Abstract
Nanotechnology is the most innovative field of the twenty-first century. Worldwide, intensive research is being done to commercialize nano products. Due to their unique or improved physical and chemical properties relative to bulk material, nanomaterials, especially nanoparticles have seen an enormous interest over the past few decades. As environmentally benign alternative nanoparticles are currently being produced “biologically” by means of plant or microorganism-mediated synthesis. Due to its outstanding biocompatibility, affordability, and low toxicity, and cost-effectiveness, ZnO NPs have emerged as one of the most widely used metal oxide nanoparticles in various applications. Interestingly, due to its multiple medical, health, environmental, and economic advantages, the green technique of synthesis employing plant materials has been discovered to be suitable for the production of ZnO nanoparticles. A variety of characterization methods have been used to assess the characteristics of ZnO NPs produced with green strategies, including X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR), and UV–Vis spectroscopy and others. The value of these techniques reveals important information about the structural, morphological, and optical characteristics of ZnO NPs. In order to support future biomedical and other research, this review provides an overview of recent developments in the green synthesis of ZnO NPs with a focus on natural sources such as plants, bacteria, fungi, and algae as well as their characterizations, and various applications, including, antimicrobial, anticancer, antioxidant, photocatalytic, anti-inflammatory, anti-diabetics, and anti-aging applications.
-
Research ethics: Not applicable.
-
Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: The authors state no conflict of interest.
-
Research funding: None declared.
-
Data availability: Not applicable.
References
1. Mirzaei, H., Darroudi, M. Zinc Oxide Nanoparticles: Biological Synthesis and Biomedical Applications. Ceram. Int. 2017, 43, 907–914; https://doi.org/10.1016/j.ceramint.2016.10.051.Search in Google Scholar
2. Arruda, S. C. C., Silva, A. L. D., Galazzi, R. M., Azevedo, R. A., Arruda, M. A. Z. Nanoparticles Applied to Plant Science: A Review. Talanta 2015, 131, 693–705; https://doi.org/10.1016/j.talanta.2014.08.050.Search in Google Scholar PubMed
3. Buzea, C., Pacheco, I. I., Robbie, K. Nanomaterials and Nanoparticles: Sources and Toxicity. Biointerphases 2007, 2, MR17–MR71; https://doi.org/10.1116/1.2815690.Search in Google Scholar PubMed
4. Yu, S., Liu, J., Yin, Y., Shen, M. Interactions between Engineered Nanoparticles and Dissolved Organic Matter: A Review on Mechanisms and Environmental Effects. J. Environ. Sci. 2018, 63, 198–217; https://doi.org/10.1016/j.jes.2017.06.021.Search in Google Scholar PubMed
5. Pachapur, V. L., Larios, A. D., Cledón, M., Brar, S. K., Verma, M., Surampalli, R. Y. Behavior and Characterization of Titanium Dioxide and Silver Nanoparticles in Soils. Sci. Total Environ. 2016, 563, 933–943; https://doi.org/10.1016/j.scitotenv.2015.11.090.Search in Google Scholar PubMed
6. Kim, I., Viswanathan, K., Kasi, G., Thanakkasaranee, S., Sadeghi, K., Seo, J. ZnO Nanostructures in Active Antibacterial Food Packaging: Preparation Methods, Antimicrobial Mechanisms, Safety Issues, Future Prospects, and Challenges. Food Rev. Int. 2022, 38, 537–565; https://doi.org/10.1080/87559129.2020.1737709.Search in Google Scholar
7. Samak, D. H., El-Sayed, Y. S., Shaheen, H. M., El-Far, A. H., Abd El-Hack, M. E., Noreldin, A. E., El-Naggar, K., Abdelnour, S. A., Saied, E. M., El-Seedi, H. R., Aleya, L., Abdel-Daim, M. M. Developmental Toxicity of Carbon Nanoparticles during Embryogenesis in Chicken. Environ. Sci. Pollut. Res. 2020, 27, 19058–19072; https://doi.org/10.1007/s11356-018-3675-6.Search in Google Scholar PubMed
8. Akbar, S., Tauseef, I., Subhan, F., Sultana, N., Khan, I., Ahmed, U., Haleem, K. S. An Overview of the Plant-Mediated Synthesis of Zinc Oxide Nanoparticles and Their Antimicrobial Potential. Inorg. Nano-Metal Chem. 2020, 50, 257–271; https://doi.org/10.1080/24701556.2019.1711121.Search in Google Scholar
9. Theerthagiri, J., Salla, S., Senthil, R. A., Nithyadharseni, P., Madankumar, A., Arunachalam, P., Kim, H. S. A Review on ZnO Nanostructured Materials: Energy, Environmental and Biological Applications. Nanotechnology 2019, 30, 392001; https://doi.org/10.1088/1361-6528/ab268a.Search in Google Scholar PubMed
10. Akintelu, S. A., Folorunso, A. S. A Review on Green Synthesis of Zinc Oxide Nanoparticles Using Plant Extracts and its Biomedical Applications. BioNanoScience 2020, 10, 848–863; https://doi.org/10.1007/s12668-020-00774-6.Search in Google Scholar
11. Tanna, J. A., Chaudhary, R. G., Gandhare, N. V., Rai, A. R., Yerpude, S., Juneja, H. D. Copper Nanoparticles Catalysed an Efficient One-Pot Multicomponents Synthesis of Chromenes Derivative-Es and its Antibacterial Activity. J. Exp. Nanosci. 2016, 11, 884–900; https://doi.org/10.1080/17458080.2016.1177216.Search in Google Scholar
12. Ginjupalli, K., Alla, R., Shaw, T., Tellapragada, C., Gupta, L. K., Upadhya, P. N. Comparative Evaluation of Efficacy of Zinc Oxide and Copper Oxide Nanoparticles as Antimicrobial Additives in Alginate Impress-Ion Materials. Mater. Today: Proc. 2018, 5, 16258–16266; https://doi.org/10.1016/j.matpr.2018.05.117.Search in Google Scholar
13. Akintelu, S. A., Folorunso, A. S., Oyebamiji, A. K., Erazua, E. A. Antibacterial Potency of Silver Nanoparticles Synthesized Using Boerhaavia Diffusa Leaf Extract as Reductive and Stabilizing Agent. Int. J. Pharma Sci. Res 2019, 10, 374–380.Search in Google Scholar
14. Mishra, P. K., Mishra, H., Ekielski, A., Talegaonkar, S., Vaidya, B. Zinc Oxide Nanoparticles: A Promising Nanomaterial for Biomedical Applications. Drug Discov. Today 2017, 22, 1825–1834; https://doi.org/10.1016/j.drudis.2017.08.006.Search in Google Scholar PubMed
15. Agarwal, H., Kumar, S. V., Rajeshkumar, S. A Review on Green Synthesis of Zinc Oxide Nanoparticles–An Eco-Friendly Approach. Res. Effic. Technol. 2017, 3, 406–413; https://doi.org/10.18799/24056529/2017/4/163.Search in Google Scholar
16. Smijs, T. G., Pavel, S. Titanium Dioxide and Zinc Oxide Nanoparticles in Sunscreens: Focus on Their Safety and Effectiveness. Nanotechnol. Sci. Appl. 2011, 4, 95–112; https://doi.org/10.2147/nsa.s19419.Search in Google Scholar PubMed PubMed Central
17. Ruszkiewicz, J. A., Pinkas, A., Ferrer, B., Peres, T. V., Tsatsakis, A., Aschner, M. Neurotoxic Effect of Active Ingredients in Sunscreen Products, a Contemporary Review. Toxicol. Rep. 2017, 4, 245–259; https://doi.org/10.1016/j.toxrep.2017.05.006.Search in Google Scholar PubMed PubMed Central
18. Jamdagni, P., Khatri, P., Rana, J. S. Green Synthesis of Zinc Oxide Nanoparticles Using Flower Extract of Nyctanthes Arbor-Tristis and Their Antifungal Activity. J. King Saud Univ.-Sci. 2018, 30, 168–175; https://doi.org/10.1016/j.jksus.2016.10.002.Search in Google Scholar
19. Rahimi, S., Salarinasab, S., Ghasemi, N., Rahbargha-zi, R., Shahi, S., Divband, B., Davoudi, P. In Vitro Induction of Odontogenic Activity of Human Dental Pulp Stem Cells by White Portland Cement Enriched with Zirconium Oxide and Zinc Oxide Components. J. Dental Res., Dental Clinics, Dental Prosp. 2019, 13, 3; https://doi.org/10.15171/joddd.2019.001.Search in Google Scholar PubMed PubMed Central
20. Mampilly, R. B., Pathan, A., Bhasin, C. P. Visible light-assisted degradation of malachite green Dye Using waste tea-mediated zinc nanoparticles. Int. J. Thin Film Sci. Technol. 2023, 12, 39–51.10.18576/ijtfst/120105Search in Google Scholar
21. Cooper, R. A Review of the Evidence for the Use of Topical Antimicrobial Agents in Wound Care. Worldw. Wounds 2004, 1, 1–15.Search in Google Scholar
22. Brahms, J., Mattai, J., Jacoby, R., Chopra, S., Guenin, E.. U.S. Patent Application No. 10/789,153, 2005.Search in Google Scholar
23. Newman, M. D., Stotland, M., Ellis, J. I. The Safety of Nanosized Particles in Titanium Dioxide–And Zinc Oxide–Based Sunscreens. J. Am. Acad. Dermatol. 2009, 61, 685–692; https://doi.org/10.1016/j.jaad.2009.02.051.Search in Google Scholar PubMed
