nanocomposites for gas sensors: challenges and opportunities

  • Talib Hussain Banglani

    Talib Hussain Banglani is currently pursuing a Ph.D. at the National Centre of Excellence in Analytical Chemistry at the University of Sindh under the supervision of Prof. Dr. Ayaz Ali Memon and Dr Khalid Hussain Tebo. His research interests in 2D materials (Graphene, Mxene, MOF) for environmental analysis, water purification, and nanotechnology demonstrate his commitment to solving real-world problems through scientific innovation and research.

    , Imamdin Chandio

    Imamdin Chandio is a Ph.D. candidate at the Department of Chemistry, Tsinghua University, Beijing, China, under the guidance of Prof. Dr. Qionglin Liang. His current research interests revolve around the synthesis of 2D materials, including MXene, graphene, and its derivatives, MOFs (Metal-Organic Frameworks), and High Entropy alloy nanoparticles (HEA-NPs). Chandio applies these materials in the field of biosensing, specifically in the development of aptasensors and immunosensors for the detection of biomarkers. This indicates his dedication to advancing the field of analytical chemistry with a focus on innovative applications in environmental and biomedical contexts.

    , Meher-Un-Nisa Khilji

    Meher-Un-Nisa Khilji received her MS in biochemistry and clinical biochemistry at Shah Abdul Latif University Khairpur Mirs Sindh Pakistan under the title Hospital based incidence and biochemical analysis of uroliths in district Khairpur Sindh Pakistan. Later on, she got her PhD degree in analytical chemistry in 2023 from National Centre of Excellence in Analytical Chemistry, Sindh University Jamshoro under the supervision of Dr. Ayaz Ali Memon and Dr. Khalid Hussain Thebo. Her PhD research topic was ‘synthesis and characterization of graphene-based nanocomposite materials and their applications.’ She has great expertise in material Chemistry in synthesis of 2D materials and their applications in environmental science.

    , Aliya Ibrar

    Dr. Aliya Ibrar currently working as HoD, department pf Chemistry, The university of Haripur, KPK, Pakista. Her research interests include basic experiments such as synthesis of nanoparticles, graphene, two-dimensional materials for energy and environmental applications.

    , Ayaz Ali Memon

    Ayaz Ali Memon is a faculty member at the National Centre of Excellence in Analytical Chemistry (NCEAC), University of Sindh Jamshoro, with expertise and experience in basic, analytical, material, and environmental chemistry. Dr. Memon got a PhD degree in Analytical Chemistry in 2012 from the University of Sindh Jamshoro, Pakistan. He has more than 50 international publications. His research interests include basic experiments such as synthesis of nanoparticles, graphene, graphene oxide, membrane preparation; surface functionalization, characterization, and project management.

    EMAIL logo
    , Ayaz Ali

    Ayaz Ali Memon is a faculty member at the National Centre of Excellence in Analytical Chemistry (NCEAC), University of Sindh Jamshoro, with expertise and experience in basic, analytical, material, and environmental chemistry. Dr. Memon got a PhD degree in Analytical Chemistry in 2012 from the University of Sindh Jamshoro, Pakistan. He has more than 50 international publications. His research interests include basic experiments such as synthesis of nanoparticles, graphene, graphene oxide, membrane preparation; surface functionalization, characterization, and project management.

    , Bader S. Al-Anzi

    Prof. Bader S. Al-Anzi is currently serving as a Professor at Kuwait University. He is also a visiting professor at the University of Alberta. He served as the chairman of the Department of Environmental Technology & Management at Kuwait University and also been a research affiliate in the Department of Mechanical Engineering at MIT, Boston, USA. He has joined the Department of Nuclear & Engineering at MIT as a full time visiting scientist from 2013 to 2014 and a research affiliate from 2014 until present time. Having completed graduate studies in chemical engineering from renowned universities, his research experience includes wastewater treatment, desalination, two phase flow/aeration, corrosion, bioengineering, air pollution control and solid waste management. He has authored several papers, 1 book, 17 non-provisional US issued patents, 2 European patents and more than 7 non-provisional US pending applications some of which were filed in MIT. He is the principal investigator (PI) of several national and international research projects, including two on-going Kuwait-MIT desalination projects worth USD 5.5 million and 615K, respectively. He supervised PhD & MSc students from engineering departments exploring unconventional wastewater treatment processes individually and jointly with MIT and other organizations. He was the MIT committee member for one of the PhD candidates. He received several national and international prizes/awards as recognition for his work, and one of his invention has been manufactured and certified by American Aerators Company in USA to be used globally for water and wastewater treatment.

    and Khalid Hussain Thebo

    Dr. Khalid Hussain Thebo did PhD in Material Science from Institute of Metal Research, Chinese Academy of Science (CAS), China under supervision of Prof. Wencai Ren & Prof. Hui-Ming Cheng on “graphene-based membrane for water purification and desalination applications”. His research interest includes: synthesis of 2D Materials (Graphene, Mxene & Metal Chalcogenides); membrane science/technology for drinking water purification and wastewater reuse, gas membranes and absorbents; proton exchange membranes and photocatalysis.

    EMAIL logo
Published/Copyright: February 16, 2024

Abstract

Exposure to toxic gases resulting from rapid industrialization poses significant health risks living organisms including human. Consequently, researchers in this modern scientific era have shown keen interest in the selective detection of these toxic gases. The development of fast, economical, selective, and highly sensitive gas sensors has become a crucial pursuit to accurately detect toxic gases and mitigate their adverse effects on the natural environment. Graphene-based nanocomposites have emerged as promising candidates for selectively detecting toxic gases due to their extensive surface area. This review paper provides a comprehensive summary of recent advancements in graphene-based gas sensors. The paper also offers an overview of various synthetic strategies for graphene and its hybrid architectures. Additionally, it delves into the detailed sensing applications of these materials. Challenges and limitations in this field have been critically evaluated and highlighted, along with potential future solutions.


Corresponding authors: Ayaz Ali Memon, National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, Pakistan, E-mail: ; and Khalid Hussain Thebo, Institute of Metal Research, Chinese Academy of Sciences (CAS), Shenyang, China, E-mail:

About the authors

Talib Hussain Banglani

Talib Hussain Banglani is currently pursuing a Ph.D. at the National Centre of Excellence in Analytical Chemistry at the University of Sindh under the supervision of Prof. Dr. Ayaz Ali Memon and Dr Khalid Hussain Tebo. His research interests in 2D materials (Graphene, Mxene, MOF) for environmental analysis, water purification, and nanotechnology demonstrate his commitment to solving real-world problems through scientific innovation and research.

Imamdin Chandio

Imamdin Chandio is a Ph.D. candidate at the Department of Chemistry, Tsinghua University, Beijing, China, under the guidance of Prof. Dr. Qionglin Liang. His current research interests revolve around the synthesis of 2D materials, including MXene, graphene, and its derivatives, MOFs (Metal-Organic Frameworks), and High Entropy alloy nanoparticles (HEA-NPs). Chandio applies these materials in the field of biosensing, specifically in the development of aptasensors and immunosensors for the detection of biomarkers. This indicates his dedication to advancing the field of analytical chemistry with a focus on innovative applications in environmental and biomedical contexts.

Meher-Un-Nisa Khilji

Meher-Un-Nisa Khilji received her MS in biochemistry and clinical biochemistry at Shah Abdul Latif University Khairpur Mirs Sindh Pakistan under the title Hospital based incidence and biochemical analysis of uroliths in district Khairpur Sindh Pakistan. Later on, she got her PhD degree in analytical chemistry in 2023 from National Centre of Excellence in Analytical Chemistry, Sindh University Jamshoro under the supervision of Dr. Ayaz Ali Memon and Dr. Khalid Hussain Thebo. Her PhD research topic was ‘synthesis and characterization of graphene-based nanocomposite materials and their applications.’ She has great expertise in material Chemistry in synthesis of 2D materials and their applications in environmental science.

Aliya Ibrar

Dr. Aliya Ibrar currently working as HoD, department pf Chemistry, The university of Haripur, KPK, Pakista. Her research interests include basic experiments such as synthesis of nanoparticles, graphene, two-dimensional materials for energy and environmental applications.

Ayaz Ali Memon

Ayaz Ali Memon is a faculty member at the National Centre of Excellence in Analytical Chemistry (NCEAC), University of Sindh Jamshoro, with expertise and experience in basic, analytical, material, and environmental chemistry. Dr. Memon got a PhD degree in Analytical Chemistry in 2012 from the University of Sindh Jamshoro, Pakistan. He has more than 50 international publications. His research interests include basic experiments such as synthesis of nanoparticles, graphene, graphene oxide, membrane preparation; surface functionalization, characterization, and project management.

Ayaz Ali

Ayaz Ali Memon is a faculty member at the National Centre of Excellence in Analytical Chemistry (NCEAC), University of Sindh Jamshoro, with expertise and experience in basic, analytical, material, and environmental chemistry. Dr. Memon got a PhD degree in Analytical Chemistry in 2012 from the University of Sindh Jamshoro, Pakistan. He has more than 50 international publications. His research interests include basic experiments such as synthesis of nanoparticles, graphene, graphene oxide, membrane preparation; surface functionalization, characterization, and project management.

Dr. Ayaz Ali is a faculty member at the Department of Electronic Engineering, University of Sindh, Jamshoro. His research interests focus on the CMOS integration of graphene-like 2D materials (TMDs, BN and BP) for high-performance heterostructure devices such as transistors, broadband photodetectors and smart sensors.

Bader S. Al-Anzi

Prof. Bader S. Al-Anzi is currently serving as a Professor at Kuwait University. He is also a visiting professor at the University of Alberta. He served as the chairman of the Department of Environmental Technology & Management at Kuwait University and also been a research affiliate in the Department of Mechanical Engineering at MIT, Boston, USA. He has joined the Department of Nuclear & Engineering at MIT as a full time visiting scientist from 2013 to 2014 and a research affiliate from 2014 until present time. Having completed graduate studies in chemical engineering from renowned universities, his research experience includes wastewater treatment, desalination, two phase flow/aeration, corrosion, bioengineering, air pollution control and solid waste management. He has authored several papers, 1 book, 17 non-provisional US issued patents, 2 European patents and more than 7 non-provisional US pending applications some of which were filed in MIT. He is the principal investigator (PI) of several national and international research projects, including two on-going Kuwait-MIT desalination projects worth USD 5.5 million and 615K, respectively. He supervised PhD & MSc students from engineering departments exploring unconventional wastewater treatment processes individually and jointly with MIT and other organizations. He was the MIT committee member for one of the PhD candidates. He received several national and international prizes/awards as recognition for his work, and one of his invention has been manufactured and certified by American Aerators Company in USA to be used globally for water and wastewater treatment.

Khalid Hussain Thebo

Dr. Khalid Hussain Thebo did PhD in Material Science from Institute of Metal Research, Chinese Academy of Science (CAS), China under supervision of Prof. Wencai Ren & Prof. Hui-Ming Cheng on “graphene-based membrane for water purification and desalination applications”. His research interest includes: synthesis of 2D Materials (Graphene, Mxene & Metal Chalcogenides); membrane science/technology for drinking water purification and wastewater reuse, gas membranes and absorbents; proton exchange membranes and photocatalysis.

