Home Physical Sciences Applications of samarium complexes as cytotoxic, bioimaging and DNA interacting agents: a comprehensive review
Article
Licensed
Unlicensed Requires Authentication

Applications of samarium complexes as cytotoxic, bioimaging and DNA interacting agents: a comprehensive review

  • Poonam R. Inamdar ORCID logo EMAIL logo , Shashikant Bhandari , Mrunalini Kulkarni , Neeta Rai and Anuja Kolsure
Published/Copyright: March 11, 2024

Abstract

Cisplatin coined a term Metallodrug and later a tradition of Metallodrugs was established. Later, severe renal and metabolic toxicities of the platinum based drugs prompted the medicinal chemists to develop new and novel metallotherapeutics with different metal cores. Henceforth, chemists designed the metal complexes based on copper, cobalt, vanadium iron and zinc. These complexes were reported for their antibacterial, anticancer, antidiabetic and enzyme inhibitors. Later, chemists also focused on lanthanide metal ions and resulted in the design of metal complexes for the application of bio imaging cellular studies as well as chemotherapeutic agents. This review throws a light on the recent advances in the development of the samarium complexes as efficient and versatile biological agents. Samarium complexes based on various ligand systems and ancillary ligands have been mentioned in this review stating their biological efficacy and potency against variable cancer cell lines, their DNA interactive behaviour.


Corresponding author: Poonam R. Inamdar, Department of Pharmaceutical Sciences, School of Health Sciences and Technology, Dr. Vishwanath Karad MIT World Peace University, Pune, India, E-mail:

Acknowledgments

The authors are thankful to the Dean, Associate Dean, of Department of Pharmacy of MIT World Peace University, Pune. Maharashtra, India.

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: None declared.

  5. Data availability: Not applicable.

References

1. Kostova, I. Curr. Med. Chem. Anti Cancer Agents 2005, 5, 591–602.10.2174/156801105774574694Search in Google Scholar PubMed

2. Fricker, S. P. Chem. Soc. Rev. 2006, 35, 524–533.10.1039/b509608cSearch in Google Scholar PubMed

3. Wang, B. D., Yang, Z.-Y., Crewdson, P., Wang, D.-Q. J. Inorg. Biochem. 2007, 101, 1492–1504.10.1016/j.jinorgbio.2007.04.007Search in Google Scholar PubMed

4. Latras, V. M., Coderch, L. C., Villar, F. A., Vina, J. C., Martin, J. M., Carderon, F. M., Bejarano, J. N. M., Cusi, A. S., Bermudez, G. S., Icaza, A. E. Clin. Transl. Oncol. 2005, 5, 198–204.10.1007/BF02712817Search in Google Scholar PubMed

5. Kostova, I., Momekov, G., Stancheva, P. Met. Base. Drugs 2007, 2007, 1–8.10.1155/2007/15925Search in Google Scholar PubMed PubMed Central

6. Nuclear Medicine and Biology, Elsevier Fourth Edition, Volumes 90–91, November–December 2020, 128-130.Search in Google Scholar

7. Moghadama, M. E., Shokria, N., Divsalarb, A., Shokoufia, N., Rahiminezada, A., Yang, J. L. Polycycl. Aromat. Comp. 2021, 41, 1515–1530.10.1007/s00299-022-02871-0Search in Google Scholar PubMed

8. Shieh, J. M., Chiang, T.-A., Chang, W.-T., Chao, C.-H., Lee, Y.-C., Huang, G.-Y., Shih, Y.-X., Shih, Y.-W. Mol. Cell. Biochem. 2010, 335, 181–193.10.1007/s11010-009-0254-7Search in Google Scholar PubMed

9. Lin, L. C., Yang, L. L., Chou, C. J. Phytochemistry 2003, 62, 619–622.10.1016/S0031-9422(02)00519-8Search in Google Scholar PubMed

10. Srinivas, P., Gopinath, G., Banerji, A., Dinakar, A., Gopal, S. Mol. Carcinog. 2004, 40, 201–211.10.1002/mc.20031Search in Google Scholar PubMed

11. Chen, Z. F., Tan, M. X., Liu, Y. C., Peng, Y., Wong, H. H. J. Inorg. Biochem. 2011, 105, 426–434.10.1016/j.jinorgbio.2010.12.003Search in Google Scholar PubMed

12. Naseri, Z., Hakimi, A., Jalilian, A. R., Nemati Kharat, A., Shirvani-Arani, S., Bahrami-Samani, A., Ghannadi-Maragheh, M. Radiochim. Acta 2012, 100, 267–272.10.1524/ract.2012.1910Search in Google Scholar

13. Munteanu, A. C., Musat, M. G., Mihaila, M., Badea, M., Olar, R., Nitulescu, G. M., Rădulescu, F. Ș., Brasoveanu, L. I., Uivarosi, V. Appl. Organomet. Chem. 2021, 35, e606.10.1002/aoc.6062Search in Google Scholar

14. Hu, Z. X., Han, W. Y., Ma, L. Chin. Pharmaceut. J. 2009, 44, 15.Search in Google Scholar

15. Savić, A., Kaczmarek, A. M., Deun, R. V., Hecke, K. V. Molecules 2020, 25, 5309.10.3390/molecules25225309Search in Google Scholar PubMed PubMed Central

16. Sun, H. J., Wang, A. L., Chu, H. B., Zhao, Y. L. Luminiscence 2015, 30, 131–136.10.1002/bio.2701Search in Google Scholar PubMed

17. Liu, Y. C., Chen, Z. F., Song, X. Y., Peng, Y., Qin, Q. P., Liang, H. Eur. J. Med. Chem. 2013, 59, 168–175.10.1016/j.ejmech.2012.11.001Search in Google Scholar PubMed

18. Saeid, A., Aramesh-Boroujeni, Z., Jahani, S. RSC Adv. 2020, 10, 31979.10.1039/D0RA05280ASearch in Google Scholar PubMed PubMed Central

19. Yang, Z. Y., Wang, Y., Wang, Y. Bioorg. Med. Chem. Lett. 2007, 17, 2096–2101.10.1016/j.bmcl.2006.10.049Search in Google Scholar PubMed

20. Mohanan, K., Aswathy, R., Nitha, L. P., Mathews, N. E., Bindu Kumari, S. J. Rare Earths 2014, 32, 379–388.10.1016/S1002-0721(14)60081-8Search in Google Scholar

21. Indapurkar, A., Henriksen, B., 1 Tolman, J., Fletcher, J. J. Pharmaceut. Sci. 2014, 102, 2589–2598.10.1002/jps.23616Search in Google Scholar PubMed

22. Zantye, P., Fernandes, F., Ramanan, S. R., Kowshik, M. Curr. Phys. Chem. 2019, 9, 94–109.10.2174/1877946809666190828104812Search in Google Scholar

Received: 2023-09-19
Accepted: 2024-01-22
Published Online: 2024-03-11
Published in Print: 2024-09-25

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 29.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/revic-2023-0026/html
Scroll to top button