24. Kołodziejczak-Radzimska, A., Jesionowski, T. Zinc Oxide-From Synthesis to Application: A Review. Materials 2014, 7, 2833–2881; https://doi.org/10.3390/ma7042833.Search in Google Scholar PubMed PubMed Central
25. Xiao, F. X., Hung, S. F., Tao, H. B., Miao, J., Yang, H. B., Liu, B. Spatially Branched Hierarchical ZnO Nanorod-TiO2 Nanotube Array Heterostructures for Versatile Photocatalytic and Photoelectrocatalytic Applications: Towards Intimate Integration of 1D-1D Hybrid Nanostructures. Nanoscale 2014, 6, 14950–14961; https://doi.org/10.1039/c4nr04886e.Search in Google Scholar PubMed
26. Asghari, F., Jahanshiri, Z., Imani, M., Shams-Ghahfarokhi, M., Razzaghi-Abyaneh, M. Antifungal Nanomaterials: Synthesis, Properties, and Applications. In Nanobiomaterials in Antimicrobial Therapy; William Andrew Publishing: Norwich, NY, 2016; pp. 343–383.10.1016/B978-0-323-42864-4.00010-5Search in Google Scholar
27. Alprol, A. E., Mansour, A. T., El-Beltagi, H. S., Ashour, M. Algal Extracts for Green Synthesis of Zinc Oxide Nanoparticles: Promising Approach for Algae Bioremediation. Materials 2023, 16, 2819; https://doi.org/10.3390/ma16072819.Search in Google Scholar PubMed PubMed Central
28. Ealia, S. A. M., Saravanakumar, M. P. A Review on the Classification, Characterisation, Synthesis of Nanoparticles and Their Application. IOP Conf. Ser. Mater. Sci. Eng. 2017, 263(3), 032019.10.1088/1757-899X/263/3/032019Search in Google Scholar
29. Ijaz, I., Gilani, E., Nazir, A., Bukhari, A. Detail Review on Chemical, Physical and Green Synthesis, Classification, Characterizations and Applications of Nanoparticles. Green Chem. Lett. Rev. 2020, 13, 223–245; https://doi.org/10.1080/17518253.2020.1802517.Search in Google Scholar
30. Huang, H. C., Barua, S., Sharma, G., Dey, S. K., Rege, K. Inorganic Nanoparticles for Cancer Imaging and Therapy. J. Contr. Release 2011, 155, 344–357; https://doi.org/10.1016/j.jconrel.2011.06.004.Search in Google Scholar PubMed
31. Jeelani, S., Reddy, R. J., Maheswaran, T., Asokan, G. S., Dany, A., Anand, B. Theranostics: A Treasured Tailor for Tomorrow. J. Pharm. BioAllied Sci. 2014, 6, S6; https://doi.org/10.4103/0975-7406.137249.Search in Google Scholar PubMed PubMed Central
32. Pene, F., Courtine, E., Cariou, A., Mira, J. P. Toward Theragnostics. Crit. Care Med. 2009, 37, 50–58; https://doi.org/10.1097/ccm.0b013e3181921349.Search in Google Scholar
33. Salavati-Niasari, M., Davar, F., Mir, N. Synthesis and Characterization of Metallic Copper Nanoparticles via Thermal Decomposition. Polyhedron 2008, 27, 3514–3518; https://doi.org/10.1016/j.poly.2008.08.020.Search in Google Scholar
34. Dreaden, E. C., Alkilany, A. M., Huang, X., Murphy, C. J., El-Sayed, M. A. The Golden Age: Gold Nanoparticles for Biomedicine. Chem. Soc. Rev. 2012, 41, 2740–2779; https://doi.org/10.1039/c1cs15237h.Search in Google Scholar PubMed PubMed Central
35. Li, W., Liu, Y., Wu, M., Feng, X., Redfern, S. A., Shang, Y., Yang, B., Feng, T., Wu, K., Liu, Z., Li, B., Chen, Z., Tse, J. S., Lu, S. Carbon‐quantum‐dots‐loaded Ruthenium Nanoparticles as an Efficient Electrocatalyst for Hydrogen Production in Alkaline Media. Adv. Mater. 2018, 30, 1800676; https://doi.org/10.1002/adma.201800676.Search in Google Scholar PubMed
36. Yang, Y., Wang, X., Liao, G., Liu, X., Chen, Q., Li, H., Yu, Z., Zhao, P. iRGD-Decorated Red Shift Emissive Carbon Nanodots for Tumor Targeting Fluorescence Imaging. J. Colloid Interface Sci. 2018, 509, 515–521; https://doi.org/10.1016/j.jcis.2017.09.007.Search in Google Scholar PubMed
37. Chen, Q., Yang, Y., Lin, X., Ma, W., Chen, G., Li, W., Yu, Z. Platinum (IV) Prodrugs with Long Lipid Chains for Drug Delivery and Overcoming Cisplatin Resistance. Chem. Commun. 2018, 54, 5369–5372; https://doi.org/10.1039/c8cc02791a.Search in Google Scholar PubMed
38. Gao, S., Tang, G., Hua, D., Xiong, R., Han, J., Jiang, S., Huang, C. Stimuli-responsive Bio-Based Polymeric Systems and Their Applications. J. Mater. Chem. B 2019, 7, 709–729; https://doi.org/10.1039/c8tb02491j.Search in Google Scholar PubMed
39. You, J., Meng, L., Song, T. B., Guo, T. F., Yang, Y., Chang, W. H., Yang, Y., Chen, H., Zhou, H., Chen, Q., Liu, Y., De Marco, N. Improved Air Stability of Perovskite Solar Cells via Solution-Processed Metal Oxide Transport Layers. Nat. Nanotechnol. 2016, 11, 75–81; https://doi.org/10.1038/nnano.2015.230.Search in Google Scholar PubMed
40. Manke, A., Wang, L., Rojanasakul, Y. Mechanisms of Nanoparticle-Induced Oxidative Stress and Toxicity. BioMed Res. Int. 2013, 2013, 1–15; https://doi.org/10.1155/2013/942916.Search in Google Scholar PubMed PubMed Central
41. Dizaj, S. M., Lotfipour, F., Barzegar-Jalali, M., Zarrintan, M. H., Adibkia, K. Antimicrobial Activity of the Metals and Metal Oxide Nanoparticles. Mater. Sci. Eng. C 2014, 44, 278–284; https://doi.org/10.1016/j.msec.2014.08.031.Search in Google Scholar PubMed
42. Falcaro, P., Ricco, R., Yazdi, A., Imaz, I., Furukawa, S., Maspoch, D., Doonan, C. J., Evans, J. D. Application of Metal and Metal Oxide Nanoparticles@ MOFs. Coord. Chem. Rev. 2016, 307, 237–254; https://doi.org/10.1016/j.ccr.2015.08.002.Search in Google Scholar
43. Mukherjee, S., Chowdhury, D., Kotcherlakota, R., Patra, S., Vinothkumar, B., Bhadra, M. P., Sreedhar, B., Patra, C. R. Potential Theranostics Application of Bio-Synthesized Silver Nanoparticles (4-in-1system). Theranostics 2014, 4, 316; https://doi.org/10.7150/thno.7819.Search in Google Scholar PubMed PubMed Central
44. Meng, M., He, H., Xiao, J., Zhao, P., Xie, J., Lu, Z. Controllable In Situ Synthesis of Silver Nanoparticles on Multilayered Film-Coated Silk Fibers for Antibacterial Application. J. Colloid Interface Sci. 2016, 461, 369–375; https://doi.org/10.1016/j.jcis.2015.09.038.Search in Google Scholar PubMed
45. Radetić, M. Functionalization of Textile Materials with Silver Nanoparticles. J. Mater. Sci. 2013, 48, 95–107; https://doi.org/10.1007/s10853-012-6677-7.Search in Google Scholar
46. Mecha, A. C., Chollom, M. N., Babatunde, B. F., Tetteh, E. K., Rathilal, S. Versatile silver-nanoparticle-impregnated membranes for water treatment: A review. Membranes 2023, 13, 432; https://doi.org/10.3390/membranes13040432.Search in Google Scholar PubMed PubMed Central
47. Yang, D., Liu, Q., Gao, Y., Wan, S., Meng, F., Weng, W., Zhang, Y. Characterization of Silver Nanoparticles Loaded Chitosan/polyvinyl Alcohol Antibacterial Films for Food Packaging. Food Hydrocolloids 2023, 136, 108305; https://doi.org/10.1016/j.foodhyd.2022.108305.Search in Google Scholar
48. Bansal, A., Verma, S. S. Searching for Alternative Plasmonic Materials for Specific Applications. Indian J. Mater. Sci. 2014, 2014; https://doi.org/10.1155/2014/897125.Search in Google Scholar
49. Olajire, A. A., Kareem, A., Olaleke, A. Green Synthesis of Bimetallic Pt@ Cu Nanostructures for Catalytic Oxidative Desulfurization of Model Oil. J. Nanostruct. Chem. 2017, 7, 159–170; https://doi.org/10.1007/s40097-017-0223-8.Search in Google Scholar
50. Kaur, K., Sidhu, A. K., Sidhu, A. K. Green Synthesis: An Eco-Friendly Route for the Synthesis of Iron Oxide Nanoparticles. Front. Nanotechnol. 2021, 3, 655062; https://doi.org/10.3389/fnano.2021.655062.Search in Google Scholar
51. Rajeshkumar, S., Naik, P. Synthesis and Biomedical Applications of Cerium Oxide Nanoparticles a Review. Biotechnol. Rep. 2018, 17, 1–5; https://doi.org/10.1016/j.btre.2017.11.008.Search in Google Scholar PubMed PubMed Central
52. Joya, M. R., Barón-Jaimez, J., Barba-Ortega, J. Preparation and Characterization of Fe2O3 Nanoparticles. J. Phys.: Conf. Ser. 2013, 466(1), 012004.10.1088/1742-6596/466/1/012004Search in Google Scholar
53. Ghazanfari, M. R., Kashefi, M., Shams, S. F., Jaafari, M. R. Perspective of Fe3O4 Nanoparticles Role in Biomedical Applications. Biochem. Res. Int. 2016, 2016, 1–32; https://doi.org/10.1155/2016/7840161.Search in Google Scholar PubMed PubMed Central
54. Moret, S., Bécue, A., Champod, C. Functionalised Silicon Oxide Nanoparticles for Fingermark Detection. Forensic Sci. Int. 2016, 259, 10–18; https://doi.org/10.1016/j.forsciint.2015.11.015.Search in Google Scholar PubMed