Acknowledgment

Authors acknowledge the grant from Higher Education Commission (HEC) Pakistan (Project No. 20-14470/NRPU/R&D/HEC/2021) for financial support to this work.

  1. Research ethics: The authors declare that we have followed the research ethics strictly.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no conflict of interest

  4. Research funding: None declared.

  5. Data availability: Not applicable.

References

1. Atkinson, R. Atmospheric chemistry of VOCs and NOx. Atmos. Environ. 2000, 34, 2063–2101; https://doi.org/10.1016/s1352-2310(99)00460-4.Search in Google Scholar

2. Zhang, D., Liu, Z., Li, C., Tang, T., Liu, X., Han, S., Lei, B., Zhou, C. Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices. Nano Lett. 2004, 4, 1919–1924; https://doi.org/10.1021/nl0489283.Search in Google Scholar

3. Rehman, F., Memon, F. H., Ali, A., Khan, S. M., Soomro, F., Iqbal, M., Thebo, K. H. Recent progress on fabrication methods of graphene-based membranes for water purification, gas separation, and energy sustainability. Rev. Inorg. Chem. 2023, 43, 13–31; https://doi.org/10.1515/revic-2022-0001.Search in Google Scholar

4. Wang, L., Dou, H., Lou, Z., Zhang, T. Encapsuled nanoreactors (Au@SnO2): a new sensing material for chemical sensors. Nanoscale 2013, 5, 2686–2691; https://doi.org/10.1039/c2nr33088a.Search in Google Scholar PubMed

5. Khilji, M.-U.-N., Otho, A. A., Memon, R., Khalid, A., Kazi, M., Hyder, A., Janwery, D., Nahyoon, N. A., Memon, A. A., Memon, N., Thebo, K. H. Facile fabrication of a free-standing magnesium oxide-graphene oxide functionalized membrane: a robust and efficient material for the removal of pollutants from aqueous matrices. Anal. Lett. 2023, 56, 1–18; https://doi.org/10.1080/00032719.2023.2284841.Search in Google Scholar

6. Sharif, S., Ahmad, K. S., Memon, F. H., Rehman, F., Soomro, F., Thebo, K. H. Functionalised graphene oxide-based nanofiltration membranes with enhanced molecular separation performance. Mater. Res. Innov. 2022, 26, 373–381; https://doi.org/10.1080/14328917.2021.2006907.Search in Google Scholar

7. Iqbal, M., Ibrar, A., Ali, A., Rehman, F., Jatoi, A. H., Jatoi, W. B., Phulpoto, S. N., Thebo, K. H. Facile synthesis of Zn-doped CdS nanowires with efficient photocatalytic performance. Environ. Technol. 2022a, 43, 1783–1790; https://doi.org/10.1080/09593330.2020.1850880.Search in Google Scholar PubMed

8. Konopacky, Q. M., Barman, T. S., Macintosh, B. A., Marois, C. Detection of carbon monoxide and water absorption lines in an exoplanet atmosphere. Science 2013, 339, 1398–1401; https://doi.org/10.1126/science.1232003.Search in Google Scholar PubMed

9. Yu, J., Zhao, D., Xu, X., Wang, X., Zhang, N. Study on RuO2/SnO2: novel and active catalysts for CO and CH4 oxidation. ChemCatChem 2012, 4, 1122–1132; https://doi.org/10.1002/cctc.201200038.Search in Google Scholar

10. Shabbir, M. K., Syed, A. S., Thebo, K. H., Akhtar, J. Introduction to smart multifunctional metal nano-inks. In Smart Multifunctional Nano-Inks; 1st ed.; Elsevier: Netherland, 2023; pp. 3–26.10.1016/B978-0-323-91145-0.00007-4Search in Google Scholar

11. Wang, T., Huang, D., Yang, Z., Xu, S., He, G., Li, X., Hu, N., Yin, G., He, D., Zhang, L. A review on graphene-based gas/vapor sensors with unique properties and potential applications. Nano-Micro Lett. 2016a, 8, 95–119; https://doi.org/10.1007/s40820-015-0073-1.Search in Google Scholar PubMed PubMed Central

12. Janata, J., Josowicz, M., Vanýsek, P., DeVaney, D. M. Chemical sensors. Anal. Chem. 1998, 70, 179–208; https://doi.org/10.1021/a1980010w.Search in Google Scholar

13. Iqbal, M., Ibrar, A., Ali, A., Memon, F. H., Rehman, F., Bhatti, Z., Soomro, F., Ali, A., Thebo, K. H. Facile synthesis of zinc oxide nanostructures and their antibacterial and antioxidant properties. Int. Nano Lett. 2022b, 12, 205–213; https://doi.org/10.1007/s40089-022-00370-4.Search in Google Scholar

14. Touhami, A. Biosensors and nanobiosensors: design and applications. Nanomedicine 2014, 15, 374–403.Search in Google Scholar

15. Turner, A. P. Biosensors: sense and sensibility. Chem. Soc. Rev. 2013, 42, 3184–3196; https://doi.org/10.1039/c3cs35528d.Search in Google Scholar PubMed

16. Junejo, I., Siddiqui, M. B., Thebo, J. A., Bhutto, N. Factors affecting intention to control quality safety: evidence food supply chain firms. J. Bus. Soc. Rev. Emer. Econ. 2022, 8, 547–556; https://doi.org/10.26710/jbsee.v8i2.2365.Search in Google Scholar

17. Fields, L., Zheng, J., Cheng, Y., Xiong, P. Room-temperature low-power hydrogen sensor based on a single tin dioxide nanobelt. Appl. Phys. Lett. 2006, 88, 263102; https://doi.org/10.1063/1.2217710.Search in Google Scholar

18. Janwery, D., Memon, F. H., Rehman, F., Memon, A. A., Thebo, K. H., Choi, K. H. Bio-inspired graphene oxide membranes for efficient separation of heavy metal ions and desalination of water. ACS Omega 2023, 8, 7648–7656.10.1021/acsomega.2c07243Search in Google Scholar PubMed PubMed Central

19. Gong, S., Schwalb, W., Wang, Y., Chen, Y., Tang, Y., Si, J., Shirinzadeh, B., Cheng, W. A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat. Commun. 2014, 5, 3132; https://doi.org/10.1038/ncomms4132.Search in Google Scholar PubMed

20. Hu, W., Zhang, S. N., Niu, X., Liu, C., Pei, Q. An aluminum nanoparticle–acrylate copolymer nanocomposite as a dielectric elastomer with a high dielectric constant. J. Mater. Chem. C 2014, 2, 1658–1666; https://doi.org/10.1039/c3tc31929f.Search in Google Scholar

21. Zee, F., Judy, J. W. Micromachined polymer-based chemical gas sensor array. Sens. Actuators, B 2001, 72, 120–128; https://doi.org/10.1016/s0925-4005(00)00638-9.Search in Google Scholar

22. Yang, G., Lee, C., Kim, J., Ren, F., Pearton, S. J. Flexible graphene-based chemical sensors on paper substrates. Phys. Chem. Chem. Phys. 2013, 15, 1798–1801; https://doi.org/10.1039/c2cp43717a.Search in Google Scholar PubMed

23. Surendhar, N., Shankar, V. S. Identification of iodine value of coconut oil using coconut kernels (cocos nucifera) microwave and oven dry pretreatment methods. J. Surv. Fisher. Sci. 2023, 10, 2238–2248.Search in Google Scholar

24. Seiyama, T., Kato, A., Fujiishi, K., Nagatani, M. A new detector for gaseous components using semiconductive thin films. Anal. Chem. 1962, 34, 1502–1503; https://doi.org/10.1021/ac60191a001.Search in Google Scholar

25. Joshi, N., Hayasaka, T., Liu, Y., Liu, H., Oliveira, O. N., Lin, L. A review on chemiresistive room temperature gas sensors based on metal oxide nanostructures, graphene and 2D transition metal dichalcogenides. Microchim. Acta 2018, 185, 213; https://doi.org/10.1007/s00604-018-2750-5.Search in Google Scholar PubMed

26. Ponzoni, A., Baratto, C., Cattabiani, N., Falasconi, M., Galstyan, V., Nunez-Carmona, E., Rigoni, F., Sberveglieri, V., Zambotti, G., Zappa, D. Metal oxide gas sensors, a survey of selectivity issues addressed at the SENSOR Lab, Brescia (Italy). Sensor 2017, 17, 714; https://doi.org/10.3390/s17040714.Search in Google Scholar PubMed PubMed Central

27. Arbab, A., Spetz, A., Lundström, I. Gas sensors for high temperature operation based on metal oxide silicon carbide (MOSiC) devices. Sens. Actuators, B 1993, 15, 19–23; https://doi.org/10.1016/0925-4005(93)85022-3.Search in Google Scholar

28. Nor, M. E. M., Hussin, N., Salahuddin, M. A. H., Samah, A. H. A., Towhid, M. F., Radzi, M. F. M. Evaluation of phenolic content and antibacterial activity of coconut (cocos nucifera L.) shell and coir powder in different extraction solvents. J. Trop. Plan. Physiol. 2023, 15, 9; https://doi.org/10.56999/jtpp.2023.15.1.28.Search in Google Scholar

29. Gusain, A., Joshi, N. J., Varde, P., Aswal, D. Flexible NO gas sensor based on conducting polymer poly [N-9′-heptadecanyl-2, 7-carbazole-alt-5, 5-(4′, 7′-di-2-thienyl-2′, 1′, 3′-benzothiadiazole)](PCDTBT). Sens. Actuators, B 2017, 239, 734–745; https://doi.org/10.1016/j.snb.2016.07.176.Search in Google Scholar

30. Joshi, N., Saxena, V., Singh, A., Koiry, S., Debnath, A., Chehimi, M. M., Aswal, D., Gupta, S. Flexible H2S sensor based on gold modified polycarbazole films. Sens. Actuators, B 2014, 200, 227–234; https://doi.org/10.1016/j.snb.2014.04.041.Search in Google Scholar

31. Saboor, F. H., Ueda, T., Kamada, K., Hyodo, T., Mortazavi, Y., Khodadadi, A. A., Shimizu, Y. Enhanced NO2 gas sensing performance of bare and Pd-loaded SnO2 thick film sensors under UV-light irradiation at room temperature. Sens. Actuators, B 2016, 223, 429–439; https://doi.org/10.1016/j.snb.2015.09.075.Search in Google Scholar

32. Mahar, I., Memon, F. H., Lee, J.-W., Kim, K. H., Ahmed, R., Soomro, F., Rehman, F., Memon, A. A., Thebo, K. H., Choi, K. H. Two-dimensional transition metal carbides and nitrides (MXenes) for water purification and antibacterial applications Membranes 2021, 11, 869.Search in Google Scholar

33. Yoon, H. Current trends in sensors based on conducting polymer nanomaterials. Nanomaterials 2013, 3, 524–549; https://doi.org/10.3390/nano3030524.Search in Google Scholar PubMed PubMed Central

34. Miasik, J. J., Hooper, A., Tofield, B. C. Conducting polymer gas sensors. J. Chem. Soc., Faraday Trans. 1 1986, 82, 1117–1126; https://doi.org/10.1039/f19868201117.Search in Google Scholar

