Inorganic-polymer composite electrolytes: basics, fabrications, challenges and future perspectives
-
Shahab Khan
, Ishfaq Ullah
, Mudassir Ur Rahman , Hamayun Khan , Abdul Bari Shah, Raed H. Althomali
and Mohammed M. Rahman
Abstract
This review covers the basics of, inorganic-polymer composite electrolyte materials that combine inorganic components with polymer matrices to enhance the ionic conductivity and mechanical properties of the electrolyte. These composite electrolytes are commonly employed in solid-state batteries, fuel cells, supercapacitors, and other electrochemical devices. The incorporation of inorganic components, such as ceramic nanoparticles or metal oxides, into a polymer matrix provides several advantages. The inorganic components can improve the overall ionic conductivity by providing pathways for ion transport, reducing the tortuosity of the polymer matrix, and facilitating ion hopping between polymer chains. Additionally, inorganic materials often exhibit higher thermal and chemical stability compared to pure polymers, which can enhance the safety and durability of composite electrolytes. Polymer matrices used in inorganic-polymer composite electrolytes can vary, but common choices include polyethylene oxide (PEO), polyvinylidene fluoride (PVDF), polyacrylonitrile (PAN), and polyethylene oxide/polypropylene oxide (PEO/PPO) blends. These polymers offer good mechanical flexibility and processability, allowing for the fabrication of thin films or membranes. The fabrication methods for inorganic-polymer composite electrolytes depend on the specific application and desired properties. Common approaches include solution casting, in situ polymerization, melt blending, and electrospinning. During the fabrication process, the inorganic components are typically dispersed or mixed with the polymer matrix, and the resulting composite is processed into the desired form, such as films, membranes, or coatings. The performance of inorganic-polymer composite electrolytes is evaluated based on their ionic conductivity, mechanical strength, electrochemical stability, and compatibility with the electrode materials. Researchers continue to explore various combinations of inorganic and polymer components, as well as optimization strategies, to further improve the overall performance of these composite electrolytes for advanced energy storage and conversion applications.
Award Identifier / Grant number: PSAU/2023/R/1444
-
Research ethics: The author and ethical statements in their default format are a requirement for submission to De Gruyter Journals. Statements are to be customized as described below and submitted alongside with manuscript.
-
Author contributions: Shahab Khan and Ishfaq Ullah wrote the initial drafting and revised and finalized the manuscript. Mudassir Ur Rahman wrote a performance evaluation of polymer nanocomposite electrolytes. The initial drafting and manuscript sitting were made by Abdul Bari Shah. References and Tables sitting and validation were made by Hamayun Khan. The Figure’s modification, graphics, and quality enhancements were made by Arshid Ali. Raed H. Althomali and Mohammed M. Rahman revised the manuscript, verified the integrity and scope of work improved the language proficiency, and finalized the manuscript along with financial support.
-
Competing interests: Not applicable.
-
Research funding: This work was supported by Deanship of Scientific Research, Prince Sattam bin Abdulaziz University (http://dx.doi.org/10.13039/100019725, award number :PSAU/2023/R/1444).
-
Data availability: Not applicable.
References
1. Godovsky, D. Y. Device applications of polymer-nanocomposites. In Biopolymers PVA Hydrogels, Anionic Polymerisation Nanocomposites; Springer: Berlin, Heidelberg, 2000; pp. 163–205.10.1007/3-540-46414-X_4Search in Google Scholar