55. Zarei, V., Mirzaasadi, M., Davarpanah, A., Nasiri, A., Valizadeh, M., Hosseini, M. J. S. Environmental Method for Synthesizing Amorphous Silica Oxide Nanoparticles from a Natural Material. Processes 2021, 9, 334; https://doi.org/10.3390/pr9020334.Search in Google Scholar
56. Nadeem, M., Tungmunnithum, D., Hano, C., Abbasi, B. H., Hashmi, S. S., Ahmad, W., Zahir, A. The Current Trends in the Green Syntheses of Titanium Oxide Nanoparticles and Their Applications. Green Chem. Lett. Rev. 2018, 11, 492–502; https://doi.org/10.1080/17518253.2018.1538430.Search in Google Scholar
57. Abbasi, B. A., Iqbal, J., Yaseen, T., Zahra, S. A., Ali, S., Uddin, S., Chalgham, W., Kanwal, S., El-Serehy, H. A. Exploring Physical Characterization and Different Bio-Applications of Elaeagnus angustifolia orchestrated nickel oxide nanoparticles. Molecules 2023, 28, 654; https://doi.org/10.3390/molecules28020654.Search in Google Scholar PubMed PubMed Central
58. Kharkan, J., Sayadi, M. H., Hajiani, M., Rezaei, M. R., Savabieasfahani, M. Toxicity of Nickel Oxide Nanoparticles in Capoeta fusca, Using Bioaccumulation, Depuration, and Histopathological Changes. Global J. Appl. Environ. Sci. Manag. 2023, 9, 427–444.Search in Google Scholar
59. Shehabeldine, A. M., Amin, B. H., Hagras, F. A., Ramadan, A. A., Kamel, M. R., Ahmed, M. A., Atia, K. H., Salem, S. S. Potential Antimicrobial and Antibiofilm Properties of Copper Oxide Nanoparticles: Time-Kill Kinetic Essay and Ultrastructure of Pathogenic Bacteria Cells. Appl. Biochem. Biotechnol. 2023, 195, 467–485; https://doi.org/10.1007/s12010-022-04120-2.Search in Google Scholar PubMed PubMed Central
60. Vasantharaj, S., Shivakumar, P., Sathiyavimal, S., Senthilkumar, P., Vijayaram, S., Shanmugavel, M., Pugazhendhi, A. Antibacterial Activity and Photocatalytic Dye Degradation of Copper Oxide Nanoparticles (CuONPs) Using Justicia gendarussa. Appl. Nanosci. 2023, 13, 2295–2302; https://doi.org/10.1007/s13204-021-01939-9.Search in Google Scholar
61. Iqbal, S., Fakhar-e-Alam, M., Akbar, F., Shafiq, M., Atif, M., Amin, N., Farooq, W. A., Hanif, A. Application of Silver Oxide Nanoparticles for the Treatment of Cancer. J. Mol. Struct. 2019, 1189, 203–209; https://doi.org/10.1016/j.molstruc.2019.04.041.Search in Google Scholar
62. Gebreslassie, Y. T., Gebretnsae, H. G. Green and Cost-Effective Synthesis of Tin Oxide Nanoparticles: A Review on the Synthesis Methodologies, Mechanism of Formation, and Their Potential Applications. Nanoscale Res. Lett. 2021, 16, 97; https://doi.org/10.1186/s11671-021-03555-6.Search in Google Scholar PubMed PubMed Central
63. Abbasi, T. U., Ahmad, M., Asma, M., Munir, M., Zafar, M., Katubi, K. M., Bokhari, A., Alsaiari, N. S., Yahya, A. E., Mubashir, M., Chuah, L. F. High Efficient Conversion of Cannabis sativa L. Biomass into Bioenergy by Using Green Tungsten Oxide Nano-Catalyst towards Carbon Neutrality. Fuel 2023, 336, 126796; https://doi.org/10.1016/j.fuel.2022.126796.Search in Google Scholar
64. Alves, L., Ballesteros, B., Boronat, M., Cabrero-Antonino, J. R., Concepcion, P., Corma, A., Correa-Duarte, M. A., Mendoza, E. Synthesis and Stabilization of Subnanometric Gold Oxide Nanoparticles on Multiwalled Carbon Nanotubes and Their Catalytic Activity. J. Am. Chem. Soc. 2011, 133, 10251–10261; https://doi.org/10.1021/ja202862k.Search in Google Scholar PubMed
65. Tripathy, S., Rodrigues, J., Shimpi, N. G. Top-Down and Bottom-Up Approaches for Synthesis of Nanoparticles. Nanobiomater 2023, 145, 92–130.10.21741/9781644902370-4Search in Google Scholar
66. Gebre, S. H., Sendeku, M. G. New Frontiers in the Biosynthesis of Metal Oxide Nanoparticles and Their Environmental Applications: An Overview. SN Appl. Sci. 2019, 1, 1–28; https://doi.org/10.1007/s42452-019-0931-4.Search in Google Scholar
67. Singh, J., Dutta, T., Kim, K. H., Rawat, M., Samddar, P., Kumar, P. ‘Green’synthesis of Metals and Their Oxide Nanoparticles: Applications for Environmental Remediation. J. Nanobiotechnol. 2018, 16, 1–24; https://doi.org/10.1186/s12951-018-0408-4.Search in Google Scholar PubMed PubMed Central
68. Abdelghany, T. M., Al-Rajhi, A. M., Al Abboud, M. A., Alawlaqi, M. M., Ganash Magdah, A., Helmy, E. A., Mabrouk, A. S. Recent Advances in Green Synthesis of Silver Nanoparticles and Their Applications: About Future Directions. A Review. BioNanoScience 2018, 8, 5–16; https://doi.org/10.1007/s12668-017-0413-3.Search in Google Scholar
69. Isa, E. M., Shameli, K., Jusoh, N. C., Sukri, S. M., Ismail, N. A. Variation of Green Synthesis Techniques in Fabrication of Zinc Oxide Nanoparticles–A Mini Review. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1051(1), 012079.10.1088/1757-899X/1051/1/012079Search in Google Scholar
70. Vijayaraghavan, K., Ashokkumar, T. Plant-mediated Biosynthesis of Metallic Nanopartic-Les: A Review of Literature, Factors Affecting Synthesis, Characterization Techniques and Applications. J. Environ. Chem. Eng. 2017, 5, 4866–4883; https://doi.org/10.1016/j.jece.2017.09.026.Search in Google Scholar
71. Gour, A., Jain, N. K. Advances in Green Synthesis of Nanoparticles. Artif. Cells Nanomed. Biotechnol. 2019, 47, 844–851; https://doi.org/10.1080/21691401.2019.1577878.Search in Google Scholar PubMed
72. Chhabra, H., Deshpande, R., Kanitkar, M., Jaiswal, A., Kale, V. P., Bellare, J. R. A Nano Zinc Oxide Doped Electrospun Scaffold Improves Wound Healing in a Rodent Model. RSC Adv. 2016, 6, 1428–1439; https://doi.org/10.1039/c5ra21821g.Search in Google Scholar
73. Zhu, X., Pathakoti, K., Hwang, H. M. Green Synthesis of Titanium Dioxide and Zinc Oxide Nanoparticles and Their Usage for Antimicrobial Applications and Environmental Remediation. In Green Synthesis, Characterization and Applications of Nanoparticles, 2019; pp. 223–263.10.1016/B978-0-08-102579-6.00010-1Search in Google Scholar
74. Awwad, A. M., Salem, N. M., Abdeen, A. O. Green Synthesis of Silver Nanoparticles Using Carob Leaf Extract and its Antibacterial Activity. Int. J. Ind. Chem. 2013, 4, 1–6; https://doi.org/10.1186/2228-5547-4-29.Search in Google Scholar
75. Hamrayev, H., Shameli, K., Korpayev, S. Green Synthesis of Zinc Oxide Nanoparticles and its Biomedical Applications: A Review. J. Res. Nanosci. Nanotechnol. 2021, 1, 62–74; https://doi.org/10.37934/jrnn.1.1.6274.Search in Google Scholar
76. Omran, A. M. Characterization of Green Route Synthesized Zinc Oxide Nanoparticles Using Cyperus rotundus Rhizome Extract: Antioxidant, Antibacterial, Anticancer and Photocatalytic Potential. J. Drug Delivery Sci. Technol. 2023, 79, 104000; https://doi.org/10.1016/j.jddst.2022.104000.Search in Google Scholar
77. Ambika, S., Sundrarajan, M. Green Biosynthesis of ZnO Nanoparticles Using Vitex negundo L. Extract: Spectroscopic Investigation of Interaction between ZnO Nanoparticles and Human Serum Albumin. J. Photochem. Photobiol. B Biol. 2015, 149, 143–148; https://doi.org/10.1016/j.jphotobiol.2015.05.004.Search in Google Scholar PubMed
78. Zeghoud, S., Hemmami, H., Seghir, B. B., Amor, I. B., Kouadri, I., Rebiai, A., Messaoudi, M., Ahmed, S., Pohl, P., Simal-Gandara, J. A Review on Biogenic Green Synthesis of ZnO Nanoparticles by Plant Biomass and Their Applications. Mater. Today Commun. 2022, 33, 104747; https://doi.org/10.1016/j.mtcomm.2022.104747.Search in Google Scholar
79. Rahman, A., Harunsani, M. H., Tan, A. L., Khan, M. M. Zinc Oxide and Zinc Oxide-Based Nanostructures: Biogenic and Phytogenic Synthesis, Properties and Applications. Bioprocess Biosyst. Eng. 2021, 44, 1333–1372; https://doi.org/10.1007/s00449-021-02530-w.Search in Google Scholar PubMed
80. Zhou, X. Q., Hayat, Z., Zhang, D. D., Li, M. Y., Hu, S., Wu, Q., Yuan, Y. Zinc Oxide Nanoparticles: Synthesis, Characterization, Modification, and Applications in Food and Agriculture. Processes 2023, 11, 1193; https://doi.org/10.3390/pr11041193.Search in Google Scholar
81. Kulkarni, S. B., Patil, U. M., Salunkhe, R. R., Joshi, S. S., Lokhande, C. D. Temperature Impact on Morphological Evolution of ZnO and its Consequent Effect on Physicochemical Properties. J. Alloys Compd. 2011, 509, 3486–3492; https://doi.org/10.1016/j.jallcom.2010.12.036.Search in Google Scholar