35. Soomro, F., Khan, J., Ullah, S., Abutaleb, A., Zouli, N., Iqbal, M., Sajjad, M., Khan, F., HussainThebo, K. Highly efficient nickel fluoride nanoparticles with enhance electrochemical properties. Inorg. Chem. Commun. 2023a, 155, 111023; https://doi.org/10.1016/j.inoche.2023.111023.Search in Google Scholar

36. Ali, A., Rehman, F., Khan, M. A., Memon, F. H., Soomro, F., Iqbal, M., Yang, J., Thebo, K. H. Functionalized graphene oxide-based lamellar membranes with tunable nanochannels for ionic and molecular separation. 6th ed.; ACS, 7, 2022; pp. 32410–32417.Search in Google Scholar

37. Luqman, M., Awan, M. U. F., Khan, S. H., Ahmed, R., Goraya, M. R. Wastewater driven heavy metal transfer up the food chain in peri-urban agricultural lands of lahore. Agric. Water Manag., 2023, 289, 108509.10.1016/j.agwat.2023.108509Search in Google Scholar

38. Huang, Y., Chen, W., Zhang, S., Kuang, Z., Ao, D., Alkurd, N. R., Zhou, W., Liu, W., Shen, W., Li, Z. A high performance hydrogen sulfide gas sensor based on porous α-Fe2O3 operates at room-temperature. Appl. Surf. Sci. 2015, 351, 1025–1033; https://doi.org/10.1016/j.apsusc.2015.06.053.Search in Google Scholar

39. Tariq, A., Mushtaq, A. Untreated wastewater reasons and causes: a review of most affected areas and cities. Int. J. Chem. Biochem. Sci. 2023, 23, 121–143.Search in Google Scholar

40. Novoselov, K. S., Geim, A. K., Morozov, S., Jiang, D., Katsnelson, M. I., Grigorieva, I., Dubonos, S., Firsov, A. A. Two-dimensional gas of massless Dirac fermions in graphene. Nature 2005, 438, 197; https://doi.org/10.1038/nature04233.Search in Google Scholar PubMed

41. Hyder, A., Buledi, J. A., Memon, R., Qureshi, A., Niazi, J. H., Solangi, A. R., Memon, S., Memon, A. A., Thebo, K. H. Modified electrochemical sensor via supramolecular structural functionalized graphene oxide for ultra-sensitive detection of gallic acid. Elsevier, 139, 2023; p. 110357.10.1016/j.diamond.2023.110357Search in Google Scholar

42. Janjhi, F. A., Janwery, D., Chandio, I., Ullah, S., Rehman, F., Memon, A. A., Hakami, J., Khan, F., Boczkaj, G., Thebo, K. H. Recent advances in graphene oxide-based membranes for heavy metal ions separation. ChemBioEng Rev. 2022, 9, 574–590; https://doi.org/10.1002/cben.202200015.Search in Google Scholar

43. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669; https://doi.org/10.1126/science.1102896.Search in Google Scholar PubMed

44. Gaur, R. Transition metal chalcogenides-based nanocomposite for the photocatalytic degradation of hazardous chemicals. In Multifunctional Hybrid Semiconductor Photocatalyst Nanomaterials: Appli. H, Ener. Environ. Sprin.; Springer International Publishing: Cham, UK, 2023; pp. 239–274.10.1007/978-3-031-39481-2_11Search in Google Scholar

45. Fal’Ko, V. Graphene: quantum information on chicken wire. Nat. Phys. 2007, 3, 151; https://doi.org/10.1038/nphys556.Search in Google Scholar

46. Katsnelson, M. I. Graphene: carbon in two dimensions. Mater. Today 2007, 10, 20–27; https://doi.org/10.1016/s1369-7021(06)71788-6.Search in Google Scholar

47. Meyer, J. C., Geim, A., Katsnelson, M., Novoselov, K., Obergfell, D., Roth, S., Girit, C., Zettl, A. On the roughness of single-and bi-layer graphene membranes. Solid State Commun. 2007a, 143, 101–109; https://doi.org/10.1016/j.ssc.2007.02.047.Search in Google Scholar

48. Rafiee, J., Mi, X., Gullapalli, H., Thomas, A. V., Yavari, F., Shi, Y., Ajayan, P. M., Koratkar, N. A. Wetting transparency of graphene. Nat. Mater. 2012, 11, 217; https://doi.org/10.1038/nmat3228.Search in Google Scholar PubMed

49. Neto, A. H. C. The carbon new age. Mater. Today 2010, 13, 12–17; https://doi.org/10.1016/s1369-7021(10)70029-8.Search in Google Scholar

50. Barros, D., Ferreira, M., Silva, A. A review on urban traffic cameras: video image processing techniques and applications. Adv. Transport. Studies 2023, 59, 179.Search in Google Scholar

51. Bardeen, J., Brattain, W. H. The transistor, a semi-conductor triode. Phys. Rev. 1948, 74, 230; https://doi.org/10.1103/physrev.74.230.Search in Google Scholar

52. Shahzad, M. K., Memon, F. H., Soomro, F., Iqbal, M., Ibrar, A., Memon, A. A., Lim, J. H., Choi, K. H., Thebo, K. H. MoS2-based lamellar membranes for mass transport applications: challenges and opportunities. J. Environ. Chem. Eng. 2023, 11, 109329; https://doi.org/10.1016/j.jece.2023.109329.Search in Google Scholar

53. Schedin, F., Geim, A., Morozov, S., Hill, E., Blake, P., Katsnelson, M., Novoselov, K. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6, 652–655; https://doi.org/10.1038/nmat1967.Search in Google Scholar PubMed

54. Iqbal, M., Ibrar, A., Ali, A., Hussain, S., Shad, S., Ullah, S., Alshahrani, T., Hakami, J., Khan, F., Thebo, K. H. Facile synthesis of Mn doped Bi2S3 photocatalyst for efficient degradation of organic dye under visible-light irradiation. J. Mol. Struct. 2022c, 1267, 133598; https://doi.org/10.1016/j.molstruc.2022.133598.Search in Google Scholar

55. Russo, P. A., Donato, N., Leonardi, S. G., Baek, S., Conte, D. E., Neri, G., Pinna, N. Room-temperature hydrogen sensing with heteronanostructures based on reduced graphene oxide and tin oxide. Ang. Chemi. Intern. Edit. 2012, 51, 11053–11057; https://doi.org/10.1002/anie.201204373.Search in Google Scholar PubMed

56. Niu, F., Liu, J.-M., Tao, L.-M., Wang, W., Song, W.-G. Nitrogen and silica co-doped graphene nanosheets for NO2 gas sensing. J. Mater. Chem. 2013, 1, 6130–6133; https://doi.org/10.1039/c3ta11070b.Search in Google Scholar

57. Gutés, A., Hsia, B., Sussman, A., Mickelson, W., Zettl, A., Carraro, C., Maboudian, R. Graphene decoration with metal nanoparticles: towards easy integration for sensing applications. Nanoscale 2012, 4, 438–440; https://doi.org/10.1039/c1nr11537e.Search in Google Scholar PubMed

58. Pumera, M., Ambrosi, A., Bonanni, A., Chng, E. L. K., Poh, H. L. Graphene for electrochemical sensing and biosensing. TrAC, Trends Anal. Chem. 2010, 29, 954–965; https://doi.org/10.1016/j.trac.2010.05.011.Search in Google Scholar

59. Li, D., Zhang, W., Yu, X., Wang, Z., Su, Z., Wei, G. When biomolecules meet graphene: from molecular level interactions to material design and applications. Nanoscale 2016a, 8, 19491–19509; https://doi.org/10.1039/c6nr07249f.Search in Google Scholar PubMed

60. Stoller, M. D., Park, S., Zhu, Y., An, J., Ruoff, R. S. Graphene-based ultracapacitors. Nano Lett. 2008, 8, 3498–3502; https://doi.org/10.1021/nl802558y.Search in Google Scholar PubMed

61. Kim, J., Ishihara, M., Koga, Y., Tsugawa, K., Hasegawa, M., Iijima, S. Low-temperature synthesis of large-area graphene-based transparent conductive films using surface wave plasma chemical vapor deposition. Appl. Phys. Lett. 2011, 98, 091502; https://doi.org/10.1063/1.3561747.Search in Google Scholar

62. Segal, M. Selling graphene by the ton. Nat. Nanotechol. 2009, 4, 612; https://doi.org/10.1038/nnano.2009.279.Search in Google Scholar PubMed

63. Qian, X., Chen, L., Yin, L., Liu, Z., Pei, S., Li, F., Hou, G., Chen, S., Song, L., Thebo, K. H., Cheng, H. M., Ren, W. CdPS3 nanosheets-based membrane with high proton conductivity enabled by Cd vacancies. Science 2020, 370, 596–600; https://doi.org/10.1126/science.abb9704.Search in Google Scholar PubMed

64. Ali, Z., Mehmood, M., Ahmed, J., Majeed, A., Thebo, K. H. MWCNTs and carbon onions grown by CVD method on nickel-cobalt alloy nanocomposites prepared via novel alcogel electrolysis technique and its oxygen evolution reaction application. Mater. Res. Exp. 2019a, 6, 105627; https://doi.org/10.1088/2053-1591/ab41d4.Search in Google Scholar

65. Altintas, Z., Uludag, Y., Gurbuz, Y., Tothill, I. E. Surface plasmon resonance based immunosensor for the detection of the cancer biomarker carcinoembryonic antigen. Talanta 2011, 86, 377–383; https://doi.org/10.1016/j.talanta.2011.09.031.Search in Google Scholar PubMed

66. Hu, N., Yang, Z., Wang, Y., Zhang, L., Wang, Y., Huang, X., Wei, H., Wei, L., Zhang, Y. Ultrafast and sensitive room temperature NH3 gas sensors based on chemically reduced graphene oxide. Nanotechnology 2013, 25, 025502; https://doi.org/10.1088/0957-4484/25/2/025502.Search in Google Scholar PubMed

67. Iqbal, M., Ali, A., Nahyoon, N. A., Majeed, A., Pothu, R., Phulpoto, S., Thebo, K. H. Photocatalytic degradation of organic pollutant with nanosized cadmium sulfide. Mater. Sci. Energy Technol. 2019, 2, 41–45; https://doi.org/10.1016/j.mset.2018.09.002.Search in Google Scholar

68. Subrahmanyam, K., Panchakarla, L., Govindaraj, A., Rao, C. Simple method of preparing graphene flakes by an arc-discharge method. J. Phys. Chem. C 2009, 113, 4257–4259; https://doi.org/10.1021/jp900791y.Search in Google Scholar

69. Subrahmanyam, K., Vivekchand, S., Govindaraj, A., Rao, C. A study of graphenes prepared by different methods: characterization, properties and solubilization. J. Mater. Chem. 2008, 18, 1517–1523; https://doi.org/10.1039/b716536f.Search in Google Scholar

70. Russo, P., Hu, A., Compagnini, G. Synthesis, properties and potential applications of porous graphene: a review. Nano-Micro Lett. 2013, 5, 260–273; https://doi.org/10.1007/bf03353757.Search in Google Scholar