2. Faustini, M., Nicole, L., Ruiz‐Hitzky, E., Sanchez, C. History of organic–inorganic hybrid materials: prehistory, art, science, and advanced applications. Adv. Funct. Mater. 2018, 28, 1704158; https://doi.org/10.1002/adfm.201704158.Search in Google Scholar
3. Fan, L., Wei, S., Li, Q., Lu, Y. Recent progress of the solid‐state electrolytes for high‐energy metal‐based batteries. Adv. Energy Mater. 2018, 8, 1702657; https://doi.org/10.1002/aenm.201702657.Search in Google Scholar
4. Park, H., Lee, E. G., Kim, D., Kang, Y., Choi, S. Development of free-standing phosphate/polymer composite electrolyte films for room temperature operating Li+ rechargeable solid-state battery. Solid State Ionics 2020, 344, 115137; https://doi.org/10.1016/j.ssi.2019.115137.Search in Google Scholar
5. Ma, Y., Wan, J., Yang, Y., Ye, Y., Xiao, X., Boyle, D. T., Burke, W., Huang, Z., Chen, H., Cui, Y., Yu, Z., Oyakhire, S. T., Cui, Y. Scalable, ultrathin, and high‐temperature‐resistant solid polymer electrolytes for energy‐dense lithium metal batteries. Adv. Energy Mater. 2022, 12, 2103720; https://doi.org/10.1002/aenm.202103720.Search in Google Scholar
6. Fan, L.-Z., He, H., Nan, C.-W. Tailoring inorganic–polymer composites for the mass production of solid-state batteries. Nat. Rev. Mater. 2021, 6, 1003–1019; https://doi.org/10.1038/s41578-021-00320-0.Search in Google Scholar
7. Liu, W., Lee, S. W., Nazir, S., Zhang, J. M., Muhammad, J., Saleem, S., Ali, A., Ullah, A., Khan, S. Metal-based nanoparticles: basics, types, fabrications and their electronic applications. Zeitschrift für Physikalische Chemie 2017, 238, 17–31; https://doi.org/10.1515/zpch-2023-0375.Search in Google Scholar
8. Wang, X., Zhai, H., Qie, B., Cheng, Q., Borovilas, J., Xu, B., Shi, C., Jin, T., Liao, X., He, X., Du, S., Fu, Y., Dontigny, M., Zaghib, K., Yang, Y. Rechargeable solid-state lithium metal batteries with vertically aligned ceramic nanoparticle/polymer composite electrolyte. Nano Energy 2019, 60, 205–212; https://doi.org/10.1016/j.nanoen.2019.03.051.Search in Google Scholar
9. Nie, Y., Yang, T., Luo, D., Liu, Y., Ma, Q., Yang, L., Yao, Y., Huang, R., Li, Z., Akinoglu, E. M., Wen, G., Ren, B., Zhu, N., Li, M., Liao, H., Tan, L., Wang, X., Chen, Z. Tailoring vertically aligned inorganic‐polymer nanocomposites with abundant Lewis acid sites for ultra‐stable solid‐state lithium metal batteries. Adv. Energy Mater. 2023, 13, 2204218; https://doi.org/10.1002/aenm.202204218.Search in Google Scholar
10. Kong, L., Tang, C., Peng, H., Huang, J., Zhang, Q. Advanced energy materials for flexible batteries in energy storage: a review. SmartMat 2020, 1, 1–35. https://doi.org/10.1002/smm2.1007.Search in Google Scholar
11. Guo, Y., Li, H., Zhai, T. Reviving lithium‐metal anodes for next‐generation high‐energy batteries. Adv. Mater. 2017, 29, 1700007; https://doi.org/10.1002/adma.201700007.Search in Google Scholar PubMed
12. Liang, H., Wang, L., Wang, A., Song, Y., Wu, Y., Yang, Y., He, X. Tailoring practically accessible polymer/inorganic composite electrolytes for all-solid-state lithium metal batteries: a review. Nano-Micro Lett. 2023, 15, 42; https://doi.org/10.1007/s40820-022-00996-1.Search in Google Scholar PubMed PubMed Central
13. Tripathi, B. P., Shahi, V. K. Organic–inorganic nanocomposite polymer electrolyte membranes for fuel cell applications. Prog. Polym. Sci. 2011, 36, 945–979; https://doi.org/10.1016/j.progpolymsci.2010.12.005.Search in Google Scholar
14. Reinoso, D. M., Frechero, M. A. Strategies for rational design of polymer-based solid electrolytes for advanced lithium energy storage applications. Energy Storage Mater. 2022, 52, 430–464; https://doi.org/10.1016/j.ensm.2022.08.019.Search in Google Scholar
15. Manthiram, A., Yu, X., Wang, S. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2017, 2, 1–16; https://doi.org/10.1038/natrevmats.2016.103.Search in Google Scholar