82. Wróbel, J., Piechota, J. Structural Properties of ZnO Polymorphs. Phys. Status Solidi B 2007, 244, 1538–1543; https://doi.org/10.1002/pssb.200675132.Search in Google Scholar
83. Klingshirn, C. F., Meyer, B. K., Waag, A., Hoffmann, A., Geurts, J., Geurts, J. Crystal Structure, Chemical Binding, and Lattice Properties. In Zinc Oxide: From Fundamental Properties towards Novel Applications, 2010; pp. 7–37.10.1007/978-3-642-10577-7_2Search in Google Scholar
84. Zare, M., Namratha, K., Ilyas, S., Sultana, A., Hezam, A., Surmeneva, M. A., Byrappa, K., Surmenev, R. A., Nayan, M. B., Ramakrishna, S., Mathur, S. Emerging Trends for Zno Nanoparticles and Their Applications in Food Packaging. ACS Food Sci. Technol. 2022, 2, 763–781; https://doi.org/10.1021/acsfoodscitech.2c00043.Search in Google Scholar
85. Chen, H., Yada, R. Nanotechnologies in Agriculture: New Tools for Sustainable Development. Trends Food Sci. Technol. 2011, 22, 585–594; https://doi.org/10.1016/j.tifs.2011.09.004.Search in Google Scholar
86. Sabir, S., Arshad, M., Chaudhari, S. K. Zinc Oxide Nanoparticles for Revolutionizing Agricult-Ure: Synthesis and Applications. Sci. World J. 2014, 2014; https://doi.org/10.1155/2014/925494.Search in Google Scholar PubMed PubMed Central
87. Rahman, F., Patwary, M. A. M., Siddique, M. A. B., Bashar, M. S., Haque, M. A., Akter, B., Uddin, A. R. Green Synthesis of ZnO Nanoparticles Using Cocos Nucifera Leaf Extract: Characterization, Antimicrobial, Antioxidant, and Photocatalytic Activity. bioRxiv 2022, 2022–10; https://doi.org/10.1101/2022.10.27.514023.Search in Google Scholar
88. Mendoza-Mendoza, E., Nuñez-Briones, A. G., García-Cerda, L. A., Peralta-Rodríguez, R. D., Montes-Luna, A. J. One-step Synthesis of ZnO and Ag/ZnO Heterostructures and Their Photocatalytic Activity. Ceram. Int. 2018, 44, 6176–6180; https://doi.org/10.1016/j.ceramint.2018.01.001.Search in Google Scholar
89. Bijanzad, K., Tadjarodi, A., Akhavan, O. Photocatalytic Activity of Mesoporous Microbricks of ZnO Nanoparticles Prepared by the Thermal Decomposition of Bis (2-aminonicotinato) Zinc (II). Chin. J. Catal. 2015, 36, 742–749; https://doi.org/10.1016/s1872-2067(14)60305-3.Search in Google Scholar
90. Qanash, H., Yahya, R., Bakri, M. M., Bazaid, A. S., Qanash, S., Shater, A. F., TM, A. Anticancer, Antioxidant, Antiviral and Antimicrobial Activities of Kei Apple (Dovyalis Caffra) Fruit. Sci. Rep. 2022, 12, 5914; https://doi.org/10.1038/s41598-022-09993-1.Search in Google Scholar PubMed PubMed Central
91. Anjum, S., Hashim, M., Malik, S. A., Khan, M., Lorenzo, J. M., Abbasi, B. H., Hano, C. Recent Advances in Zinc Oxide Nanoparticles (ZnO NPs) for Cancer Diagnosis, Target Drug Delivery, and Treatment. Cancers 2021, 13, 4570; https://doi.org/10.3390/cancers13184570.Search in Google Scholar PubMed PubMed Central
92. Fahimmunisha, B. A., Ishwarya, R., AlSalhi, M. S., Devanesan, S., Govindarajan, M., Vaseeharan, B. Green Fabrication, Characterization and Antibacterial Potential of Zinc Oxide Nanoparticles Using Aloe Socotrina Leaf Extract: A Novel Drug Delivery Approach. J. Drug Delivery Sci. Technol. 2020, 55, 101465; https://doi.org/10.1016/j.jddst.2019.101465.Search in Google Scholar
93. Sana, S. S., Vadde, R., Kumar, R., Arla, S. K., Somala, A. R., Rao, K. K., Zhijun, Z., Boya, V. K. N., Mondal, K., Mamidi, N. Eco-friendly and Facile Production of Antibacterial Zinc Oxide Nanoparticles from Grewia flavescens (G. flavescens) Leaf Extract for Biomedical Applications. J. Drug Delivery Sci. Technol. 2023, 80, 104186; https://doi.org/10.1016/j.jddst.2023.104186.Search in Google Scholar
94. Kumar, S., Mudai, A., Roy, B., Basumatary, I. B., Mukherjee, A., Dutta, J. Biodegradable Hybrid Nanocomposite of Chitosan/gelatin and Green Synthesized Zinc Oxide Nanoparticles for Food Packaging. Foods 2020, 9, 1143; https://doi.org/10.3390/foods9091143.Search in Google Scholar PubMed PubMed Central
95. Liu, J., Huang, J., Hu, Z., Li, G., Hu, L., Chen, X., Hu, Y. Chitosan-based Films with Antioxidant of Bamboo Leaves and ZnO Nanoparticles for Application in Active Food Packaging. Int. J. Biol. Macromol. 2021, 189, 363–369; https://doi.org/10.1016/j.ijbiomac.2021.08.136.Search in Google Scholar PubMed
96. Yu, F., Fei, X., He, Y., Li, H. Poly (Lactic Acid)-Based Composite Film Reinforced with Acetylated Cellulose Nanocrystals and ZnO Nanoparticles for Active Food Packaging. Int. J. Biol. Macromol. 2021, 186, 770–779; https://doi.org/10.1016/j.ijbiomac.2021.07.097.Search in Google Scholar PubMed
97. Vaseem, M., Umar, A., Hahn, Y. B. ZnO Nanoparticles: Growth, Properties, and Applications. Metal Oxide Nanostruct. Appl. 2010, 5, 10–20.Search in Google Scholar
98. bin Osman, E., Moriga, T., Murai, K. I., bin Abd Rashid, M. W. Study of Morphology and Electrical Properties of Indium Zinc Oxide-Modified Kenaf Fiber. Ind. Crops Prod. 2017, 100, 171–175; https://doi.org/10.1016/j.indcrop.2017.02.029.Search in Google Scholar
99. Chaudhary, A., Kumar, N., Kumar, R., Salar, R. K. Antimicrobial Activity of Zinc Oxide Nanoparticles Synthesized from Aloe Vera Peel Extract. SN Appl. Sci. 2019, 1, 1–9; https://doi.org/10.1007/s42452-018-0144-2.Search in Google Scholar
100. Hussain, A., Oves, M., Alajmi, M. F., Hussain, I., Amir, S., Ahmed, J., Ali, I., El-Seedi, H. R. Biogenesis of ZnO Nanoparticles Using Pandanus odorifer Leaf Extract: Anticancer and Antimicrobial Activities. RSC Adv. 2019, 9, 15357–15369; https://doi.org/10.1039/c9ra01659g.Search in Google Scholar PubMed PubMed Central
101. AlSalhi, M. S., Devanesan, S., Atif, M., AlQahtani, W. S., Nicoletti, M., Serrone, P. D. Therapeutic Potential Assessment of Green Synthesized Zinc Oxide Nanoparticles Derived from Fennel Seeds Extract. Int. J. Nanomed. 2020, 15, 8045–8057; https://doi.org/10.2147/ijn.s272734.Search in Google Scholar PubMed PubMed Central
102. Mydeen, S. S., Kumar, R. R., Sambathkumar, S., Kottaisamy, M., Vasantha, V. S. Facile Synthesis of ZnO/AC Nanocomposites Using Prosopis juliflora for Enhanced Photocatalytic Degradation of Methylene Blue and Antibacterial Activity. Optik 2020, 224, 165426; https://doi.org/10.1016/j.ijleo.2020.165426.Search in Google Scholar
103. Pillai, A. M., Sivasankarapillai, V. S., Rahdar, A., Joseph, J., Sadeghfar, F., Rajesh, K., Kyzas, G. Z. Green Synthesis and Characterization of Zinc Oxide Nanoparticles with Antibacterial and Antifungal Activity. J. Mol. Struct. 2020, 1211, 128107; https://doi.org/10.1016/j.molstruc.2020.128107.Search in Google Scholar
104. Alamdari, S., Sasani Ghamsari, M., Lee, C., Han, W., Park, H. H., Tafreshi, M. J., Ara, M. H. M. Preparation and Characterization of Zinc Oxide Nanoparticles Using Leaf Extract of Sambucus ebulus. Appl. Sci. 2020, 10, 3620; https://doi.org/10.3390/app10103620.Search in Google Scholar
105. Rajashekara, S., Shrivastava, A., Sumhitha, S., Kumari, S. Biomedical applications of biogenic zinc oxide nanoparticles manufactured from leaf extracts of Calotropis gigantea (L.) Dryand. BioNanoScience 2020, 10, 654–671; https://doi.org/10.1007/s12668-020-00746-w.Search in Google Scholar
106. Sukri, S. N. A. M., Shameli, K., Wong, M. M. T., Teow, S. Y., Chew, J., Ismail, N. A. Cytotoxicity and Antibacterial Activities of Plant-Mediated Synthesized Zinc Oxide (ZnO) Nanoparticles Using Punica granatum (Pomegranate) Fruit Peels Extract. J. Mol. Struct. 2019, 1189, 57–65; https://doi.org/10.1016/j.molstruc.2019.04.026.Search in Google Scholar
107. Kandrakonda, Y. R., Shaik, J. B., Mothukuru, S. L., Lebaka, V. R., Mannarapu, M., Amooru, G. D. Biosynthesis of Zinc Oxide Nanoparticles Using Aqueous Extract of Andrographis Alata: Characterization, Optimization and Assessment of Their Antibacterial, Antioxidant, Antidiabetics and Anti-alzheimer’s Properties. J. Mol. Struct. 2023, 1273, 134264; https://doi.org/10.1016/j.molstruc.2022.134264.Search in Google Scholar
108. Ogunyemi, S. O., Abdallah, Y., Zhang, M., Fouad, H., Hong, X., Ibrahim, E., Li, B., Hossain, A., Mo, J. Green Synthesis of Zinc Oxide Nanoparticles Using Different Plant Extracts and Their Antibacterial Activity against Xanthomonas Oryzae Pv. Oryzae. Artif. Cell Nanomed. Biotechnol. 2019, 47, 341–352; https://doi.org/10.1080/21691401.2018.1557671.Search in Google Scholar PubMed