71. Yang, Z., Gao, R., Hu, N., Chai, J., Cheng, Y., Zhang, L., Wei, H., Kong, E. S.-W., Zhang, Y. The prospective two-dimensional graphene nanosheets: preparation, functionalization and applications. Nano-Micro Lett. 2012, 4, 1–9; https://doi.org/10.1007/bf03353684.Search in Google Scholar

72. Ali, A., Rehman, F., Ali Khan, M., Memon, F. H., Soomro, F., Iqbal, M., Yang, J., Thebo, K. H. Functionalized graphene oxide-based lamellar membranes with tunable nanochannels for ionic and molecular separation. ACS Omega 2022, 7, 32410–32417; https://doi.org/10.1021/acsomega.2c03907.Search in Google Scholar PubMed PubMed Central

73. Ali, H., Ali, A., Buledi, J. A., Memon, A. A., Solangi, A. R., Yang, J., Thebo, K. H. MXene-based nanocomposites: emerging candidates for the removal of antibiotics, dyes, and heavy metal ions. Mater. Chem. Front. 2023a, 7, 5519–5544; https://doi.org/10.1039/d3qm00667k.Search in Google Scholar

74. Rehman, F., Memon, F. H., Bhatti, Z., Iqbal, M., Soomro, F., Ali, A., Thebo, K. H. Graphene-based composite membranes for isotope separation: challenges and opportunities. Rev. Inorg. Chem. 2022, 42, 327–336; https://doi.org/10.1515/revic-2021-0035.Search in Google Scholar

75. Janjhi, F. A., Chandio, I., Janwery, D., Memon, A. A., Thebo, K. H., Boczkaj, G., Vatanpour, V., Castro-Muñoz, R. MoS2-containing composite membranes for separation of environmental energy-relevant liquid and gas mixtures: a comprehensive review. Chem. Eng. Res. Design. 2023, 199, 327–347; https://doi.org/10.1016/j.cherd.2023.10.014.Search in Google Scholar

76. Chandio, I., Janjhi, F. A., Memon, A. A., Memon, S., Ali, Z., Thebo, K. H., Pirzado, A. A. A., Hakro, A. A., Khan, W. S. Ultrafast ionic and molecular sieving through graphene oxide based composite membranes. Desalination 2021, 500, 114848; https://doi.org/10.1016/j.desal.2020.114848.Search in Google Scholar

77. Memon, F. H., Rehman, F., Lee, J., Soomro, F., Iqbal, M., Khan, S. M., Ali, A., Thebo, K. H., Choi, K. H. Transition metal dichalcogenide-based membranes for water desalination, gas separation, and energy storage. Sep. Purif. Rev. 2023, 52, 43–57; https://doi.org/10.1080/15422119.2022.2037000.Search in Google Scholar

78. Ali, A., Thebo, M., Janwary, D., Iqbal, M., Mughal, W., Yang, J., Thebo, K. H. Covalent organic framework-based lamellar membranes for water desalination applications. RSC Sustainability 2023b, 1, 1634–1654; https://doi.org/10.1039/d3su00212h.Search in Google Scholar

79. Geim, A. K. Nobel lecture: random walk to graphene. Rev. Mod. Phys. 2011, 83, 851; https://doi.org/10.1103/revmodphys.83.851.Search in Google Scholar

80. Mahar, I., Mahar, F. K., Mahar, N., Memon, A. A., Pirzado, A. A. A., Khatri, Z., Thebo, K. H., Ali, A. Fabrication and characterization of MXene/carbon composite-based nanofibers (MXene/CNFs) membrane: an efficient adsorbent material for removal of Pb+ 2 and As+ 3 ions from water. Chem. Eng. Res. Design. 2023, 191, 462–471; https://doi.org/10.1016/j.cherd.2023.02.005.Search in Google Scholar

81. Soomro, F., Memon, F. H., Khan, M. A., Iqbal, M., Ibrar, A., Memon, A. A., Lim, J. H., Choi, K. H., Thebo, K. H. Ultrathin graphene oxide-based nanocomposite membranes for water purification. Membranes 2023b, 13, 64; https://doi.org/10.3390/membranes13010064.Search in Google Scholar PubMed PubMed Central

82. Mas-Balleste, R., Gomez-Navarro, C., Gomez-Herrero, J., Zamora, F. 2D materials: to graphene and beyond. Nanoscale 2011, 3, 20–30; https://doi.org/10.1039/c0nr00323a.Search in Google Scholar PubMed

83. Soomro, F., Ali, A., Ullah, S., Iqbal, M., Alshahrani, T., Khan, F., Yang, J., Thebo, K. H. Highly efficient arginine intercalated graphene oxide composite membranes for water desalination. Langmuir 2023c; https://doi.org/10.1021/acs.langmuir.3c02699.Search in Google Scholar PubMed

84. Yi, M., Shen, Z. A review on mechanical exfoliation for the scalable production of graphene. J. Mater. Chem. A 2015, 3, 11700–11715; https://doi.org/10.1039/c5ta00252d.Search in Google Scholar

85. Iqbal, M., Thebo, A. A., Jatoi, W. B., Tabassum, M. T., Rehman, M. U., Thebo, K. H., Mohsin, M. A., Ullah, S., Jatoi, A. H., Shah, I. Facile synthesis of Cr doped hierarchical ZnO nano-structures for enhanced photovoltaic performance. Inorg. Chem. Commun. 2020, 116, 107902; https://doi.org/10.1016/j.inoche.2020.107902.Search in Google Scholar

86. Lotya, M., Hernandez, Y., King, P. J., Smith, R. J., Nicolosi, V., Karlsson, L. S., Blighe, F. M., De, S., Wang, Z., McGovern, I., Duesberg, G. S., Coleman, J. N. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J. Am. Chem. Soc. 2009, 131, 3611–3620; https://doi.org/10.1021/ja807449u.Search in Google Scholar PubMed

87. Bourlinos, A. B., Georgakilas, V., Zboril, R., Steriotis, T. A., Stubos, A. K. Liquid-phase exfoliation of graphite towards solubilized graphenes. Small 2009, 5, 1841–1845; https://doi.org/10.1002/smll.200900242.Search in Google Scholar PubMed

88. Keeley, G. P., O’Neill, A., McEvoy, N., Peltekis, N., Coleman, J. N., Duesberg, G. S. Electrochemical ascorbic acid sensor based on DMF-exfoliated graphene. J. Mater. Chem. 2010, 20, 7864–7869; https://doi.org/10.1039/c0jm01527j.Search in Google Scholar

89. Hernandez, Y., Nicolosi, V., Lotya, M., Blighe, F. M., Sun, Z., De, S., McGovern, I., Holland, B., Byrne, M., Gun’Ko, Y. K., Boland, J. J., Niraj, P., Duesberg, G., Krishnamurthy, S., Goodhue, R., Hutchison, J., Scardaci, V., Ferrari, A. C., Coleman, J. N. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 2008, 3, 563; https://doi.org/10.1038/nnano.2008.215.Search in Google Scholar PubMed

90. Coleman, J. N. Liquid exfoliation of defect-free graphene. Acc. Chem. Res. 2012, 46, 14–22; https://doi.org/10.1021/ar300009f.Search in Google Scholar PubMed

91. Janjhi, F. A., Chandio, I., Memon, A. A., Ahmed, Z., Thebo, K. H., Pirzado, A. A. A., Hakro, A. A., Iqbal, M. Functionalized graphene oxide based membranes for ultrafast molecular separation. Sep. Purif. Technol. 2021, 274, 117969; https://doi.org/10.1016/j.seppur.2020.117969.Search in Google Scholar

92. Chandio, I., Ai, Y., Wu, L., Liang, Q. Recent progress in MOFs-based nanozymes for biosensing. Nano Res. 2024, 17, 39–64; https://doi.org/10.1007/s12274-023-5770-3.Search in Google Scholar

93. Hyder, A., Thebo, M., Janwery, D., Buledi, J. A., Chandio, I., Khalid, A., Al-Anzi, B. S., Almukhlifi, H. A., Thebo, K. H., Memon, F. N., Memon, A. A., Solangi, A. R., Memon, S. Fabrication of para-dimethylamine calix [4] arene functionalized self-assembled graphene oxide composite material for effective removal of 2, 4, 6-tri-Cholorphenol from aqueous environment. Heliyon 2023, 9, e19622; https://doi.org/10.1016/j.heliyon.2023.e19622.Search in Google Scholar PubMed PubMed Central

94. Thebo, K. H., Qian, X., Zhang, Q., Chen, L., Cheng, H.-M., Ren, W. Highly stable graphene-oxide-based membranes with superior permeability. Nat. Commun. 2018, 9, 1486; https://doi.org/10.1038/s41467-018-03919-0.Search in Google Scholar PubMed PubMed Central

95. Mahar, I., Memon, F. H., Lee, J.-W., Kim, K. H., Ahmed, R., Soomro, F., Rehman, F., Memon, A. A., Thebo, K. H., Choi, K. H. Two-Dimensional Transition Metal Carbides and Nitrides (MXenes) for Water Purification and Antibacterial Applications. Membranes 2021, 11, 869.10.3390/membranes11110869Search in Google Scholar PubMed PubMed Central

96. Ma, H., Shen, Z. Exfoliation of graphene nanosheets in aqueous media. Ceram. Intern. 2020, 46, 21873–21887; https://doi.org/10.1016/j.ceramint.2020.05.314.Search in Google Scholar

97. Schriver, M., Regan, W., Gannett, W. J., Zaniewski, A. M., Crommie, M. F., Zettl, A. Graphene as a long-term metal oxidation barrier: worse than nothing. ACS Nano 2013, 7, 5763–5768; https://doi.org/10.1021/nn4014356.Search in Google Scholar PubMed

98. Prasai, D., Tuberquia, J. C., Harl, R. R., Jennings, G. K., Bolotin, K. I. Graphene: corrosion-inhibiting coating. ACS Nano 2012, 6, 1102–1108; https://doi.org/10.1021/nn203507y.Search in Google Scholar PubMed

99. Kobayashi, T., Bando, M., Kimura, N., Shimizu, K., Kadono, K., Umezu, N., Miyahara, K., Hayazaki, S., Nagai, S., Mizuguchi, Y., Murakami, Y., Hobara, D. Production of a 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process. Appl. Phys. Lett. 2013, 102, 023112; https://doi.org/10.1063/1.4776707.Search in Google Scholar

100. Gomez De Arco, L., Zhang, Y., Schlenker, C. W., Ryu, K., Thompson, M. E., Zhou, C. Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. ACS Nano 2010, 4, 2865–2873; https://doi.org/10.1021/nn901587x.Search in Google Scholar PubMed

101. Wu, Y., Zou, X., Sun, M., Cao, Z., Wang, X., Huo, S., Zhou, J., Yang, Y., Yu, X., Kong, Y., Liao, L., Chen, T. 200 GHz maximum oscillation frequency in CVD graphene radio frequency transistors. ACS Appl. Mater. Interfaces 2016, 8, 25645–25649; https://doi.org/10.1021/acsami.6b05791.Search in Google Scholar PubMed

102. Dong, X., Shi, Y., Huang, W., Chen, P., Li, L. J. Electrical detection of DNA hybridization with single-base specificity using transistors based on CVD-grown graphene sheets. Adv. Mater. 2010, 22, 1649–1653; https://doi.org/10.1002/adma.200903645.Search in Google Scholar PubMed