16. Zheng, J., Lochala, J. A., Kwok, A., Deng, Z. D., Xiao, J. Research progress towards understanding the unique interfaces between concentrated electrolytes and electrodes for energy storage applications. Adv. Sci. 2017, 4, 1700032; https://doi.org/10.1002/advs.201700032.Search in Google Scholar PubMed PubMed Central
17. Hanif, M. B., Rauf, S., Motola, M., Babar, Z. U. D., Li, C. X. Recent progress of perovskite-based electrolyte materials for solid oxide fuel cells and performance optimizing strategies for energy storage applications. Mater. Res. Bull. 2022, 146, 111612; https://doi.org/10.1016/j.materresbull.2021.111612.Search in Google Scholar
18. Herring, A.M. Inorganic–polymer composite membranes for proton exchange membrane fuel cells. J. Macromol. Sci., Polym. Rev. 2006, 46, 245–296; https://doi.org/10.1080/00222340600796322.Search in Google Scholar
19. Lamba, P., Singh, P., Singh, P., Singh, P., Bharti, Kumar, A., Gupta, M., Kumar, Y. Recent advancements in supercapacitors based on different electrode materials: classifications, synthesis methods and comparative performance. J. Energy Storage 2022, 48, 103871; https://doi.org/10.1016/j.est.2021.103871.Search in Google Scholar
20. Mohanty, D., Chen, S.-Y., Hung, I.-M. Effect of lithium salt concentration on materials characteristics and electrochemical performance of hybrid inorganic/polymer solid electrolyte for solid-state lithium-ion batteries. Batteries 2022, 8, 173; https://doi.org/10.3390/batteries8100173.Search in Google Scholar
21. Liu, W., Meng, L., Liu, X., Gao, L., Wang, X., Kang, J., Ju, J., Deng, N., Cheng, B., Kang, W. 3D spiny AlF3/Mullite heterostructure nanofiber as solid-state polymer electrolyte fillers with enhanced ionic conductivity and improved interfacial compatibility. J. Energy Chem. 2023, 76, 503–515; https://doi.org/10.1016/j.jechem.2022.09.042.Search in Google Scholar
22. Holzmeister, I., Schamel, M., Groll, J., Gbureck, U., Vorndran, E. Artificial inorganic biohybrids: the functional combination of microorganisms and cells with inorganic materials. Acta Biomater. 2018, 74, 17–35; https://doi.org/10.1016/j.actbio.2018.04.042.Search in Google Scholar PubMed
23. Morgan, A. B., Putthanarat, S. Use of inorganic materials to enhance thermal stability and flammability behavior of a polyimide. Polym. Degrad. Stabil. 2011, 96, 23–32; https://doi.org/10.1016/j.polymdegradstab.2010.11.005.Search in Google Scholar
24. Krasia-Christoforou, T. Organic–inorganic polymer hybrids: synthetic strategies and applications. In Hybrid and hierarchical composite materials; Springer: Cham, Switzerland, 2015; pp. 11–63.10.1007/978-3-319-12868-9_2Search in Google Scholar
25. Marriam, I., Tebyetekerwa, M., Xu, Z., Chathuranga, H., Chen, S., Chen, H., Zheng, J. C., Du, A., Yan, C. Techniques enabling inorganic materials into wearable fiber/yarn and flexible lithium-ion batteries. Energy Storage Mater. 2021, 43, 62–84; https://doi.org/10.1016/j.ensm.2021.08.039.Search in Google Scholar
26. Zhang, D., Xu, X., Qin, Y., Ji, S., Huo, Y., Wang, Z., Liu, Z., Shen, J., Liu, J. Recent progress in organic–inorganic composite solid electrolytes for all‐solid‐state lithium batteries. Chem.–Eur. J. 2020, 26, 1720–1736; https://doi.org/10.1002/chem.201904461.Search in Google Scholar PubMed
27. Zhang, D., Meng, X., Hou, W., Hu, W., Mo, J., Yang, T., Zhang, W., Fan, Q., Liu, L., Jiang, B., Chu, L., Li, M. Solid polymer electrolytes: ion conduction mechanisms and enhancement strategies. Nano Res. Energy 2023, 2, e9120050; https://doi.org/10.26599/nre.2023.9120050.Search in Google Scholar
28. Sun, C., Liu, J., Gong, Y., Wilkinson, D. P., Zhang, J. Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy 2017, 33, 363–386; https://doi.org/10.1016/j.nanoen.2017.01.028.Search in Google Scholar
29. Dirican, M., Yan, C., Zhu, P., Zhang, X. Composite solid electrolytes for all-solid-state lithium batteries. Mater. Sci. Eng. R: Rep. 2019, 136, 27–46; https://doi.org/10.1016/j.mser.2018.10.004.Search in Google Scholar