109. Mthana, M. S., Mthiyane, D. M., Onwudiwe, D. C., Singh, M. Biosynthesis of ZnO Nanoparticles Using Capsicum chinense Fruit Extract and Their In Vitro Cytotoxicity and Antioxidant Assay. Appl. Sci. 2022, 12, 4451; https://doi.org/10.3390/app12094451.Search in Google Scholar
110. Faisal, S., Jan, H., Shah, S. A., Shah, S., Khan, A., Akbar, M. T., Syed, S., Jan, F., Wajidullah, Akhtar, N., Khattak, A. Green Synthesis of Zinc Oxide (ZnO) Nanoparticles Using Aqueous Fruit Extracts of Myristica fragrans: Their Characterizations and Biological and Environmental Applications. ACS Omega 2021, 6, 9709–9722; https://doi.org/10.1021/acsomega.1c00310.Search in Google Scholar PubMed PubMed Central
111. Bala, N., Saha, S., Chakraborty, M., Maiti, M., Das, S., Basu, R., Nandy, P. Green Synthesis of Zinc Oxide Nanoparticles Using Hibiscus subdariffa Leaf Extract: Effect of Temperature on Synthesis, Anti-bacterial Activity and Anti-diabetic Activity. RSC Adv. 2015, 5, 4993–5003; https://doi.org/10.1039/c4ra12784f.Search in Google Scholar
112. Sudha, K. G., Ali, S., Karunakaran, G., Kowsalya, M., Kolesnikov, E., Rajeshkumar, M. P. Eco‐friendly Synthesis of ZnO Nanorods Using Cycas pschannae Plant Extract with Excellent Photocatalytic, Antioxidant, and Anticancer Nanomedicine for Lung Cancer Treatment. Appl. Organomet. Chem. 2020, 34, 5511; https://doi.org/10.1002/aoc.5511.Search in Google Scholar
113. Demissie, M. G., Sabir, F. K., Edossa, G. D., Gonfa, B. A. Synthesis of Zinc Oxide Nanoparticles Using Leaf Extract of Lippia adoensis (Koseret) and Evaluation of its Antibacterial Activity. J. Chem. 2020, 2020, 1–9; https://doi.org/10.1155/2020/7459042.Search in Google Scholar
114. Vijayakumar, S., Mahadevan, S., Arulmozhi, P., Sriram, S., Praseetha, P. K. Green Synthesis of Zinc Oxide Nanoparticles Using Atalantia monophylla Leaf Extracts: Characterization and Antimicrobial Analysis. Mater. Sci. Semiconduct. Process. 2018, 82, 39–45; https://doi.org/10.1016/j.mssp.2018.03.017.Search in Google Scholar
115. Naseer, M., Aslam, U., Khalid, B., Chen, B. Green Route to Synthesize Zinc Oxide Nanoparticles Using Leaf Extracts of Cassia Fistula and Melia azadarach and Their Antibacterial Potential. Sci. Rep. 2020, 10, 9055; https://doi.org/10.1038/s41598-020-65949-3.Search in Google Scholar PubMed PubMed Central
116. Vijayakumar, S., Vaseeharan, B., Sudhakaran, R., Jeyakandan, J., Ramasamy, P., Sonawane, A., Faggio, C., Velusamy, P., Anbu, P. Bioinspired Zinc Oxide Nanoparticles Using Lycopersicon esculentum for Antimicrobial and Anticancer Applications. J. Cluster Sci. 2019, 30, 1465–1479; https://doi.org/10.1007/s10876-019-01590-z.Search in Google Scholar
117. Mahendra, C., Chandra, M. N., Murali, M., Abhilash, M. R., Singh, S. B., Satish, S., Sudarshana, M. S. Phyto-fabricated ZnO Nanoparticles from Canthium dicoccum (L.) for Antimicrobial, Anti-tuberculosis and Antioxidant Activity. Process Biochem. 2020, 89, 220–226; https://doi.org/10.1016/j.procbio.2019.10.020.Search in Google Scholar
118. Loganathan, S., Manimaran, K., Mutamimurugan, K., Prakash, D. G., Subashini, R. Green Synthesis of Zinc Oxide Nanoparticles (ZnO-NPs) by Pterolobium hexapetalum (Roth) Santapau & Wagh Aqueous Leaf Extract and its Assessment of Biocompatible, Antibacterial, DPPH Radical Scavenging, Anticancer and Larvicidal Activities: An Effective Eco-Friendly Approach, 2022.10.21203/rs.3.rs-1793777/v1Search in Google Scholar
119. Abdelbaky, A. S., Abd El-Mageed, T. A., Babalghith, A. O., Selim, S., Mohamed, A. M. Green Synthesis and Characterization of ZnO Nanoparticles Using Pelargonium Odoratissim-Um (L.) Aqueous Leaf Extract and Their Antioxidant, Antibacterial and Anti-inflammatory Activities. Antioxidants 2022, 11, 1444; https://doi.org/10.3390/antiox11081444.Search in Google Scholar PubMed PubMed Central
120. Patil, B. N., Taranath, T. C. Limonia Acidissima L. Leaf Mediated Synthesis of Zinc Oxide Nanoparticles: A Potent Tool against Mycobacterium tuberculosis. Int. J. Mycobacteriol. 2016, 5, 197–204; https://doi.org/10.1016/j.ijmyco.2016.03.004.Search in Google Scholar PubMed
121. Sharma, A., Nagraik, R., Sharma, S., Sharma, G., Pandey, S., Azizov, S., Kumar, D. Green Synthesis of ZnO Nanoparticles Using Ficus palmata: Antioxidant, Antibacterial and Antidiabetic Studies. Results Chem. 2022, 4, 100509; https://doi.org/10.1016/j.rechem.2022.100509.Search in Google Scholar
122. Abomuti, M. A., Danish, E. Y., Firoz, A., Hasan, N., Malik, M. A. Green Synthesis of Zinc Oxide Nanoparticles Using Salvia officinalis Leaf Extract and Their Photocatalytic and Antifungal Activities. Biology 2021, 10, 1075; https://doi.org/10.3390/biology10111075.Search in Google Scholar PubMed PubMed Central
123. Al Awadh, A. A., Shet, A. R., Patil, L. R., Shaikh, I. A., Alshahrani, M. M., Nadaf, R., Mahnashi, M. H., Desai, S. V., Muddapur, U. M., Achappa, S., Hombalimath, V. S., Khan, A. A., Gouse, H. S. M., Iqubal, S. M. S., Kumbar, V. Sustainable Synthesis and Characterization of Zinc Oxide Nanoparticles Using Raphanus sativus Extract and its Biomedical Applications. Crystals 2022, 12, 1142; https://doi.org/10.3390/cryst12081142.Search in Google Scholar
124. Awan, S. S., Khan, R. T., Mehmood, A., Hafeez, M., Abass, S. R., Nazir, M., Raffi, M. Ailanthus altissima Leaf Extract Mediated Green Production of Zinc Oxide (ZnO) Nanoparticles for Antibacterial and Antioxidant Activity. Saudi J. Biol. Sci. 2023, 30, 103487; https://doi.org/10.1016/j.sjbs.2022.103487.Search in Google Scholar PubMed PubMed Central
125. Kazempour, P., Yaghoubi, H., Mohammadi-Aloucheh, R. Green Synthesis of ZnO Nanoparticles using Eryngium billardieri Leaf Extract: Characterization and its Anti-Diabetic Properties. Biochem. Mol. Biol 2021, 7, 18.Search in Google Scholar
126. Mekonnen, G., Negash, A., Gashu, M., Tadesse, N. B. Echinops kebericho Aqueous Root Extract Assisted Green Synthesis of Zinc Oxide Nanoparticles for Photocatalytic Degradation of Methylene Blue, 2022.Search in Google Scholar
127. Bayrami, A., Parvinroo, S., Habibi-Yangjeh, A., Rahim Pouran, S. Bio-extract-mediated ZnO Nanoparticles: Microwave Assisted Synthesis, Characterization and Antidiabetics Activity Evaluation. Artif. Cell Nanomed. Biotechnol. 2018, 46, 730–739; https://doi.org/10.1080/21691401.2017.1337025.Search in Google Scholar PubMed
128. Dulta, K., Koşarsoy Ağçeli, G., Chauhan, P., Jasrotia, R., Chauhan, P. K. Ecofriendly Synthesis of Zinc Oxide Nanoparticles by Carica papaya Leaf Extract and Their Applications. J. Cluster Sci. 2021, 33, 1–15; https://doi.org/10.1007/s10876-020-01962-w.Search in Google Scholar
129. Rehman, H., Ali, W., Khan, N. Z., Aasim, M., Khan, T., Khan, A. A. Delphinium uncinatum Mediated Biosynthesis of Zinc Oxide Nanoparticles and In-Vitro Evaluation of Their Antioxidant, Cytotoxic, Antimicrobial, Anti-diabetic, Anti-inflammatory, and Anti-aging Activities. Saudi J. Biol. Sci. 2023, 30, 103485; https://doi.org/10.1016/j.sjbs.2022.103485.Search in Google Scholar PubMed PubMed Central
130. Mandal, A. K., Katuwal, S., Tettey, F., Gupta, A., Bhattarai, S., Jaisi, S., Parajuli, N., Shah, A. K., Bhattarai, N. Current Research on Zinc Oxide Nanoparticles: Synthesis, Characterization, and Biomedical Applications. Nanomaterials 2022, 12, 3066; https://doi.org/10.3390/nano12173066.Search in Google Scholar PubMed PubMed Central
131. Alsaggaf, M. S., Diab, A. M., ElSaied, B. E., Tayel, A. A., Moussa, S. H. Application of ZnO Nanoparticles Phycosynthesized with Ulva Fasciata Extract for Preserving Peeled Shrimp Quality. Nanomaterials 2021, 11, 385; https://doi.org/10.3390/nano11020385.Search in Google Scholar PubMed PubMed Central
132. Elrefaey, A. A. K., El-Gamal, A. D., Hamed, S. M., El-belely, E. F. Algae-mediated Biosynthesis of Zinc Oxide Nanoparticles from Cystoseira Crinite (Fucales; Sargassaceae) and It’s Antimicrobial and Antioxidant Activities. Egypt. J. Chem. 2022, 65, 231–240.Search in Google Scholar