103. Wang, C., Cui, X., Li, Y., Li, H., Huang, L., Bi, J., Luo, J., Ma, L. Q., Zhou, W., Cao, Y., Wang, B., Miao, F. A label-free and portable graphene FET aptasensor for children blood lead detection. Scient. Rep. 2016b, 6, 21711; https://doi.org/10.1038/srep21711.Search in Google Scholar PubMed PubMed Central

104. Xu, S., Zhan, J., Man, B., Jiang, S., Yue, W., Gao, S., Guo, C., Liu, H., Li, Z., Wang, J., Zhou, Y. Real-time reliable determination of binding kinetics of DNA hybridization using a multi-channel graphene biosensor. Nat. Commun. 2017, 8, 14902; https://doi.org/10.1038/ncomms14902.Search in Google Scholar PubMed PubMed Central

105. Kim, K. S., Zhao, Y., Jang, H., Lee, S. Y., Kim, J. M., Kim, K. S., Ahn, J.-H., Kim, P., Choi, J.-Y., Hong, B. H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706; https://doi.org/10.1038/nature07719.Search in Google Scholar PubMed

106. Bae, S., Kim, H., Lee, Y., Xu, X., Park, J.-S., Zheng, Y., Balakrishnan, J., Lei, T., Kim, H. R., Song, Y. I., Kim, Y. J., Kim, K. S., Özyilmaz, B., Ahn, J. H., Hong, B. H., Iijima, S. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574; https://doi.org/10.1038/nnano.2010.132.Search in Google Scholar PubMed

107. Reina, A., Jia, X., Ho, J., Nezich, D., Son, H., Bulovic, V., Dresselhaus, M. S., Kong, J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano. Lett. 2008, 9, 30–35; https://doi.org/10.1021/nl801827v.Search in Google Scholar PubMed

108. Huang, Y., Dong, X., Shi, Y., Li, C. M., Li, L.-J., Chen, P. Nanoelectronic biosensors based on CVD grown graphene. Nanoscale 2010, 2, 1485–1488; https://doi.org/10.1039/c0nr00142b.Search in Google Scholar PubMed

109. Alanyalıoğlu, M., Segura, J. J., Oro-Sole, J., Casan-Pastor, N. The synthesis of graphene sheets with controlled thickness and order using surfactant-assisted electrochemical processes. Carbon 2012, 50, 142–152; https://doi.org/10.1016/j.carbon.2011.07.064.Search in Google Scholar

110. Gautam, M., Jayatissa, A. H. Ammonia gas sensing behavior of graphene surface decorated with gold nanoparticles. Solid-State Electron. 2012, 78, 159–165; https://doi.org/10.1016/j.sse.2012.05.059.Search in Google Scholar

111. Yavari, F., Castillo, E., Gullapalli, H., Ajayan, P. M., Koratkar, N. High sensitivity detection of NO2 and NH3 in air using chemical vapor deposition grown graphene. Appl. Phys. Lett. 2012, 100, 203120; https://doi.org/10.1063/1.4720074.Search in Google Scholar

112. Wu, Z., Chen, X., Zhu, S., Zhou, Z., Yao, Y., Quan, W., Liu, B. Enhanced sensitivity of ammonia sensor using graphene/polyaniline nanocomposite. Sens. Actuators, B 2013, 178, 485–493; https://doi.org/10.1016/j.snb.2013.01.014.Search in Google Scholar

113. Ali, A., Pothu, R., Siyal, S. H., Phulpoto, S., Sajjad, M., Thebo, K. H. Graphene-based membranes for CO2 separation. Mater. Sci. E. Technol. 2019b, 2, 83–88; https://doi.org/10.1016/j.mset.2018.11.002.Search in Google Scholar

114. Seekaew, Y., Lokavee, S., Phokharatkul, D., Wisitsoraat, A., Kerdcharoen, T., Wongchoosuk, C. Low-cost and flexible printed graphene–PEDOT: PSS gas sensor for ammonia detection. Org. Electron. 2014, 15, 2971–2981; https://doi.org/10.1016/j.orgel.2014.08.044.Search in Google Scholar

115. Shabbir, M. K., Ali, W., Khanum, U., Memon, K. H., Akhtar, J., Iqbal, M., Bhutta, F., Ashfaq, J., Choi, K. H., Thebo, K. H. Facile synthesis of SnO2/graphene and Bi–SnO2/graphene-based nanocomposites as electrode materials for energy storage devices. Resul. Engin. 2023b, 20, 101520; https://doi.org/10.1016/j.rineng.2023.101520.Search in Google Scholar

116. Zhu, Y., Koley, G., Walsh, K., Galloway, A., Ortinski, P. Application of ion-senstitive field effect transistors for measuring glial cell K+ transport. In IEEE Sensors; IEEE: Orlando, FL, USA, 2016; pp. 1–3.10.1109/ICSENS.2016.7808540Search in Google Scholar

117. Kireev, D., Zadorozhnyi, I., Qiu, T., Sarik, D., Brings, F., Wu, T., Seyock, S., Maybeck, V., Lottner, M., Blaschke, B. M., Garrido, J., Xie, X., Vitusevich, S., Wolfrum, B., Offenhausser, A. Graphene field-effect transistors for in vitro and ex vivo recordings. IEEE Transac. Nanotechnol. 2016, 16, 140–147; https://doi.org/10.1109/tnano.2016.2639028.Search in Google Scholar

118. Marchena, M., Song, Z., Senaratne, W., Li, C., Liu, X., Baker, D., Ferrer, J. C., Mazumder, P., Soni, K., Lee, R., Pruneri, V. Direct growth of 2D and 3D graphene nano-structures over large glass substrates by tuning a sacrificial Cu-template layer. 2D Mater. 2017, 4, 025088; https://doi.org/10.1088/2053-1583/aa69b5.Search in Google Scholar

119. Lavin-Lopez, M., Fernandez-Diaz, M., Sanchez-Silva, L., Valverde, J., Romero, A. Improving the growth of monolayer CVD-graphene over polycrystalline iron sheets. New J. Chem. 2017, 41, 5066–5074; https://doi.org/10.1039/c7nj00281e.Search in Google Scholar

120. Woehrl, N., Ochedowski, O., Gottlieb, S., Shibasaki, K., Schulz, S. Plasma-enhanced chemical vapor deposition of graphene on copper substrates. AIP Adv. 2014, 4, 047128; https://doi.org/10.1063/1.4873157.Search in Google Scholar

121. Li, M., Liu, D., Wei, D., Song, X., Wei, D., Wee, A. T. S. Controllable synthesis of graphene by plasma-enhanced chemical vapor deposition and its related applications. Adv. Sci. 2016b, 3, 1600003; https://doi.org/10.1002/advs.201600003.Search in Google Scholar PubMed PubMed Central

122. Lee, S., Lee, K., Zhong, Z. Wafer scale homogeneous bilayer graphene films by chemical vapor deposition. Nano Lett. 2010, 10, 4702–4707; https://doi.org/10.1021/nl1029978.Search in Google Scholar PubMed

123. Park, H. J., Meyer, J., Roth, S., Skákalová, V. Growth and properties of few-layer graphene prepared by chemical vapor deposition. Carbon 2010, 48, 1088–1094; https://doi.org/10.1016/j.carbon.2009.11.030.Search in Google Scholar

124. Losurdo, M., Giangregorio, M. M., Capezzuto, P., Bruno, G. Graphene CVD growth on copper and nickel: role of hydrogen in kinetics and structure. Phys. Chem. Chemi. Phys. 2011, 13, 20836–20843; https://doi.org/10.1039/c1cp22347j.Search in Google Scholar PubMed

125. Rao, C. e. N. e. R., Sood, A. e. K., Subrahmanyam, K. e. S., Govindaraj, A. Graphene: the new two‐dimensional nanomaterial. Angew. Chem. Int. Ed. 2009, 48, 7752–7777; https://doi.org/10.1002/anie.200901678.Search in Google Scholar PubMed

126. Li, X., Zhang, G., Bai, X., Sun, X., Wang, X., Wang, E., Dai, H. Highly conducting graphene sheets and Langmuir–Blodgett films. Nat. Nanotechol. 2008, 3, 538; https://doi.org/10.1038/nnano.2008.210.Search in Google Scholar PubMed

127. Unarunotai, S., Murata, Y., Chialvo, C. E., Kim, H.-S., MacLaren, S., Mason, N., Petrov, I., Rogers, J. A. Transfer of graphene layers grown on SiC wafers to other substrates and their integration into field effect transistors. Appl. Phys. Lett. 2009, 95, 202101; https://doi.org/10.1063/1.3263942.Search in Google Scholar

128. Zhou, S. Y., Gweon, G.-H., Fedorov, A., First, P., de, De Heer, W., Lee, D.-H., Guinea, F., Neto, A. C., Lanzara, A. Substrate-induced bandgap opening in epitaxial graphene. Nat. Mater. 2007, 6, 770; https://doi.org/10.1038/nmat2003.Search in Google Scholar PubMed

129. Forbeaux, I., Themlin, J.-M., Debever, J.-M. Heteroepitaxial graphite on 6 H− SiC (0001): interface formation through conduction-band electronic structure. Phys. Rev. B 1998, 58, 16396; https://doi.org/10.1103/physrevb.58.16396.Search in Google Scholar

130. Zhou, S., Siegel, D., Fedorov, A., El Gabaly, F., Schmid, A., Neto, A. C., Lee, D.-H., Lanzara, A. Origin of the energy bandgap in epitaxial graphene. Nat. Mater. 2008, 7, 259; https://doi.org/10.1038/nmat2154b.Search in Google Scholar

131. Hass, J., De Heer, W., Conrad, E. The growth and morphology of epitaxial multilayer graphene. J. Phys.: Condens. Matter 2008, 20, 323202; https://doi.org/10.1088/0953-8984/20/32/323202.Search in Google Scholar

132. Kim, S., Ihm, J., Choi, H. J., Son, Y.-W. Origin of anomalous electronic structures of epitaxial graphene on silicon carbide. Phys. Rev. Lett. 2008, 100, 176802; https://doi.org/10.1103/physrevlett.100.176802.Search in Google Scholar PubMed

133. Bhatti, S. A., Memon, F. H., Rehman, F., Bhatti, Z., Naqvi, T., Thebo, K. H. Recent progress in decontamination system against chemical and biological materials: challenges and future perspectives. Rev. Inorg. Chem. 2022, 42, 283–295; https://doi.org/10.1515/revic-2021-0019.Search in Google Scholar

134. Lim, C. X., Hoh, H. Y., Ang, P. K., Loh, K. P. Direct voltammetric detection of DNA and pH sensing on epitaxial graphene: an insight into the role of oxygenated defects. Anal. Chem. 2010, 82, 7387–7393; https://doi.org/10.1021/ac101519v.Search in Google Scholar PubMed

135. Negishi, R., Hirano, H., Ohno, Y., Maehashi, K., Matsumoto, K., Kobayashi, Y. Layer-by-layer growth of graphene layers on graphene substrates by chemical vapor deposition. Thin Solid Films 2011, 519, 6447–6452; https://doi.org/10.1016/j.tsf.2011.04.229.Search in Google Scholar