30. Liang, C. Conduction characteristics of the lithium iodide‐aluminum oxide solid electrolytes. J. Electrochem. Soc. 1973, 120, 1289; https://doi.org/10.1149/1.2403248.Search in Google Scholar
31. Jin, M., Wang, J., Weng, K., Sun, T., Guo, D., Wang, X., Chen, X., Wang, S. Fluorinated solid‐state electrolytes for lithium batteries: interface design and ion conduction mechanisms. Adv. Eng. Mater. 2023, 2201390; https://doi.org/10.1002/adem.202201390.Search in Google Scholar
32. Khan, S., Rahman, M. U., Marwani, H. M., Althomali, R. H., Rahman, M. M. Bicomponent polymorphs of salicylic acid, their antibacterial potentials, intermolecular interactions, DFT and docking studies. Zeitschrift für Physikalische Chemie 2023, 238, 1–16; https://doi.org/10.1515/zpch-2023-0378.Search in Google Scholar
33. Bachman, J.C., Muy, S., Grimaud, A., Chang, H. H., Pour, N., Lux, S. F., Paschos, O., Maglia, F., Lupart, S., Lamp, P., Giordano, L., Shao-Horn, Y. Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem. Rev. 2016, 116, 140–162; https://doi.org/10.1021/acs.chemrev.5b00563.Search in Google Scholar PubMed
34. McCarty, L. S., Whitesides, G. M. Electrostatic charging due to separation of ions at interfaces: contact electrification of ionic electrets. Angew. Chem. Int. Ed. 2008, 47, 2188–2207; https://doi.org/10.1002/anie.200701812.Search in Google Scholar PubMed
35. Branyikova, I., Prochazkova, G., Potocar, T., Jezkova, Z., Branyik, T. Harvesting of microalgae by flocculation. Fermentation 2018, 4, 93; https://doi.org/10.3390/fermentation4040093.Search in Google Scholar
36. Liu, Z., Qin, L., Cao, X., Zhou, J., Pan, A., Fang, G., Wang, S., Liang, S. Ion migration and defect effect of electrode materials in multivalent-ion batteries. Progr. Mater. Sci. 2022, 125, 100911; https://doi.org/10.1016/j.pmatsci.2021.100911.Search in Google Scholar
37. Hooch Antink, W., Choi, Y., Seong, K., Kim, J. M., Piao, Y. Recent progress in porous graphene and reduced graphene oxide‐based nanomaterials for electrochemical energy storage devices. Adv. Mater. Interfac. 2018, 5, 1701212; https://doi.org/10.1002/admi.201701212.Search in Google Scholar
38. Lagadec, M.F., Zahn, R., Wood, V. Characterization and performance evaluation of lithium-ion battery separators. Nature Energy 2019, 4, 16–25; https://doi.org/10.1038/s41560-018-0295-9.Search in Google Scholar
39. Gao, Z., Sun, H., Fu, L., Ye, F., Zhang, Y., Luo, W., Huang, Y. Promises, challenges, and recent progress of inorganic solid‐state electrolytes for all‐solid‐state lithium batteries. Adv. Mater. 2018, 30, 1705702; https://doi.org/10.1002/adma.201705702.Search in Google Scholar PubMed
40. He, J., Chen, H., Wang, D., Zhang, Q., Zhong, G., Peng, Z. Interfacial barrier of ion transport in poly(ethylene oxide)–Li7La3Zr2O12 composite electrolytes illustrated by 6Li-tracer nuclear magnetic resonance spectroscopy. J. Phys. Chem. Lett. 2022, 13, 1500–1505; https://doi.org/10.1021/acs.jpclett.1c04085.Search in Google Scholar PubMed
41. Tang, S., Guo, W., Fu, Y. Advances in composite polymer electrolytes for lithium batteries and beyond. Adv. Energy Mater. 2021, 11, 2000802; https://doi.org/10.1002/aenm.202000802.Search in Google Scholar
42. Wu, H., Wu, X., Wu, Q., Yan, W. High performance proton-conducting composite based on vanadium-substituted Dawson-type heteropoly acid for proton exchange membranes. Compos. Sci. Technol. 2018, 162, 1–6; https://doi.org/10.1016/j.compscitech.2018.04.018.Search in Google Scholar
43. Gao, H., Lian, K. Proton-conducting polymer electrolytes and their applications in solid supercapacitors: a review. RSC Adv. 2014, 4, 33091–33113; https://doi.org/10.1039/c4ra05151c.Search in Google Scholar