133. Ishwarya, R., Vaseeharan, B., Kalyani, S., Banumathi, B., Govindarajan, M., Alharbi, N. S., Benelli, G., Al-anbr, M. N., Khaled, J. M. Facile Green Synthesis of Zinc Oxide Nanoparticles Using Ulva lactuca Seaweed Extract and Evaluation of Their Photocatalytic, Antibiofilm and Insecticidal Activity. J. Photochem. Photobiol. B Biol. 2018, 178, 249–258; https://doi.org/10.1016/j.jphotobiol.2017.11.006.Search in Google Scholar PubMed
134. Rao, M. D., Gautam, P. Synthesis and Characterization of ZnO Nanoflowers Using C Hlamydomonas Reinhardtii: A Green Approach. Environ. Prog. Sustain. Energy 2016, 35, 1020–1026; https://doi.org/10.1002/ep.12315.Search in Google Scholar
135. Nagarajan, S., Arumugam Kuppusamy, K. Extracellular Synthesis of Zinc Oxide Nanoparticle Using Seaweeds of Gulf of Mannar, India. J. Nanobiotechnol. 2013, 11, 1–11; https://doi.org/10.1186/1477-3155-11-39.Search in Google Scholar PubMed PubMed Central
136. Rabecca, R., Doss, A., Kensa, V. M., Iswarya, S., Mukeshbabu, N., Pole, R. P., Iyappan, K. Facile Synthesis of Zinc Oxide Nanoparticle Using Algal Extract and Their Antibacterial Potential. Biomass Convers. Biorefinery 2022, 1–12; https://doi.org/10.1007/s13399-022-03275-6.Search in Google Scholar
137. Subramanian, H., Krishnan, M., Mahalingam, A. Photocatalytic Dye Degradation and Photoexcited Anti-microbial Activities of Green Zinc Oxide Nanoparticles Synthesized via Sargassum muticum Extracts. RSC Adv. 2022, 12, 985–997; https://doi.org/10.1039/d1ra08196a.Search in Google Scholar PubMed PubMed Central
138. Azizi, S., Ahmad, M. B., Namvar, F., Mohamad, R. Green Biosynthesis and Characterization of Zinc Oxide Nanoparticles Using Brown Marine Macroalga Sargassum muticum Aqueous Extract. Mater. Lett. 2014, 116, 275–277; https://doi.org/10.1016/j.matlet.2013.11.038.Search in Google Scholar
139. Hamouda, R. A., Alharbi, A. A., Al-Tuwaijri, M. M., Makharita, R. R. The antibacterial activities and characterizations of biosynthesized zinc oxide nanoparticles, and their coated with alginate derived from Fucus vesiculosus. Polymers 2023, 15, 2335; https://doi.org/10.3390/polym15102335.Search in Google Scholar PubMed PubMed Central
140. Rudayni, H. A., Rabie, A. M., Aladwani, M., Alneghery, L. M., Abu-Taweel, G. M., Al Zoubi, W., Allam, A. A., Abukhadra, M. R., Bellucci, S. Biological activities of sargassum algae mediated ZnO and Co doped ZnO nanoparticles as enhanced antioxidant and anti-diabetic agents. Molecules 2023, 28, 3692; https://doi.org/10.3390/molecules28093692.Search in Google Scholar PubMed PubMed Central
141. Bandeira, M., Giovanela, M., Roesch-Ely, M., Devine, D. M., da Silva Crespo, J. Green Synthesis of Zinc Oxide Nanoparticles: A Review of the Synthesis Methodology and Mechanism of Formation. Sustain. Chem. Pharmacy 2020, 15, 100223; https://doi.org/10.1016/j.scp.2020.100223.Search in Google Scholar
142. Ağçeli, G. K., Hammachi, H., Kodal, S. P., Cihangir, N., Aksu, Z. A Novel Approach to Synthesize TiO 2 Nanoparticles: Biosynthesis by Using Streptomyces Sp. HC1. J. Inorg. Organomet. Polym. Mater. 2020, 30, 3221–3229; https://doi.org/10.1007/s10904-020-01486-w.Search in Google Scholar
143. Raliya, R., Tarafdar, J. C. ZnO Nanoparticle Biosynthesis and its Effect on Phosphorous-Mobilizing Enzyme Secretion and Gum Contents in Clusterbean (Cyamopsis tetragonoloba L.). Agricult. Res. 2013, 2, 48–57; https://doi.org/10.1007/s40003-012-0049-z.Search in Google Scholar
144. Król, A., Railean-Plugaru, V., Pomastowski, P., Złoch, M., Buszewski, B. Mechanism Study of Intracellular Zinc Oxide Nanocomposites Formation. Colloids and Surfaces A: Physicochem. Eng. Aspects 2018, 553, 349–358; https://doi.org/10.1016/j.colsurfa.2018.05.069.Search in Google Scholar
145. Mahdi, Z. S., Talebnia Roshan, F., Nikzad, M., Ezoji, H. Biosynthesis of Zinc Oxide Nanoparticles Using Bacteria: A Study on the Characterization and Application for Electrochemical Determination of Bisphenol A. Inorg. Nano-Metal Chem. 2021, 51, 1249–1257; https://doi.org/10.1080/24701556.2020.1835962.Search in Google Scholar
146. Singh, B. N., Rawat, A. K., Khan, W., Naqvi, A. H., Singh, B. R. Biosynthesis of Stable Antioxidant ZnO Nanoparticles by Pseudomonas aeruginosa Rhamnolipids. PLoS One 2014, 9, e106937; https://doi.org/10.1371/journal.pone.0106937.Search in Google Scholar PubMed PubMed Central
147. Kundu, D., Hazra, C., Chatterjee, A., Chaudhari, A., Mishra, S. Extracellular Biosynthesis of Zinc Oxide Nanoparticles Using Rhodococcus pyridinivorans NT2: Multifunctional Textile Finishing, Biosafety Evaluation and In Vitro Drug Delivery in Colon Carcinoma. J. Photochem. Photobiol. B Biol. 2014, 140, 194–204; https://doi.org/10.1016/j.jphotobiol.2014.08.001.Search in Google Scholar PubMed
148. Abdo, A. M., Fouda, A., Eid, A. M., Fahmy, N. M., Elsayed, A. M., Khalil, A. M. A., Alzahrani, O. M., Ahmed, A. F., Soliman, A. M. Green Synthesis of Zinc Oxide Nanoparticles (ZnO-NPs) by Pseudomonas aeruginosa and their Activity Against Pathogenic Microbes and Common House Mosquito, Culex pipiens. Materials 2021, 14, 6983; https://doi.org/10.3390/ma14226983.Search in Google Scholar PubMed PubMed Central
149. Jayaseelan, C., Rahuman, A. A., Kirthi, A. V., Marimuthu, S., Santhoshkumar, T., Bagavan, A., Gaurav, K., Karthik, L., Rao, K. B. Novel Microbial Route to Synthesize ZnO Nanoparticles Using Aeromonas hydrophila and Their Activity against Pathogenic Bacteria and Fungi. Spectrochim. Acta Mol. Biomol. Spectrosc. 2012, 90, 78–84; https://doi.org/10.1016/j.saa.2012.01.006.Search in Google Scholar PubMed
150. El-Belely, E. F., Farag, M. M. S., Said, H. A., Amin, A. S., Azab, E., Gobouri, A. A., Fouda, A. Green synthesis of zinc oxide nanoparticles (ZnO-NPs) using Arthrospira platensis (class: Cyanophyceae) and evaluation of Their biomedical activities. Nanomaterials 2021, 11, 95; https://doi.org/10.3390/nano11010095.Search in Google Scholar PubMed PubMed Central
151. Dhandapani, P., Siddarth, A. S., Kamalasekaran, S., Maruthamuthu, S., Rajagopal, G. Bio-approach: Ureolytic Bacteria Mediated Synthesis of ZnO Nanocrystals on Cotton Fabric and Evaluation of Their Antibacterial Properties. Carbohydr. Polym. 2014, 103, 448–455; https://doi.org/10.1016/j.carbpol.2013.12.074.Search in Google Scholar PubMed
152. Ebadi, M., Zolfaghari, M. R., Aghaei, S. S., Zargar, M., Noghabi, K. A. Desertifilum Sp. EAZ03 Cell Extract as a Novel Natural Source for the Biosynthesis of Zinc Oxide Nanoparticles and Antibacterial, Anticancer and Antibiofilm Characteristics of Synthesized Zinc Oxide Nanoparticles. J. Appl. Microbiol. 2021, 132, 221–236; https://doi.org/10.1111/jam.15177.Search in Google Scholar PubMed
153. Tripathi, R. M., Bhadwal, A. S., Gupta, R. K., Singh, P., Shrivastav, A., Shrivastav, B. R. ZnO Nanoflowers: Novel Biogenic Synthesis and Enhanced Photocatalytic Activity. J. Photochem. Photobiol. B Biol. 2014, 141, 288–295; https://doi.org/10.1016/j.jphotobiol.2014.10.001.Search in Google Scholar PubMed
154. Barani, M., Masoudi, M., Mashreghi, M., Makhdoumi, A., Eshghi, H. Cell-free Extract Assisted Synthesis of ZnO Nanoparticles Using Aquatic Bacterial Strains: Biological Activities and Toxicological Evaluation. Int. J. Pharm. 2021, 606, 120878; https://doi.org/10.1016/j.ijpharm.2021.120878.Search in Google Scholar PubMed
155. Shanmugam, R., Munusamy, T., Jayakodi, S., Al-Ghanim, K. A., Nicoletti, M., Sachivkina, N., Govindarajan, M. Probiotic-Bacteria (Lactobacillus fermentum)-Wrapped Zinc Oxide Nanoparticles: Biosynthesis, Characterization, and Antibacterial Activity. Fermentation 2023, 9, 413; https://doi.org/10.3390/fermentation9050413.Search in Google Scholar
156. Joudeh, N., Linke, D. Nanoparticle Classification,physicochemical Properties, Characterization, and Applications: A Comprehensive Review for Biologists. J. Nanobiotechnol. 2022, 20, 262; https://doi.org/10.1186/s12951-022-01477-8.Search in Google Scholar PubMed PubMed Central
157. Vladár, A. E., Hodoroaba, V. D. Characterization of Nanoparticles by Scanning Electron Microscopy. In Characterization of Nanoparticles; Elsevier: Amsterdam, 2020; pp. 7–27.10.1016/B978-0-12-814182-3.00002-XSearch in Google Scholar