136. Siklitskaya, A., Gacka, E., Larowska, D., Mazurkiewicz-Pawlicka, M., Malolepszy, A., Stobiński, L., Marciniak, B., Lewandowska-Andrałojć, A., Kubas, A. Lerf–Klinowski-type models of graphene oxide and reduced graphene oxide are robust in analyzing non-covalent functionalization with porphyrins. Sci. Rep. 2021, 11, 7977; https://doi.org/10.1038/s41598-021-86880-1.Search in Google Scholar PubMed PubMed Central

137. Brodie, B. C. XIII. On the atomic weight of graphite. Philos. Trans. R. Soc. London 1859, 249–259.10.1098/rstl.1859.0013Search in Google Scholar

138. Staudenmaier, L. Verfahren zur darstellung der graphitsäure. Ber. Dtsch. Chem. Ges. 1898, 31, 1481–1487; https://doi.org/10.1002/cber.18980310237.Search in Google Scholar

139. Hummers, W. S.Jr, Offeman, R. E. Preparation of graphitic oxide. J. Appl. Chem. Sci. 1958, 80, 1339; https://doi.org/10.1021/ja01539a017.Search in Google Scholar

140. Kang, J., Shin, D., Bae, S., Hong, B. H. Graphene transfer: key for applications. Nanoscale 2012a, 4, 5527–5537; https://doi.org/10.1039/c2nr31317k.Search in Google Scholar PubMed

141. Morozov, S., Novoselov, K., Katsnelson, M., Schedin, F., Elias, D., Jaszczak, J. A., Geim, A. Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 2008, 100, 016602; https://doi.org/10.1103/physrevlett.100.016602.Search in Google Scholar

142. Zhang, Y., Small, J. P., Pontius, W. V., Kim, P. Fabrication and electric-field-dependent transport measurements of mesoscopic graphite devices. Appl. Phys. Lett. 2005, 86, 073104; https://doi.org/10.1063/1.1862334.Search in Google Scholar

143. Meyer, J. C., Geim, A. K., Katsnelson, M. I., Novoselov, K. S., Booth, T. J., Roth, S. The structure of suspended graphene sheets. Nature 2007b, 446, 60; https://doi.org/10.1038/nature05545.Search in Google Scholar PubMed

144. Iqbal, M., Ibrar, A., Ali, A., Rehman, F., Jatoi, A. H., Jatoi, W. B., Phulphoto, S. N., Thebo, K. H. Facile synthesis of Zn Doped CdS nanowires with efficient photocatalytic performance. Environ. Technol. 2022, 43, 1783–1790.10.1080/09593330.2020.1850880Search in Google Scholar PubMed

145. Blake, P., Hill, E., Castro Neto, A., Novoselov, K., Jiang, D., Yang, R., Booth, T., Geim, A. Making graphene visible. Appl. Phys. Lett. 2007, 91, 063124; https://doi.org/10.1063/1.2768624.Search in Google Scholar

146. Chen, M., Haddon, R. C., Yan, R., Bekyarova, E. Advances in transferring chemical vapour deposition graphene: a review. Mater. Horiz. 2017, 4, 1054–1063; https://doi.org/10.1039/c7mh00485k.Search in Google Scholar

147. Kang, S. J., Kim, B., Kim, K. S., Zhao, Y., Chen, Z., Lee, G. H., Hone, J., Kim, P., Nuckolls, C. Inking elastomeric stamps with micro-patterned, single layer graphene to create high-performance OFETs. Adv. Mater. 2011, 23, 3531–3535; https://doi.org/10.1002/adma.201101570.Search in Google Scholar PubMed

148. Kim, H. H., Lee, S. K., Lee, S. G., Lee, E., Cho, K. Wetting-assisted crack-and wrinkle-free transfer of wafer-scale graphene onto arbitrary substrates over a wide range of surface energies. Adv. Funct. Mater. 2016a, 26, 2070–2077; https://doi.org/10.1002/adfm.201504551.Search in Google Scholar

149. Rosales, J., Marshall, G., Marshall, S., Watanabe, L., Toledano, M., Cabrerizo, M., Osorio, R. Acid-etching and hydration influence on dentin roughness and wettability. J. Dent. Res. 1999, 78, 1554–1559; https://doi.org/10.1177/00220345990780091001.Search in Google Scholar PubMed

150. Ostrovskaya, L., Perevertailo, V., Ralchenko, V., Dementjev, A., Loginova, O. Wettability and surface energy of oxidized and hydrogen plasma-treated diamond films. Diam. Relat. Mater. 2002, 11, 845–850; https://doi.org/10.1016/s0925-9635(01)00636-7.Search in Google Scholar

151. Natasha, Shahid, M., Khalid, S., Murtaza, B., Anwar, H., Shah, A. H., Sardar, A., Shabbir, Z., Niazi, N. K. A critical analysis of wastewater use in agriculture and associated health risks in Pakistan. Environ. Geochem. Health 2020, 45, 5599–5618; https://doi.org/10.1007/s10653-020-00702-3.Search in Google Scholar PubMed

152. Li, X., Zhu, Y., Cai, W., Borysiak, M., Han, B., Chen, D., Piner, R. D., Colombo, L., Ruoff, R. S. Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett. 2009, 9, 4359–4363; https://doi.org/10.1021/nl902623y.Search in Google Scholar PubMed

153. Liang, X., Sperling, B. A., Calizo, I., Cheng, G., Hacker, C. A., Zhang, Q., Obeng, Y., Yan, K., Peng, H., Li, Q., Zhu, X., Yuan, H., Hight Walker, A. R., Liu, Z., Peng, L. m., Richter, C. A. Toward clean and crackless transfer of graphene. ACS Nano 2011a, 5, 9144–9153; https://doi.org/10.1021/nn203377t.Search in Google Scholar PubMed

154. Kim, S., Shin, S., Kim, T., Du, H., Song, M., Lee, C., Kim, K., Cho, S., Seo, D. H., Seo, S. Robust graphene wet transfer process through low molecular weight polymethylmethacrylate. Carbon 2016b, 98, 352–357; https://doi.org/10.1016/j.carbon.2015.11.027.Search in Google Scholar

155. Majid, F., Bashir, M., Bibi, I., Ayub, M., Khan, B. S., Somaily, H. H., Al-Mijalli, S. H., Nazir, A., Iqbal, S., Iqbal, M. Green synthesis of magnetic Fe3O4 nanoflakes using vegetables extracts and their magnetic, structural and antibacterial properties evaluation. Z. Phys. Chem. 2023, 237, 1345–1360; https://doi.org/10.1515/zpch-2022-0097.Search in Google Scholar

156. Gorantla, S., Bachmatiuk, A., Hwang, J., Alsalman, H. A., Kwak, J. Y., Seyller, T., Eckert, J., Spencer, M. G., Rümmeli, M. H. A universal transfer route for graphene. Nanoscale 2014, 6, 889–896; https://doi.org/10.1039/c3nr04739c.Search in Google Scholar PubMed

157. Gao, L., Ren, W., Xu, H., Jin, L., Wang, Z., Ma, T., Ma, L.-P., Zhang, Z., Fu, Q., Peng, L.-M., Bao, X., Cheng, H. M. Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum. Nat. Commun. 2012, 3, 699; https://doi.org/10.1038/ncomms1702.Search in Google Scholar PubMed PubMed Central

158. Ohtomo, M., Sekine, Y., Wang, S., Hibino, H., Yamamoto, H. Etchant-free graphene transfer using facile intercalation of alkanethiol self-assembled molecules at graphene/metal interfaces. Nanoscale 2016, 8, 11503–11510; https://doi.org/10.1039/c6nr01366j.Search in Google Scholar PubMed

159. Liang, X., Sperling, B., Calizo, I., Cheng, G., Hacker, C., Zhang, Q., Obeng, Y., Yan, K., Peng, H., Li, Q., Zhu, X., Yuan, H., Hight Walker, A. R., Liu, Z., Peng, L. m., Richter, C. A. Toward clean and crackless transfer of graphene. ACS Nano 2011b, 5, 9144–9153; https://doi.org/10.1021/nn203377t.Search in Google Scholar PubMed

160. Gao, L., Ni, G.-X., Liu, Y., Liu, B., Neto, A. H. C., Loh, K. P. Face-to-face transfer of wafer-scale graphene films. Nature 2014, 505, 190; https://doi.org/10.1038/nature12763.Search in Google Scholar PubMed

161. Lin, Y.-C., Lu, C.-C., Yeh, C.-H., Jin, C., Suenaga, K., Chiu, P.-W. Graphene annealing: how clean can it be? Nano Lett. 2011, 12, 414–419; https://doi.org/10.1021/nl203733r.Search in Google Scholar PubMed

162. Park, H., Brown, P. R., Bulović, V., Kong, J. Graphene as transparent conducting electrodes in organic photovoltaics: studies in graphene morphology, hole transporting layers, and counter electrodes. Nano Lett. 2011, 12, 133–140; https://doi.org/10.1021/nl2029859.Search in Google Scholar PubMed

163. Sun, J., Finklea, H. O., Liu, Y. Characterization and electrolytic cleaning of poly (methyl methacrylate) residues on transferred chemical vapor deposited graphene. Nanotechnology 2017, 28, 125703; https://doi.org/10.1088/1361-6528/aa5e55.Search in Google Scholar PubMed

164. Jia, Y., Gong, X., Peng, P., Wang, Z., Tian, Z., Ren, L., Fu, Y., Zhang, H. Toward high carrier mobility and low contact resistance: laser cleaning of PMMA residues on graphene surfaces. Nano-Micro Lett. 2016, 8, 336–346; https://doi.org/10.1007/s40820-016-0093-5.Search in Google Scholar PubMed PubMed Central

165. Chen, X.-D., Liu, Z.-B., Zheng, C.-Y., Xing, F., Yan, X.-Q., Chen, Y., Tian, J.-G. High-quality and efficient transfer of large-area graphene films onto different substrates. Carbon 2013, 56, 271–278; https://doi.org/10.1016/j.carbon.2013.01.011.Search in Google Scholar

166. Kang, J., Hwang, S., Kim, J. H., Kim, M. H., Ryu, J., Seo, S. J., Hong, B. H., Kim, M. K., Choi, J.-B. Efficient transfer of large-area graphene films onto rigid substrates by hot pressing. ACS Nano 2012b, 6, 5360–5365; https://doi.org/10.1021/nn301207d.Search in Google Scholar PubMed

167. Wang, B., Huang, M., Tao, L., Lee, S. H., Jang, A.-R., Li, B.-W., Shin, H. S., Akinwande, D., Ruoff, R. S. Support-free transfer of ultrasmooth graphene films facilitated by self-assembled monolayers for electronic devices and patterns. ACS Nano 2016c, 10, 1404–1410; https://doi.org/10.1021/acsnano.5b06842.Search in Google Scholar PubMed

168. Chen, M., Li, G., Li, W., Stekovic, D., Arkook, B., Itkis, M. E., Pekker, A., Bekyarova, E., Haddon, R. C. Large-scale cellulose-assisted transfer of graphene toward industrial applications. Carbon 2016a, 110, 286–291; https://doi.org/10.1016/j.carbon.2016.09.029.Search in Google Scholar