44. Vijayakumar, V., Nam, S. Y. Recent advancements in applications of alkaline anion exchange membranes for polymer electrolyte fuel cells. J. Ind. Eng. Chem. 2019, 70, 70–86; https://doi.org/10.1016/j.jiec.2018.10.026.Search in Google Scholar
45. Khan, S, Ajmal, S., Hussain, T., Rahman, M. U. Clay-based materials for enhanced water treatment: adsorption mechanisms, challenges, and future directions. Journal of Umm Al-Qura University for Applied Sciences 2023, 9, 12–27; https://doi.org/10.1007/s43994-023-00083-0.Search in Google Scholar
46. Song, G., Romero, C., Lowe, T., Driscoll, G., Kreglow, B., Schobert, H., Baltrusaitis, J., Yao, Z., Jonas Baltrusaitis*, and Zheng Yao*. Multistage activation of anthracite coal-based activated carbon for high-performance supercapacitor applications. Energy & Fuels 2022, 37, 1327–1343; https://doi.org/10.1021/acs.energyfuels.2c03487.Search in Google Scholar
47. Khan, S., Ullah, I., Khan, H., Rahman, F. U., Rahman, M. U., Saleem, M. A., Nazir, S., Ali, A., Ullah, A. Green synthesis of AgNPs from leaves extract of Saliva Sclarea, their characterization, antibacterial activity, and catalytic reduction ability. Zeitschrift für Physikalische Chemie 2023, 238, 1–17; https://doi.org/10.1515/zpch-2023-0363.Search in Google Scholar
48. Yang, S., Liu, Y., Hao, Y., Yang, X., Goddard, W. A., Zhang, X. L., Cao, B. Oxygen‐vacancy abundant ultrafine Co3O4/graphene composites for high‐rate supercapacitor electrodes. Adv. Sci. 2018, 5, 1700659; https://doi.org/10.1002/advs.201700659.Search in Google Scholar PubMed PubMed Central
49. Hong, R., Chen, Q. Dispersion of inorganic nanoparticles in polymer matrices: challenges and solutions. Org.-Inorg. Hybrid Nanomater. 2015, 267, 1–38; https://doi.org/10.1007/12_2014_286.Search in Google Scholar
50. Tian, X., Zhou, Y., Tu, X., Zhang, Z., Du, G. Well-dispersed LiFePO4 nanoparticles anchored on a three-dimensional graphene aerogel as high-performance positive electrode materials for lithium-ion batteries. J. Power Sources 2017, 340, 40–50; https://doi.org/10.1016/j.jpowsour.2016.11.049.Search in Google Scholar
51. Kango, S., Kalia, S., Celli, A., Njuguna, J., Habibi, Y., Kumar, R. Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—A review. Prog. Polym. Sci. 2013, 38, 1232–1261; https://doi.org/10.1016/j.progpolymsci.2013.02.003.Search in Google Scholar
52. Özdemir, Y., Üregen, N., Devrim, Y. Polybenzimidazole based nanocomposite membranes with enhanced proton conductivity for high temperature PEM fuel cells. Int. J. Hydrogen Energy 2017, 42, 2648–2657; https://doi.org/10.1016/j.ijhydene.2016.04.132.Search in Google Scholar
53. Matkovska, L., Iurzhenko, M., Mamunya, Y., Matkovska, O., Demchenko, V., Lebedev, E., Boiteux, G., Serghei, A. Electrophysical behavior of ion-conductive organic-inorganic polymer system based on aliphatic epoxy resin and salt of lithium perchlorate. Nanoscale Res. Lett. 2014, 9, 1–9; https://doi.org/10.1186/1556-276x-9-674.Search in Google Scholar
54. Wu, X.-L., Li, Y. H., Wu, N., Xin, S., Kim, J. H., Yan, Y., Lee, J. S., Guo, Y. G. Enhanced working temperature of PEO-based polymer electrolyte via porous PTFE film as an efficient heat resister. Solid State Ionics 2013, 245, 1–7; https://doi.org/10.1016/j.ssi.2013.05.012.Search in Google Scholar
55. Quartarone, E., Mustarelli, P., Magistris, A. PEO-based composite polymer electrolytes. Solid State Ionics 1998, 110, 1–14; https://doi.org/10.1016/s0167-2738(98)00114-3.Search in Google Scholar
56. Saxena, P., Shukla, P. A comprehensive review on fundamental properties and applications of poly(vinylidene fluoride) (PVDF). Adv. Compos. Hybrid Mater. 2021, 4, 8–26; https://doi.org/10.1007/s42114-021-00217-0.Search in Google Scholar
57. Xu, P., Fu, W., Cui, Z., Ding, Y. Enhancement of polar phase and conductivity relaxation in PIL-modified GO/PVDF composites. Appl. Phys. Lett. 2018, 112; https://doi.org/10.1063/1.5011051.Search in Google Scholar
