Applications of samarium complexes as cytotoxic, bioimaging and DNA interacting agents: a comprehensive review
Abstract
Cisplatin coined a term Metallodrug and later a tradition of Metallodrugs was established. Later, severe renal and metabolic toxicities of the platinum based drugs prompted the medicinal chemists to develop new and novel metallotherapeutics with different metal cores. Henceforth, chemists designed the metal complexes based on copper, cobalt, vanadium iron and zinc. These complexes were reported for their antibacterial, anticancer, antidiabetic and enzyme inhibitors. Later, chemists also focused on lanthanide metal ions and resulted in the design of metal complexes for the application of bio imaging cellular studies as well as chemotherapeutic agents. This review throws a light on the recent advances in the development of the samarium complexes as efficient and versatile biological agents. Samarium complexes based on various ligand systems and ancillary ligands have been mentioned in this review stating their biological efficacy and potency against variable cancer cell lines, their DNA interactive behaviour.
Acknowledgments
The authors are thankful to the Dean, Associate Dean, of Department of Pharmacy of MIT World Peace University, Pune. Maharashtra, India.
-
Research ethics: Not applicable.
-
Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: The authors state no conflict of interest.
-
Research funding: None declared.
-
Data availability: Not applicable.
References
1. Kostova, I. Curr. Med. Chem. Anti Cancer Agents 2005, 5, 591–602.10.2174/156801105774574694Suche in Google Scholar PubMed
2. Fricker, S. P. Chem. Soc. Rev. 2006, 35, 524–533.10.1039/b509608cSuche in Google Scholar PubMed
3. Wang, B. D., Yang, Z.-Y., Crewdson, P., Wang, D.-Q. J. Inorg. Biochem. 2007, 101, 1492–1504.10.1016/j.jinorgbio.2007.04.007Suche in Google Scholar PubMed
4. Latras, V. M., Coderch, L. C., Villar, F. A., Vina, J. C., Martin, J. M., Carderon, F. M., Bejarano, J. N. M., Cusi, A. S., Bermudez, G. S., Icaza, A. E. Clin. Transl. Oncol. 2005, 5, 198–204.10.1007/BF02712817Suche in Google Scholar PubMed
5. Kostova, I., Momekov, G., Stancheva, P. Met. Base. Drugs 2007, 2007, 1–8.10.1155/2007/15925Suche in Google Scholar PubMed PubMed Central
6. Nuclear Medicine and Biology, Elsevier Fourth Edition, Volumes 90–91, November–December 2020, 128-130.Suche in Google Scholar
7. Moghadama, M. E., Shokria, N., Divsalarb, A., Shokoufia, N., Rahiminezada, A., Yang, J. L. Polycycl. Aromat. Comp. 2021, 41, 1515–1530.10.1007/s00299-022-02871-0Suche in Google Scholar PubMed
8. Shieh, J. M., Chiang, T.-A., Chang, W.-T., Chao, C.-H., Lee, Y.-C., Huang, G.-Y., Shih, Y.-X., Shih, Y.-W. Mol. Cell. Biochem. 2010, 335, 181–193.10.1007/s11010-009-0254-7Suche in Google Scholar PubMed
9. Lin, L. C., Yang, L. L., Chou, C. J. Phytochemistry 2003, 62, 619–622.10.1016/S0031-9422(02)00519-8Suche in Google Scholar PubMed
10. Srinivas, P., Gopinath, G., Banerji, A., Dinakar, A., Gopal, S. Mol. Carcinog. 2004, 40, 201–211.10.1002/mc.20031Suche in Google Scholar PubMed
11. Chen, Z. F., Tan, M. X., Liu, Y. C., Peng, Y., Wong, H. H. J. Inorg. Biochem. 2011, 105, 426–434.10.1016/j.jinorgbio.2010.12.003Suche in Google Scholar PubMed