169. Matruglio, A., Nappini, S., Naumenko, D., Magnano, E., Bondino, F., Lazzarino, M., Dal Zilio, S. Contamination-free suspended graphene structures by a Ti-based transfer method. Carbon 2016, 103, 305–310; https://doi.org/10.1016/j.carbon.2016.03.023.Search in Google Scholar

170. Lee, J., Kim, Y., Shin, H.-J., Lee, C., Lee, D., Moon, C.-Y., Lim, J., Chan Jun, S. Clean transfer of graphene and its effect on contact resistance. Appl. Phys. Lett. 2013, 103, 103104; https://doi.org/10.1063/1.4819740.Search in Google Scholar

171. Broderick, A. H., Manna, U., Lynn, D. M. Covalent layer-by-layer assembly of water-permeable and water-impermeable polymer multilayers on highly water-soluble and water-sensitive substrates. Chem. Mater. 2012, 24, 1786–1795; https://doi.org/10.1021/cm300307g.Search in Google Scholar

172. Chen, M., Tian, X., Li, W., Bekyarova, E., Li, G., Moser, M., Haddon, R. C. Application of organometallic chemistry to the electrical interconnection of graphene nanoplatelets. Chem. Mater. 2016b, 28, 2260–2266; https://doi.org/10.1021/acs.chemmater.6b00217.Search in Google Scholar

173. Bekyarova, E. B., Niyogi, S., Sarkar, S., Tian, X., Chen, M., Moser, M. L., Ayub, K., Mitchell, R. H., Haddon, R. C. Stereochemical effect of covalent chemistry on the electronic structure and properties of the carbon allotropes and graphene surfaces. Synth. Met. 2015, 210, 80–84; https://doi.org/10.1016/j.synthmet.2015.07.004.Search in Google Scholar

174. Bekyarova, E., Sarkar, S., Niyogi, S., Itkis, M., Haddon, R. Advances in the chemical modification of epitaxial graphene. J. Phys. D: Appl. Phys. 2012, 45, 154009; https://doi.org/10.1088/0022-3727/45/15/154009.Search in Google Scholar

175. Zhang, G., Güell, A. G., Kirkman, P. M., Lazenby, R. A., Miller, T. S., Unwin, P. R. Versatile polymer-free graphene transfer method and applications. ACS Appl. Mater. Interfaces 2016, 8, 8008–8016; https://doi.org/10.1021/acsami.6b00681.Search in Google Scholar PubMed

176. Lin, W.-H., Chen, T.-H., Chang, J.-K., Taur, J.-I., Lo, Y.-Y., Lee, W.-L., Chang, C.-S., Su, W.-B., Wu, C.-I. A direct and polymer-free method for transferring graphene grown by chemical vapor deposition to any substrate. ACS Nano 2014, 8, 1784–1791; https://doi.org/10.1021/nn406170d.Search in Google Scholar PubMed

177. Chen, X., Wu, B., Liu, Y. Direct preparation of high quality graphene on dielectric substrates. Chem. Soc. Rev. 2016c, 45, 2057–2074; https://doi.org/10.1039/c5cs00542f.Search in Google Scholar PubMed

178. Shin, H. J., Choi, W. M., Yoon, S. M., Han, G. H., Woo, Y. S., Kim, E. S., Chae, S. J., Li, X. S., Benayad, A., Loc, D. D., Gunes, F., Lee, Y. H. Transfer-Free growth of few-layer graphene by self-assembled monolayers. Adv. Mater. 2011, 23, 4392–4397; https://doi.org/10.1002/adma.201102526.Search in Google Scholar PubMed

179. Chatterjee, S. G., Chatterjee, S., Ray, A. K., Chakraborty, A. K. Graphene–metal oxide nanohybrids for toxic gas sensor: a review. Sens. Actuators, B 2015, 221, 1170–1181; https://doi.org/10.1016/j.snb.2015.07.070.Search in Google Scholar

180. Cho, B., Yoon, J., Hahm, M. G., Kim, D.-H., Kim, A. R., Kahng, Y. H., Park, S.-W., Lee, Y.-J., Park, S.-G., Kwon, J.-D., Kim, C. S., Song, M., Jeong, Y., Nam, K. S., Ko, H. C. Graphene-based gas sensor: metal decoration effect and application to a flexible device. J. Mater. Chem. C 2014, 2, 5280–5285; https://doi.org/10.1039/c4tc00510d.Search in Google Scholar

181. Hussain, S., Li, Y., Thebo, K. H., Ali, Z., Owais, M., Hussain, S. Effect of iron oxide co-doping on structural, thermal, and electrochemical properties of samarium doped ceria solid electrolyte. Mater. Chem. Phys. 2021, 267, 124576.10.1016/j.matchemphys.2021.124576Search in Google Scholar

182. Hayashi, H., Hakuta, Y. Hydrothermal synthesis of metal oxide nanoparticles in supercritical water. Materials 2010, 3, 3794–3817; https://doi.org/10.3390/ma3073794.Search in Google Scholar PubMed PubMed Central

183. Grigore, M. E., Biscu, E. R., Holban, A. M., Gestal, M. C., Grumezescu, A. M. Methods of synthesis, properties and biomedical applications of CuO nanoparticles. Pharmaceuticals 2016, 9, 75; https://doi.org/10.3390/ph9040075.Search in Google Scholar PubMed PubMed Central

184. Stankic, S., Suman, S., Haque, F., Vidic, J. Pure and multi metal oxide nanoparticles: synthesis, antibacterial and cytotoxic properties. J. Nanobiotechnol. 2016, 14, 73; https://doi.org/10.1186/s12951-016-0225-6.Search in Google Scholar PubMed PubMed Central

185. Sui, R., Charpentier, P. Synthesis of metal oxide nanostructures by direct sol–gel chemistry in supercritical fluids. Chem. Rev. 2012, 112, 3057–3082; https://doi.org/10.1021/cr2000465.Search in Google Scholar PubMed

186. Al Dine, E. J. Synthesis and Characterization of Smart Nanoparticles; Université de Lorraine: Université libanaise, 2017.Search in Google Scholar

187. Lassesson, A., Schulze, M., Van Lith, J., Brown, S. Tin oxide nanocluster hydrogen and ammonia sensors. Nanotechnology 2007, 19, 015502; https://doi.org/10.1088/0957-4484/19/01/015502.Search in Google Scholar PubMed

188. Gyger, F., Hübner, M., Feldmann, C., Barsan, N., Weimar, U. Nanoscale SnO2 hollow spheres and their application as a gas-sensing material. Chem. Mater. 2010, 22, 4821–4827; https://doi.org/10.1021/cm1011235.Search in Google Scholar

189. Yin, X. M., Li, C. C., Zhang, M., Hao, Q. Y., Liu, S., Li, Q. H., Chen, L. B., Wang, T. H. SnO2 monolayer porous hollow spheres as a gas sensor. Nanotechnology 2009, 20, 455503; https://doi.org/10.1088/0957-4484/20/45/455503.Search in Google Scholar PubMed

190. Chen, Z., Pan, D., Zhao, B., Ding, G., Jiao, Z., Wu, M., Shek, C.-H., Wu, L. C., Lai, J. K. Insight on fractal assessment strategies for tin dioxide thin films. ACS Nano 2010, 4, 1202–1208; https://doi.org/10.1021/nn901635f.Search in Google Scholar PubMed

191. Fan, G., Wang, Y., Hu, M., Luo, Z., Li, G. Synthesis of flowerlike nano-SnO2 and a study of its gas sensing response. Measur. Sci. Technol. 2011, 22, 045203; https://doi.org/10.1088/0957-0233/22/4/045203.Search in Google Scholar

192. Mallik, A., Roy, I., Chalapathi, D., Narayana, C., Das, T., Bhattacharya, A., Bera, S., Bhattacharya, S., De, S., Das, B., Chattopadhyay, D. Single step synthesis of reduced graphene oxide/SnO2 nanocomposites for potential optical and semiconductor applications. Mater. Sci. Eng. B 2021, 264, 114938; https://doi.org/10.1016/j.mseb.2020.114938.Search in Google Scholar

193. Neri, G., Leonardi, S. G., Latino, M., Donato, N., Baek, S., Conte, D. E., Russo, P. A., Pinna, N. Sensing behavior of SnO2/reduced graphene oxide nanocomposites toward NO2. Sens. Actuators, B 2013, 179, 61–68; https://doi.org/10.1016/j.snb.2012.10.031.Search in Google Scholar

194. Zhang, H., Feng, J., Fei, T., Liu, S., Zhang, T. SnO2 nanoparticles-reduced graphene oxide nanocomposites for NO2 sensing at low operating temperature. Sens. Actuators, B 2014a, 190, 472–478; https://doi.org/10.1016/j.snb.2013.08.067.Search in Google Scholar

195. Mao, S., Cui, S., Lu, G., Yu, K., Wen, Z., Chen, J. Tuning gas-sensing properties of reduced graphene oxide using tin oxide nanocrystals. J. Mater. Chem. 2012, 22, 11009–11013; https://doi.org/10.1039/c2jm30378g.Search in Google Scholar

196. Khan, H. R., Aamir, M., Syed, A. S., Akhtar, J. General techniques for preparation of nanosensors. In Nanosensors for Smart Manufacturing; Elsevier, Chapter 2, 2021; pp. 19–43.10.1016/B978-0-12-823358-0.00003-4Search in Google Scholar

197. Lin, Q., Li, Y., Yang, M. Tin oxide/graphene composite fabricated via a hydrothermal method for gas sensors working at room temperature. Sens. Actuators, B 2012, 173, 139–147; https://doi.org/10.1016/j.snb.2012.06.055.Search in Google Scholar

198. Aamir, M., Ashraf, S., Shuja, A., Akhtar, J. Graphene-based nanoelectronic biosensors. Nanotechnol. Electr.: Mater., Prop., Dev. 2023, 25–61.10.1002/9783527824229.ch2Search in Google Scholar

199. Chang, Y., Yao, Y., Wang, B., Luo, H., Li, T., Zhi, L. Reduced graphene oxide mediated SnO2 nanocrystals for enhanced gas-sensing properties. J. Mater. Sci. Technol. 2013, 29, 157–160; https://doi.org/10.1016/j.jmst.2012.11.007.Search in Google Scholar

200. Szunerits, S., Boukherroub, R. Graphene-based biosensors. Inter. Focus 2018, 8, 20160132; https://doi.org/10.1098/rsfs.2016.0132.Search in Google Scholar PubMed PubMed Central

201. Debataraja, A., Septiani, N. L. W., Yuliarto, B., Sunendar, B., Abdullah, H. High performance of a carbon monoxide sensor based on a Pd-doped graphene-tin oxide nanostructure composite. Ionics 2019, 25, 4459–4468; https://doi.org/10.1007/s11581-019-02967-w.Search in Google Scholar

202. Eda, G., Fanchini, G., Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 2008, 3, 270–274; https://doi.org/10.1038/nnano.2008.83.Search in Google Scholar PubMed

203. Yan, L. Z., Hawari, H. F., Djaswadi, G. W. Highly sensitive SnO2-reduced graphene oxide hybrid composites for room temperature acetone sensor. In 2019 IEEE 15th Intern. Colloquium. Signal Proces. Applic. (CSPA); IEEE: Penang, Malaysia, 2019; pp. 71–74.10.1109/CSPA.2019.8695987Search in Google Scholar