58. Ramanathan, T., Abdala, A. A., Stankovich, S., Dikin, D. A., Herrera-Alonso, M., Piner, R. D., Adamson, D. H., Schniepp, H. C., Chen, X., Ruoff, R. S., Nguyen, S. T., Aksay, I. A., Prud’Homme, R. K., Brinson, L. C. Functionalized graphene sheets for polymer nanocomposites. Nat. Nanotechnol. 2008, 3, 327–331; https://doi.org/10.1038/nnano.2008.96.Search in Google Scholar PubMed
59. Shen, Z., Cheng, Y., Sun, S., Ke, X., Liu, L., Shi, Z. The critical role of inorganic nanofillers in solid polymer composite electrolyte for Li+ transportation. Carbon Energy 2021, 3, 482–508; https://doi.org/10.1002/cey2.108.Search in Google Scholar
60. Yang, Q., Deng, N., Zhao, Y., Gao, L., Cheng, B., Kang, W. A review on 1D materials for all-solid-state lithium-ion batteries and all-solid-state lithium-sulfur batteries. Chem. Eng. J. 2023, 451, 138532; https://doi.org/10.1016/j.cej.2022.138532.Search in Google Scholar
61. Yuan, J., Antonietti, M. Poly(ionic liquid)s: polymers expanding classical property profiles. Polymer 2011, 52, 1469–1482; https://doi.org/10.1016/j.polymer.2011.01.043.Search in Google Scholar
62. Xue, Z., He, D., Xie, X. Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. J. Mater. Chem. A 2015, 3, 19218–19253; https://doi.org/10.1039/c5ta03471j.Search in Google Scholar
63. Zheng, Y., Yao, Y., Ou, J., Li, M., Luo, D., Dou, H., Li, Z., Amine, K., Yu, A., Chen, Z. A review of composite solid-state electrolytes for lithium batteries: fundamentals, key materials and advanced structures. Chem. Soc. Rev. 2020, 49, 8790–8839; https://doi.org/10.1039/d0cs00305k.Search in Google Scholar PubMed
64. Utpalla, P., Sharma, S., Prakash, J., Bahadur, J., Sahu, M., Pujari, P. Free volume structure at interphase region of poly(ethylene oxide)-Al2O3 nanorods composites based solid polymer electrolyte and its direct correlation with Li ion conductivity. Solid State Ionics 2022, 375, 115840; https://doi.org/10.1016/j.ssi.2021.115840.Search in Google Scholar
65. Al-Furjan, M., Shan, L., Shen, X., Zarei, M., Hajmohammad, M., Kolahchi, R. A review on fabrication techniques and tensile properties of glass, carbon, and Kevlar fiber reinforced polymer composites. J. Mater. Res. Technol. 2022, 19, 2930–2959; https://doi.org/10.1016/j.jmrt.2022.06.008.Search in Google Scholar
66. Grosvenor, M., Staniforth, J. The effect of molecular weight on the rheological and tensile properties of poly(ϵ-caprolactone). Int. J. Pharm. 1996, 135, 103–109; https://doi.org/10.1016/0378-5173(95)04404-3.Search in Google Scholar
67. Klongkan, S., Pumchusak, J. Effects of nano alumina and plasticizers on morphology, ionic conductivity, thermal and mechanical properties of PEO-LiCF3SO3 solid polymer electrolyte. Electrochim. Acta 2015, 161, 171–176; https://doi.org/10.1016/j.electacta.2015.02.074.Search in Google Scholar
68. Liu, W., Liu, N., Sun, J., Hsu, P. C., Li, Y., Lee, H. W., Cui, Y. Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. Nano Lett. 2015, 15, 2740–2745; https://doi.org/10.1021/acs.nanolett.5b00600.Search in Google Scholar PubMed
69. Zhang, L., Chen, J., Cheng, S., Xiang, H. Enhanced electrochemical performances of Li1.2Ni0.2Mn0.6O2 cathode materials by coating LiAlO2 for lithium-ion batteries. Ceram. Int. 2016, 42, 1870–1878; https://doi.org/10.1016/j.ceramint.2015.09.154.Search in Google Scholar
70. Sun, Y., Guan, P., Liu, Y., Xu, H., Chu, D. Recent progress in lithium lanthanum titanate electrolyte towards all solid-state lithium ion secondary battery. Crit. Rev. Solid State Mater. Sci. 2019, 44, 265–282; https://doi.org/10.1080/10408436.2018.1485551.Search in Google Scholar
71. Stramare, S., Thangadurai, V., Weppner, W. Lithium lanthanum titanates: a review. Chem. Mater. 2003, 15, 3974–3990; https://doi.org/10.1002/chin.200352244.Search in Google Scholar