158. Kano, S., Tada, T., Majima, Y. Nanoparticle Characterization Based on STM and STS. Chem. Soc. Rev. 2015, 44, 970–987; https://doi.org/10.1039/c4cs00204k.Search in Google Scholar PubMed
159. Kalpana, V. N., Devi Rajeswari, V. A Review on Green Synthesis, Biomedical Applications, and Toxicity Studies of ZnO NPs. Bioinorgan. Chem. Appl. 2018, 2018; https://doi.org/10.1155/2018/3569758.Search in Google Scholar PubMed PubMed Central
160. Singh, K., NancyBhattu, M., Singh, G., Mubarak, N. M., Singh, J. Light-absorption-driven Photocatalysis and Antimicrobial Potential of PVP-Capped Zinc Oxide Nanoparticles. Sci. Rep. 2023, 13, 13886; https://doi.org/10.1038/s41598-023-41103-7.Search in Google Scholar PubMed PubMed Central
161. Uribe-López, M. C., Hidalgo-López, M. C., López-González, R., Frías-Márquez, D. M., Núñez-Nogueira, G., Hernández-Castillo, D., Alvarez-Lemus, M. A. Photocatalytic Activity of ZnO Nanoparticles and the Role of the Synthesis Method on Their Physical and Chemical Properties. J. Photochem. Photobiol. A Chem. 2021, 404, 112866; https://doi.org/10.1016/j.jphotochem.2020.112866.Search in Google Scholar
162. Ramesh, M., Anbuvannan, M., Viruthagiri, G. J. S. A. P. A. M. Green Synthesis of ZnO Nanoparticles Using Solanum nigrum Leaf Extract and Their Antibacterial Activity. Spectrochim. Acta Mol. Biomol. Spectrosc. 2015, 136, 864–870; https://doi.org/10.1016/j.saa.2014.09.105.Search in Google Scholar PubMed
163. Mfon, R. E., Hall, S. R., Sarua, A. Effect of Ocimum Gratissimum Plant Leaf Extract Concentration and Annealing Temperature on the Structure and Optical Properties of Synthesized Zinc Oxide Nanoparticles. EDUCATUM Jnt. J. Sci. Math. Technol. Learn. 2020, 7, 1–13; https://doi.org/10.37134/ejsmt.vol7.1.1.2020.Search in Google Scholar
164. Çolak, H., Karaköse, E. Green Synthesis and Characterization of Nanostructured ZnO Thin Films Using Citrus Aurantifolia (Lemon) Peel Extract by Spin-Coating Method. J. Alloys Compd. 2017, 690, 658–662; https://doi.org/10.1016/j.jallcom.2016.08.090.Search in Google Scholar
165. Nithya, K., Kalyanasundharam, S. Effect of Chemically Synthesis Compared to Biosynthesized ZnO Nanoparticles Using Aqueous Extract of C. Halicacabum and Their Antibacterial Activity. Open Nano 2019, 4, 100024; https://doi.org/10.1016/j.onano.2018.10.001.Search in Google Scholar
166. Ali, A., Phull, A. R., Zia, M. Elemental Zinc to Zinc Nanoparticles: Is ZnO NPs Crucial for Life? Synthesis, Toxicological, and Environmental Concerns. Nanotechnol. Rev. 2018, 7, 413–441; https://doi.org/10.1515/ntrev-2018-0067.Search in Google Scholar
167. Seghir, B. B., Hima, M., Moulatti, F., Sahraoui, I., Ben Amor, I., Zeghoud, S., Hemmami, H., Kouadri, I., Ben Amor, A., Messaoudi, M., Ahmed, S., Rebiai, A., Pohl, P. Exploring the antibacterial potential of green-synthesized MgO and ZnO nanoparticles from two plant root extracts. Nanomaterials 2023, 13, 2425; https://doi.org/10.3390/nano13172425.Search in Google Scholar PubMed PubMed Central
168. Hussien, N. A. Antimicrobial potential of biosynthesized zinc oxide nanoparticles using banana peel and date seeds extracts. Sustainability 2023, 15, 9048; https://doi.org/10.3390/su15119048.Search in Google Scholar
169. Miri, A., Khatami, M., Ebrahimy, O., Sarani, M. Cytotoxic and Antifungal Studies of Biosynthesized Zinc Oxide Nanoparticles Using Extract of Prosopis Farcta Fruit. Green Chem. Lett. Rev. 2020, 13, 27–33; https://doi.org/10.1080/17518253.2020.1717005.Search in Google Scholar
170. Jha, S., Rani, R., Singh, S. Biogenic zinc oxide nanoparticles and their biomedical applications: A review. J. Inorg. Organomet. Polym. Mater. 2023, 33, 1–16; https://doi.org/10.1007/s10904-023-02550-x.Search in Google Scholar PubMed PubMed Central
171. Agarwal, H., Shanmugam, V. K. Synthesis and Optimization of Zinc Oxide Nanoparticles Using Kalanchoe Pinnata towards the Evaluation of its Anti-inflammatory Activity. J. Drug Delivery Sci. Technol. 2019, 54, 101291; https://doi.org/10.1016/j.jddst.2019.101291.Search in Google Scholar
172. Iqbal, J., Abbasi, B. A., Mahmood, T., Kanwal, S., Ahmad, R., Ashraf, M. Plant-extract Mediated Green Approach for the Synthesis of ZnONPs: Characterization and Evaluation of Cytotoxic, Antimicrobial and Antioxidant Potentials. J. Mol. Struct. 2019, 1189, 315–327; https://doi.org/10.1016/j.molstruc.2019.04.060.Search in Google Scholar
173. Soren, S., Kumar, S., Mishra, S., Jena, P. K., Verma, S. K., Parhi, P. Evaluation of Antibacterial and Antioxidant Potential of the Zinc Oxide Nanoparticles Synthesized by Aqueous and Polyol Method. Microb. Pathogen. 2018, 119, 145–151; https://doi.org/10.1016/j.micpath.2018.03.048.Search in Google Scholar PubMed
174. Mohd Yusof, H., Mohamad, R., Zaidan, U. H., Abdul Rahman, N. A. Microbial Synthesis of Zinc Oxide Nanoparticles and Their Potential Application as an Antimicrobial Agent and a Feed Supplement in Animal Industry: A Review. Journal of animal science and biotechnology 2019, 10, 1–22; https://doi.org/10.1186/s40104-019-0368-z.Search in Google Scholar PubMed PubMed Central
175. Jiang, J., Pi, J., Cai, J. The Advancing of Zinc Oxide Nanoparticles for Biomedical Applications. Bioinorg. Chem. Appl. 2018, 2018, 1–18; https://doi.org/10.1155/2018/1062562.Search in Google Scholar PubMed PubMed Central
176. Yu, Z., Li, Q., Wang, J., Yu, Y., Wang, Y., Zhou, Q., Li, P. Reactive Oxygen Species-Related Nanoparticle Toxicity in the Biomedical Field. Nanoscale Res. Lett. 2020, 15, 115; https://doi.org/10.1186/s11671-020-03344-7.Search in Google Scholar PubMed PubMed Central
177. Sirelkhatim, A., Mahmud, S., Seeni, A., Kaus, N. H. M., Ann, L. C., Bakhori, S. K. M., Mohamad, D. Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism. Nano-Micro Lett. 2015, 7, 219–242; https://doi.org/10.1007/s40820-015-0040-x.Search in Google Scholar PubMed PubMed Central
178. Mendes, C. R., Dilarri, G., Forsan, C. F., Sapata, V. D. M. R., Lopes, P. R. M., de Moraes, P. B., Bidoia, E. D., Ferreira, H. Antibacterial Action and Target Mechanisms of Zinc Oxide Nanoparticles against Bacterial Pathogens. Sci. Rep. 2022, 12, 2658; https://doi.org/10.1038/s41598-022-06657-y.Search in Google Scholar PubMed PubMed Central
179. Alhujaily, M., Albukhaty, S., Yusuf, M., Mohammed, M. K., Sulaiman, G. M., Al-Karagoly, H., AlMalki, F. A., Albaqami, J. Recent Advances in Plant-Mediated Zinc Oxide Nanoparticles with Their Significant Biomedical Properties. Bioengineering 2022, 9, 541; https://doi.org/10.3390/bioengineering9100541.Search in Google Scholar PubMed PubMed Central
180. Hamrayev, H., Shameli, K., Yusefi, M. Preparation of Zinc Oxide Nanoparticles and its Cancer Treatment Effects: A Review Paper. J. Adv. Res. Micro Nano Eng. 2020, 2, 1–11.Search in Google Scholar
181. Vijayakumar, S., Saravanakumar, K., Malaikozhundan, B., Divya, M., Vaseeharan, B., Durán-Lara, E. F., Wang, M. H. Biopolymer K-Carrage-Enan Wrapped ZnO Nanoparticles as Drug Delivery Vehicles for Anti MRSA Therapy. Int. J, Biol. Macromol. 2020, 144, 9–18; https://doi.org/10.1016/j.ijbiomac.2019.12.030.Search in Google Scholar PubMed
182. Perera, W. P. T. D., Dissanayake, R. K., Ranatunga, U. I., Hettiarachchi, N. M., Perera, K. D. C., Unagolla, J. M., Pahalagedara, L. R. Curcumin Loaded Zinc Oxide Nanoparticles for Activity-Enhanced Antibacterial and Anticancer Applications. RSC Adv. 2020, 10, 30785–30795; https://doi.org/10.1039/d0ra05755j.Search in Google Scholar PubMed PubMed Central
183. Wang, J., Lee, J. S., Kim, D., Zhu, L. Exploration of Zinc Oxide Nanoparticles as a Multitarget and Multifunctional Anticancer Nanomedi-Cine. ACS Appl. Mater. Interfaces 2017, 9, 39971–39984; https://doi.org/10.1021/acsami.7b11219.Search in Google Scholar PubMed
184. Reshma, V. G., Mohanan, P. V. Cellular Interactions of Zinc Oxide Nanoparticles with Human Embryonic Kidney (HEK 293) Cells. Colloids Surf. B Biointerfaces 2017, 157, 182–190; https://doi.org/10.1016/j.colsurfb.2017.05.069.Search in Google Scholar PubMed