12. Naseri, Z., Hakimi, A., Jalilian, A. R., Nemati Kharat, A., Shirvani-Arani, S., Bahrami-Samani, A., Ghannadi-Maragheh, M. Radiochim. Acta 2012, 100, 267–272.10.1524/ract.2012.1910Suche in Google Scholar
13. Munteanu, A. C., Musat, M. G., Mihaila, M., Badea, M., Olar, R., Nitulescu, G. M., Rădulescu, F. Ș., Brasoveanu, L. I., Uivarosi, V. Appl. Organomet. Chem. 2021, 35, e606.10.1002/aoc.6062Suche in Google Scholar
14. Hu, Z. X., Han, W. Y., Ma, L. Chin. Pharmaceut. J. 2009, 44, 15.Suche in Google Scholar
15. Savić, A., Kaczmarek, A. M., Deun, R. V., Hecke, K. V. Molecules 2020, 25, 5309.10.3390/molecules25225309Suche in Google Scholar PubMed PubMed Central
16. Sun, H. J., Wang, A. L., Chu, H. B., Zhao, Y. L. Luminiscence 2015, 30, 131–136.10.1002/bio.2701Suche in Google Scholar PubMed
17. Liu, Y. C., Chen, Z. F., Song, X. Y., Peng, Y., Qin, Q. P., Liang, H. Eur. J. Med. Chem. 2013, 59, 168–175.10.1016/j.ejmech.2012.11.001Suche in Google Scholar PubMed
18. Saeid, A., Aramesh-Boroujeni, Z., Jahani, S. RSC Adv. 2020, 10, 31979.10.1039/D0RA05280ASuche in Google Scholar PubMed PubMed Central
19. Yang, Z. Y., Wang, Y., Wang, Y. Bioorg. Med. Chem. Lett. 2007, 17, 2096–2101.10.1016/j.bmcl.2006.10.049Suche in Google Scholar PubMed
20. Mohanan, K., Aswathy, R., Nitha, L. P., Mathews, N. E., Bindu Kumari, S. J. Rare Earths 2014, 32, 379–388.10.1016/S1002-0721(14)60081-8Suche in Google Scholar
21. Indapurkar, A., Henriksen, B., 1 Tolman, J., Fletcher, J. J. Pharmaceut. Sci. 2014, 102, 2589–2598.10.1002/jps.23616Suche in Google Scholar PubMed
22. Zantye, P., Fernandes, F., Ramanan, S. R., Kowshik, M. Curr. Phys. Chem. 2019, 9, 94–109.10.2174/1877946809666190828104812Suche in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Inorganic hydrogels: synthetic strategies, properties and applications
- A review on biogenic synthesized zinc oxide nanoparticles: synthesis, characterization, and its applications
- Photochemical synthesis in inorganic chemistry
- Variable heterotridentate ligands in Pt(ƞ3-X1C1X2)(PL) (X1,2 = N or S), Pt(ƞ3-X1N1Y1)(PL) (X, Y = O, C; C, S; or O, S) and Pt(ƞ3-S1B1S2)(PL), derivatives – structural aspects
- Inorganic-polymer composite electrolytes: basics, fabrications, challenges and future perspectives
- Applications of samarium complexes as cytotoxic, bioimaging and DNA interacting agents: a comprehensive review
- Graphene-based nanocomposites for gas sensors: challenges and opportunities
- The environmental impact of using gold nanoparticles and 3HFWC in cosmetics, as determined with LCA methodology
Artikel in diesem Heft
- Frontmatter
- Inorganic hydrogels: synthetic strategies, properties and applications
- A review on biogenic synthesized zinc oxide nanoparticles: synthesis, characterization, and its applications
- Photochemical synthesis in inorganic chemistry
- Variable heterotridentate ligands in Pt(ƞ3-X1C1X2)(PL) (X1,2 = N or S), Pt(ƞ3-X1N1Y1)(PL) (X, Y = O, C; C, S; or O, S) and Pt(ƞ3-S1B1S2)(PL), derivatives – structural aspects
- Inorganic-polymer composite electrolytes: basics, fabrications, challenges and future perspectives
- Applications of samarium complexes as cytotoxic, bioimaging and DNA interacting agents: a comprehensive review
- Graphene-based nanocomposites for gas sensors: challenges and opportunities
- The environmental impact of using gold nanoparticles and 3HFWC in cosmetics, as determined with LCA methodology