72. Yang, T., Zheng, J., Cheng, Q., Hu, Y. Y., Chan, C. K. Composite polymer electrolytes with Li7La3Zr2O12 garnet-type nanowires as ceramic fillers: mechanism of conductivity enhancement and role of doping and morphology. ACS Appl. Mater. Interfaces 2017, 9, 21773–21780; https://doi.org/10.1021/acsami.7b03806.Search in Google Scholar PubMed
73. Jeon, J.-D., Kim, M.-J., Kwak, S.-Y. Effects of addition of TiO2 nanoparticles on mechanical properties and ionic conductivity of solvent-free polymer electrolytes based on porous P (VdF-HFP)/P (EO-EC) membranes. J. Power Sources 2006, 162, 1304–1311; https://doi.org/10.1016/j.jpowsour.2006.08.022.Search in Google Scholar
74. Loureiro, F. J., Rajesh, S., Figueiredo, F. M. L., Marques, F. M. B. Stability of metal oxides against Li/Na carbonates in composite electrolytes. RSC Adv. 2014, 4, 59943–59952; https://doi.org/10.1039/c4ra11446a.Search in Google Scholar
75. Li, S., Luo, Z., Hu, J., Zou, G., Hou, H., Ji, X. Recent progress on electrolyte additives for stable lithium metal anode. Energy Storage Mater. 2020, 32, 306–319; https://doi.org/10.1016/j.ensm.2020.07.008.Search in Google Scholar
76. Wang, C., Bai, G., Yang, Y., Liu, X., Shao, H. Dendrite-free all-solid-state lithium batteries with lithium phosphorous oxynitride-modified lithium metal anode and composite solid electrolytes. Nano Res. 2019, 12, 217–223; https://doi.org/10.1007/s12274-018-2205-7.Search in Google Scholar
77. Chen, H., Adekoya, D., Hencz, L., Ma, J., Chen, S., Yan, C., Zhao, H., Cui, G., Zhang, S. Stable seamless interfaces and rapid ionic conductivity of Ca–CeO2/LiTFSI/PEO composite electrolyte for high‐rate and high‐voltage all‐solid‐state battery. Adv. Energy Mater. 2020, 10, 2000049; https://doi.org/10.1002/aenm.202000049.Search in Google Scholar
78. Sun, J., Yao, X., Song, A., Li, Y., Zhang, Q., Hou, C., Shi, Q., Wang, H. Hierarchical composite‐solid‐electrolyte with high electrochemical stability and interfacial regulation for boosting ultra‐stable lithium batteries. Adv. Funct. Mater. 2021, 31, 2006381; https://doi.org/10.1002/adfm.202006381.Search in Google Scholar
79. Wu, S.-L., Liu, F., Yang, H. C., Darling, S. B. Recent progress in molecular engineering to tailor organic–inorganic interfaces in composite membranes. Mol. Syst. Des. Eng. 2020, 5, 433–444; https://doi.org/10.1039/c9me00154a.Search in Google Scholar
80. Wang, Y.-J., Zhao, N., Fang, B., Li, H., Bi, X. T., Wang, H. Carbon-supported Pt-based alloy electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells: particle size, shape, and composition manipulation and their impact to activity. Chem. Rev. 2015, 115, 3433–3467; https://doi.org/10.1021/cr500519c.Search in Google Scholar PubMed
81. Shin, H., Park, J., Han, S., Sastry, A. M., Lu, W. Component-/structure-dependent elasticity of solid electrolyte interphase layer in Li-ion batteries: experimental and computational studies. J. Power Sources 2015, 277, 169–179; https://doi.org/10.1016/j.jpowsour.2014.11.120.Search in Google Scholar
82. Tang, W., Tang, S., Zhang, C., Ma, Q., Xiang, Q., Yang, Y., Luo, J. Simultaneously enhancing the thermal stability, mechanical modulus, and electrochemical performance of solid polymer electrolytes by incorporating 2D sheets. Adv. Energy Mater. 2018, 8, 1800866; https://doi.org/10.1002/aenm.201800866.Search in Google Scholar
83. Zhang, L.-Z. Chapter 12 – Novel materials for heat and mass exchangers. In Conjugate Heat and Mass Transfer in Heat Mass Exchanger Ducts; Zhang, L.-Z., Ed. Academic Press: Boston, 2013; pp. 335–369.10.1016/B978-0-12-407782-9.00012-5Search in Google Scholar
84. Li, Q., Jensen, J. O., Savinell, R. F., Bjerrum, N. J. High temperature proton exchange membranes based on polybenzimidazoles for fuel cells. Prog. Polym. Sci. 2009, 34, 449–477; https://doi.org/10.1016/j.progpolymsci.2008.12.003.Search in Google Scholar
85. Park, C., Ounaies, Z., Watson, K. A., Crooks, R. E., Smith, J., Lowther, S. E., Connell, J. W., Siochi, E. J., Harrison, J. S., Clair, T. L. Dispersion of single wall carbon nanotubes by in situ polymerization under sonication. Chem. Phys. Lett. 2002, 364, 303–308; https://doi.org/10.1016/s0009-2614(02)01326-x.Search in Google Scholar