204. Pargoletti, E., Tricoli, A., Pifferi, V., Orsini, S., Longhi, M., Guglielmi, V., Cerrato, G., Falciola, L., Derudi, M., Cappelletti, G. An electrochemical outlook upon the gaseous ethanol sensing by graphene oxide-SnO2 hybrid materials. Appl. Surf. Sci. 2019, 483, 1081–1089; https://doi.org/10.1016/j.apsusc.2019.04.046.Search in Google Scholar

205. Wang, T., Sun, Z., Huang, D., Yang, Z., Ji, Q., Hu, N., Yin, G., He, D., Wei, H., Zhang, Y. Studies on NH3 gas sensing by zinc oxide nanowire-reduced graphene oxide nanocomposites. Sens. Actuators, B 2017, 252, 284–294; https://doi.org/10.1016/j.snb.2017.05.162.Search in Google Scholar

206. Zhou, Z., Zhan, C., Wang, Y., Su, Y., Yang, Z., Zhang, Y. Rapid mass production of ZnO nanowires by a modified carbothermal reduction method. Mater. Lett. 2011, 65, 832–835; https://doi.org/10.1016/j.matlet.2010.12.032.Search in Google Scholar

207. Hu, N., Wang, Y., Chai, J., Gao, R., Yang, Z., Kong, E. S.-W., Zhang, Y. Gas sensor based on p-phenylenediamine reduced graphene oxide. Sens. Actuators, B 2012, 163, 107–114; https://doi.org/10.1016/j.snb.2012.01.016.Search in Google Scholar

208. Kovtyukhova, N. I., Ollivier, P. J., Martin, B. R., Mallouk, T. E., Chizhik, S. A., Buzaneva, E. V., Gorchinskiy, A. D. Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chem. Mater. 1999, 11, 771–778; https://doi.org/10.1021/cm981085u.Search in Google Scholar

209. Teo, P., Lim, H., Huang, N., Chia, C. H., Harrison, I. Room temperature in situ chemical synthesis of Fe3O4/graphene. Ceram. Intern. 2012, 38, 6411–6416; https://doi.org/10.1016/j.ceramint.2012.05.014.Search in Google Scholar

210. Deng, S., Tjoa, V., Fan, H. M., Tan, H. R., Sayle, D. C., Olivo, M., Mhaisalkar, S., Wei, J., Sow, C. H. Reduced graphene oxide conjugated Cu2O nanowire mesocrystals for high-performance NO2 gas sensor. J. Appl. Chem. Sci. 2012, 134, 4905–4917; https://doi.org/10.1021/ja211683m.Search in Google Scholar PubMed

211. Zhou, L., Shen, F., Tian, X., Wang, D., Zhang, T., Chen, W. Stable Cu2O nanocrystals grown on functionalized graphene sheets and room temperature H2S gas sensing with ultrahigh sensitivity. Nanoscale 2013, 5, 1564–1569; https://doi.org/10.1039/c2nr33164k.Search in Google Scholar PubMed

212. Cui, F., Li, T., Wang, D., Yi, S., Li, J., Li, X. Recent advances in carbon-based nanomaterials for combating bacterial biofilm-associated infections. J. Hazard. Mater. 2022, 431, 128597; https://doi.org/10.1016/j.jhazmat.2022.128597.Search in Google Scholar PubMed

213. Ghule, B. G., Shinde, N. M., Raut, S. D., Shaikh, S. F., Al-Enizi, A. M., Kim, K. H., Mane, R. S. Porous metal-graphene oxide nanocomposite sensors with high ammonia detectability. J. Colloid Interface Sci. 2021, 589, 401–410; https://doi.org/10.1016/j.jcis.2020.12.096.Search in Google Scholar PubMed

214. Van Quang, V., Van Dung, N., Sy Trong, N., Duc Hoa, N., Van Duy, N., Van Hieu, N. Outstanding gas-sensing performance of graphene/SnO2 nanowire Schottky junctions. Appl. Phys. Lett. 2014, 105, 013107; https://doi.org/10.1063/1.4887486.Search in Google Scholar

215. Zhang, Z., Zou, R., Song, G., Yu, L., Chen, Z., Hu, J. Highly aligned SnO2 nanorods on graphene sheets for gas sensors. J. Mater. Chem. 2011, 21, 17360–17365; https://doi.org/10.1039/c1jm12987b.Search in Google Scholar

216. Zhang, D., Liu, J., Chang, H., Liu, A., Xia, B. Characterization of a hybrid composite of SnO2 nanocrystal-decorated reduced graphene oxide for ppm-level ethanol gas sensing application, 2015a.10.1039/C4RA14611ESearch in Google Scholar

217. Inyawilert, K., Wisitsoraat, A., Sriprachaubwong, C., Tuantranont, A., Phanichphant, S., Liewhiran, C. Rapid ethanol sensor based on electrolytically-exfoliated graphene-loaded flame-made In-doped SnO2 composite film. Sens. Actuators, B 2015, 209, 40–55; https://doi.org/10.1016/j.snb.2014.11.086.Search in Google Scholar

218. Zhang, H., Wang, L., Zhang, T. Reduced graphite oxide/SnO2/Au hybrid nanomaterials for NO2 sensing performance at relatively low operating temperature, 2014b.10.1039/C4RA10474ASearch in Google Scholar

219. He, J.-Q., Yin, J., Liu, D., Zhang, L.-X., Cai, F.-S., Bie, L.-J. Enhanced acetone gas-sensing performance of La2O3-doped flowerlike ZnO structure composed of nanorods. Sens. Actuators, B 2013, 182, 170–175; https://doi.org/10.1016/j.snb.2013.02.085.Search in Google Scholar

220. Song, L., Lukianov, A., Butenko, D., Li, H., Zhang, J., Feng, M., Liu, L., Chen, D., Klyui, N. Facile synthesis of hierarchical tin oxide nanoflowers with ultra-high methanol gas sensing at low working temperature. Nanosci. Res. Lett. 2019, 14, 84; https://doi.org/10.1186/s11671-019-2911-4.Search in Google Scholar PubMed PubMed Central

221. Zhang, D., Wu, Z., Zong, X. Flexible and highly sensitive H2S gas sensor based on in-situ polymerized SnO2/rGO/PANI ternary nanocomposite with application in halitosis diagnosis. Sens. Actuators, B 2019, 289, 32–41; https://doi.org/10.1016/j.snb.2019.03.055.Search in Google Scholar

222. Bae, G., Jeon, I. S., Jang, M., Song, W., Myung, S., Lim, J., Lee, S. S., Jung, H. K., Park, C.-Y., An, K.-S. Complementary dual channel gas sensor devices based on a role-allocated ZnO-graphene hybrid heterostructure. ACS Appl. Mater. Interfaces 2019; https://doi.org/10.1021/acsami.9b01596.Search in Google Scholar PubMed

223. Liu, S., Yu, B., Zhang, H., Fei, T., Zhang, T. Enhancing NO2 gas sensing performances at room temperature based on reduced graphene oxide-ZnO nanoparticles hybrids. Sens. Actuators, B 2014, 202, 272–278; https://doi.org/10.1016/j.snb.2014.05.086.Search in Google Scholar

224. Kumar, N., Srivastava, A. K., Patel, H. S., Gupta, B. K., Varma, G. D. Facile synthesis of ZnO–reduced graphene oxide nanocomposites for NO2 gas sensing applications. Eur. J. Inorg. Chem. 2015, 2015, 1912–1923; https://doi.org/10.1002/ejic.201403172.Search in Google Scholar

225. Cuong, T. V., Pham, V. H., Chung, J. S., Shin, E. W., Yoo, D. H., Hahn, S. H., Huh, J. S., Rue, G. H., Kim, E. J., Hur, S. H., Kohl, P. A. Solution-processed ZnO-chemically converted graphene gas sensor. Mater. Lett. 2010, 64, 2479–2482; https://doi.org/10.1016/j.matlet.2010.08.027.Search in Google Scholar

226. Zhang, D., Yin, N., Xia, B. Facile fabrication of ZnO nanocrystalline-modified graphene hybrid nanocomposite toward methane gas sensing application. J. Mater. Sci.: Mater. Electron. 2015b, 26, 5937–5945; https://doi.org/10.1007/s10854-015-3165-2.Search in Google Scholar

227. Singh, G., Choudhary, A., Haranath, D., Joshi, A. G., Singh, N., Singh, S., Pasricha, R. ZnO decorated luminescent graphene as a potential gas sensor at room temperature. Carbon 2012, 50, 385–394; https://doi.org/10.1016/j.carbon.2011.08.050.Search in Google Scholar

228. Anand, K., Singh, O., Singh, M. P., Kaur, J., Singh, R. C. Hydrogen sensor based on graphene/ZnO nanocomposite. Sens. Actuators, B 2014, 195, 409–415; https://doi.org/10.1016/j.snb.2014.01.029.Search in Google Scholar

229. Dong, Y.-l., Zhang, X.-f., Cheng, X.-l., Xu, Y.-m., Gao, S., Zhao, H., Huo, L.-h.. Highly selective NO2 sensor at room temperature based on nanocomposites of hierarchical nanosphere-like α-Fe2O3 and reduced graphene oxide, 2014a.Search in Google Scholar

230. Basu, A. K., Chauhan, P. S., Awasthi, M., Bhattacharya, S. α-Fe2O3 loaded rGO nanosheets based fast response/recovery CO gas sensor at room temperature. Appl. Surf. Sci. 2019, 465, 56–66; https://doi.org/10.1016/j.apsusc.2018.09.123.Search in Google Scholar

231. Liang, S., Zhu, J., Ding, J., Bi, H., Yao, P., Han, Q., Wang, X. Deposition of cocoon-like ZnO on graphene sheets for improving gas-sensing properties to ethanol. Appl. Surf. Sci. 2015, 357, 1593–1600; https://doi.org/10.1016/j.apsusc.2015.10.033.Search in Google Scholar

232. Tung, T. T., Chien, N. V., Van Duy, N., Van Hieu, N., Nine, M. J., Coghlan, C. J., Tran, D. N., Losic, D. Magnetic iron oxide nanoparticles decorated graphene for chemoresistive gas sensing: the particle size effects. J. Colloid Interface Sci. 2019, 539, 315–325; https://doi.org/10.1016/j.jcis.2018.12.077.Search in Google Scholar PubMed

233. Liu, X., Li, J., Sun, J., Zhang, X. 3D Fe3O4 nanoparticle/graphene aerogel for NO2 sensing at room temperature. RSC Adv. 2015, 5, 73699–73704; https://doi.org/10.1039/c5ra14857j.Search in Google Scholar

234. Dong, Y.-l., Zhang, X.-f., Cheng, X.-l., Xu, Y.-m., Gao, S., Zhao, H., Huo, L.-h. Highly selective NO2 sensor at room temperature based on nanocomposites of hierarchical nanosphere-like α-Fe2O3 and reduced graphene oxide. RSC Adv. 2014b, 4, 57493–57500; https://doi.org/10.1039/c4ra10136g.Search in Google Scholar

Received: 2023-11-20
Accepted: 2024-01-22
Published Online: 2024-02-16
Published in Print: 2024-09-25

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 22.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/revic-2023-0033/html?lang=en
Scroll to top button