185. Tang, Q., Xia, H., Liang, W., Huo, X., Wei, X. Synthesis and Characterization of Zinc Oxide Nanoparticles from Morus Nigra and its Anticancer Activity of AGS Gastric Cancer Cells. J. Photochem. Photobiol. B Biol. 2020, 202, 111698; https://doi.org/10.1016/j.jphotobiol.2019.111698.Search in Google Scholar PubMed
186. Majeed, S., Danish, M., Ismail, M. H. B., Ansari, M. T., Ibrahim, M. N. M. Anticancer and Apoptotic Activity of Biologically Synthesized Zinc Oxide Nanoparticles against Human Colon Cancer HCT-116 Cell Line-In Vitro Study. Sustain. Chem. Pharmacy 2019, 14, 100179; https://doi.org/10.1016/j.scp.2019.100179.Search in Google Scholar
187. Othman, M. S., Al-Bagawi, A. H., Obeidat, S. T., Fareid, M. A., Habotta, O. A., Moneim, A. E. A. Antitumor Activity of Zinc Nanoparticles Synthesized with Berberine on Human Epithelial Colorectal Adenocarcinoma (Caco-2) Cells through Acting on Cox-2/nf-kB and P53 Pathways. Anti Cancer Agents Med. Chem. 2022, 22, 2002–2010; https://doi.org/10.2174/1871520621666211004115839.Search in Google Scholar PubMed
188. Saleemi, M. A., Alallam, B., Yong, Y. K., Lim, V. Synthesis of Zinc Oxide Nanoparticles with Bioflavonoid Rutin: Characterization, Antioxidant and Antimicrobial Activities and In Vivo Cytotoxic Effects on Artemia nauplii. Antioxidants 2022, 11, 1853; https://doi.org/10.3390/antiox11101853.Search in Google Scholar PubMed PubMed Central
189. Akhtar, M. J., Ahamed, M., Kumar, S., Khan, M. M., Ahmad, J., Alrokayan, S. A. Zinc Oxide Nanoparticles Selectively Induce Apoptosis in Human Cancer Cells through Reactive Oxygen Species. Int. J. Nanomed. 2012, 845–857; https://doi.org/10.2147/ijn.s29129.Search in Google Scholar PubMed PubMed Central
190. Boskabadi, S. H., Balanezhad, S. Z., Neamati, A., Tabrizi, M. H. The Green-Synthesized Zinc Oxide Nanoparticle as a Novel Natural Apoptosis Inducer in Human Breast (MCF7 and MDA-Mb231) and Colon (HT-29) Cancer Cells. Inorg. Nano-Metal Chem. 2020, 51, 733–743; https://doi.org/10.1080/24701556.2020.1808991.Search in Google Scholar
191. Shandiz, S. A. S., Sharifian, F., Behboodi, S., Ghodratpour, F., Baghbani-Arani, F. Evaluation of Metastasis Suppressor Genes Expression and In Vitro Anti-cancer Effects of Zinc Oxide Nanoparticles in Human Breast Cancer Cell Lines MCF-7 and T47D. Avicenna J. Med. Biotechnol. 2021, 13, 9; https://doi.org/10.18502/ajmb.v13i1.4576.Search in Google Scholar PubMed PubMed Central
192. Wahab, R., Kaushik, N. K., Verma, A. K., Mishra, A., Hwang, I. H., Yang, Y. B., Shin, H. S., Kim, Y. S. Fabrication and Growth Mechanism of ZnO Nanostructures and Their Cytotoxic Effect on Human Brain Tumor U87, Cervical Cancer HeLa, and Normal HEK Cells. J. Biol. Inorg. Chem. 2011, 16, 431–442; https://doi.org/10.1007/s00775-010-0740-0.Search in Google Scholar PubMed
193. Murali, M., Kalegowda, N., Gowtham, H. G., Ansari, M. A., Alomary, M. N., Alghamdi, S., Amruthesh, K. N., Singh, S. B., Thriveni, M. C., Aiyaz, M., Angaswamy, N., Lakshmidevi, N., Adil, S. F., Hatshan, M. R. Plant-mediated zinc oxide nanoparticles: Advances in the new millennium towards understanding their therapeutic role in biomedical applications. Pharmaceutics 2021, 13, 1662; https://doi.org/10.3390/pharmaceutics13101662.Search in Google Scholar PubMed PubMed Central
194. Ott, M., Gogvadze, V., Orrenius, S., Zhivotovsky, B. Mitochondria, Oxidative Stress and Cell Death. Apoptosis 2007, 12, 913–922; https://doi.org/10.1007/s10495-007-0756-2.Search in Google Scholar PubMed
195. Bisht, G., Rayamajhi, S. ZnO Nanoparticles: A Promising Anticancer Agent. Nanobiomedicine 2016, 3(2016), 3–9; https://doi.org/10.5772/63437.Search in Google Scholar PubMed PubMed Central
196. Sana, S. S., Kumbhakar, D. V., Pasha, A., Pawar, S. C., Grace, A. N., Singh, R. P., Peng, W., Le, Q. V. Crotalaria Verrucosa Leaf Extract Mediated Synthesis of Zinc Oxide Nanoparticles: Assessment of Antimicrobial and Anticancer Activity. Molecules 2020, 25, 4896; https://doi.org/10.3390/molecules25214896.Search in Google Scholar PubMed PubMed Central
197. Rahman, H. S., Othman, H. H., Abdullah, R., Edin, H. Y. A. S., AL‐Haj, N. A. Beneficial and Toxicological Aspects of Zinc Oxide Nanoparticles in Animals. Vet. Med. Sci. 2022, 8, 1769–1779; https://doi.org/10.1002/vms3.814.Search in Google Scholar PubMed PubMed Central
198. Zalewski, P. D., Truong-Tran, A. Q., Grosser, D., Jayaram, L., Murgia, C., Ruffin, R. E. Zinc Metabolism in Airway Epithelium and Airway Inflammation: Basic Mechanisms and Clinical Targets. A Review. Pharmacol. Therap. 2005, 105, 127–149; https://doi.org/10.1016/j.pharmthera.2004.09.004.Search in Google Scholar PubMed
199. Hozyen, H. F., Ibrahim, E. S., Khairy, E. A., El-Dek, S. I. Enhanced Antibacterial Activity of Capped Zinc Oxide Nanoparticles: A Step towards the Control of Clinical Bovine Mastitis. Vet. World 2019, 12, 1225–1232; https://doi.org/10.14202/vetworld.2019.1225-1232.Search in Google Scholar PubMed PubMed Central
200. BL, V., Falchuk, K. H. The Biochemical Basis of Zinc Physiology. Physiol. Rev. 1993, 73, 79–118; https://doi.org/10.1152/physrev.1993.73.1.79.Search in Google Scholar PubMed
201. Skrajnowska, D., Bobrowska-Korczak, B. Role of Zinc in Immune System and Anti-cancer Defense Mechanisms. Nutrients 2019, 11, 2273; https://doi.org/10.3390/nu11102273.Search in Google Scholar PubMed PubMed Central
202. Zastrow, M. L., Pecoraro, V. L. Designing Hydrolytic Zinc Metalloenzymes. Biochemistry 2014, 53, 957–978; https://doi.org/10.1021/bi4016617.Search in Google Scholar PubMed PubMed Central
203. Ao, T., Pierce, J. L., Pescatore, A. J., Cantor, A. H., Dawson, K. A., Ford, M. J., Paul, M. Effects of Feeding Different Concentration and Forms of Zinc on the Performance and Tissue Mineral Status of Broiler Chicks. Br. Poultry Sci. 2011, 52, 466–471; https://doi.org/10.1080/00071668.2011.588198.Search in Google Scholar PubMed
204. Tabatabaie, M. M., Aliarabi, H., Saki, A. A., Ahmadi, A., Siyar, S. A. Effect of Different Sources and Levels of Zinc on Egg Quality and Laying Hen Performance. Pak. J. Biol. Sci. 2007, 10, 3476–3478; https://doi.org/10.3923/pjbs.2007.3476.3478.Search in Google Scholar PubMed
205. Yu, Q., Liu, H., Yang, K., Tang, X., Chen, S., Ajuwon, K. M., Fang, R. Effect of the Level and Source of Supplementary Dietary Zinc on Egg Production, Quality, and Zinc Content and on Serum Antioxidant Parameters and Zinc Concentrate-On in Laying Hens. Poultry Sci. 2020, 99, 6233–6238; https://doi.org/10.1016/j.psj.2020.06.029.Search in Google Scholar PubMed PubMed Central
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Inorganic hydrogels: synthetic strategies, properties and applications
- A review on biogenic synthesized zinc oxide nanoparticles: synthesis, characterization, and its applications
- Photochemical synthesis in inorganic chemistry
- Variable heterotridentate ligands in Pt(ƞ3-X1C1X2)(PL) (X1,2 = N or S), Pt(ƞ3-X1N1Y1)(PL) (X, Y = O, C; C, S; or O, S) and Pt(ƞ3-S1B1S2)(PL), derivatives – structural aspects
- Inorganic-polymer composite electrolytes: basics, fabrications, challenges and future perspectives
- Applications of samarium complexes as cytotoxic, bioimaging and DNA interacting agents: a comprehensive review
- Graphene-based nanocomposites for gas sensors: challenges and opportunities
- The environmental impact of using gold nanoparticles and 3HFWC in cosmetics, as determined with LCA methodology
Articles in the same Issue
- Frontmatter
- Inorganic hydrogels: synthetic strategies, properties and applications
- A review on biogenic synthesized zinc oxide nanoparticles: synthesis, characterization, and its applications
- Photochemical synthesis in inorganic chemistry
- Variable heterotridentate ligands in Pt(ƞ3-X1C1X2)(PL) (X1,2 = N or S), Pt(ƞ3-X1N1Y1)(PL) (X, Y = O, C; C, S; or O, S) and Pt(ƞ3-S1B1S2)(PL), derivatives – structural aspects
- Inorganic-polymer composite electrolytes: basics, fabrications, challenges and future perspectives
- Applications of samarium complexes as cytotoxic, bioimaging and DNA interacting agents: a comprehensive review
- Graphene-based nanocomposites for gas sensors: challenges and opportunities
- The environmental impact of using gold nanoparticles and 3HFWC in cosmetics, as determined with LCA methodology