86. Vijayakumar, V., Anothumakkool, B., Kurungot, S., Winter, M., Nair, J. R. In situ polymerization process: an essential design tool for lithium polymer batteries. Energy Environ. Sci. 2021, 14, 2708–2788; https://doi.org/10.1039/d0ee03527k.Search in Google Scholar
87. Nair, J. R., Cíntora-Juárez, D., Pérez-Vicente, C., Tirado, J. L., Ahmad, S., Gerbaldi, C. Truly quasi-solid-state lithium cells utilizing carbonate free polymer electrolytes on engineered LiFePO4. Electrochim. Acta 2016, 199, 172–179; https://doi.org/10.1016/j.electacta.2016.03.156.Search in Google Scholar
88. Porcarelli, L., Shaplov, A. S., Bella, F., Nair, J. R., Mecerreyes, D., Gerbaldi, C. Single-ion conducting polymer electrolytes for lithium metal polymer batteries that operate at ambient temperature. ACS Energy Lett. 2016, 1, 678–682; https://doi.org/10.1021/acsenergylett.6b00216.Search in Google Scholar
89. Liu, C., Tian, Q., Liao, L. Sol–gel precursor inks and films. In Solution Processed Metal Oxide Thin Films for Electronic Applications; Cui, Z., Korotcenkov, G., Eds. Elsevier, 2020; pp. 41–61.10.1016/B978-0-12-814930-0.00004-9Search in Google Scholar
90. McCann, J. T., Marquez, M., Xia, Y. Melt coaxial electrospinning: a versatile method for the encapsulation of solid materials and fabrication of phase change nanofibers. Nano Lett. 2006, 6, 2868–2872; https://doi.org/10.1021/nl0620839.Search in Google Scholar PubMed
91. Rane, A. V., Kanny, K., Abitha, V. K., Thomas, S. Methods for synthesis of nanoparticles and fabrication of nanocomposites (chapter 5). In Synthesis of Inorganic Nanomaterials; Woodhead Publishing: Sawston, 2018; pp. 121–139.10.1016/B978-0-08-101975-7.00005-1Search in Google Scholar
92. Rycenga, M., Camargo, P. H., Xia, Y. Template-assisted self-assembly: a versatile approach to complex micro-and nanostructures. Soft Matter 2009, 5, 1129–1136; https://doi.org/10.1039/b811021b.Search in Google Scholar
93. Prapainainar, P., Maliwan, S., Sarakham, K., Du, Z., Prapainainar, C., Holmes, S. M., Kongkachuichay, P. Homogeneous polymer/filler composite membrane by spraying method for enhanced direct methanol fuel cell performance. Int. J. Hydrogen Energy 2018, 43, 14675–14690; https://doi.org/10.1016/j.ijhydene.2018.05.173.Search in Google Scholar
94. Song, Y., Shen, Y., Liu, H., Lin, Y., Nan, C. W. Improving the dielectric constants and breakdown strength of polymer composites: effects of the shape of the BaTiO3 nanoinclusions, surface modification and polymer matrix. J. Mater. Chem. 2012, 22, 16491–16498; https://doi.org/10.1039/c2jm32579a.Search in Google Scholar
95. Li, Y., Pan, D., Chen, S., Wang, Q., Pan, G., Wang, T. In situ polymerization and mechanical, thermal properties of polyurethane/graphene oxide/epoxy nanocomposites. Mater. Des.2013, 47, 850–856; https://doi.org/10.1016/j.matdes.2012.12.077.Search in Google Scholar
96. Rogina, A. Electrospinning process: versatile preparation method for biodegradable and natural polymers and biocomposite systems applied in tissue engineering and drug delivery. Appl. Surf. Sci. 2014, 296, 221–230; https://doi.org/10.1016/j.apsusc.2014.01.098.Search in Google Scholar
97. Aurobind, S., Amirthalingam, K., Gomathi, H. Sol-gel based surface modification of electrodes for electro analysis. Adv. Colloid Interface Sci. 2006, 121, 1–7; https://doi.org/10.1016/j.cis.2006.04.001.Search in Google Scholar PubMed
98. Baino, F., Fiume, E., Miola, M., Verné, E. Bioactive sol‐gel glasses: processing, properties, and applications. Int. J. Appl. Ceram. Technol. 2018, 15, 841–860; https://doi.org/10.1111/ijac.12873.Search in Google Scholar
99. Rezakazemi, M., Sadrzadeh, M., Mohammadi, T., Matsuura, T. Methods for the preparation of organic–inorganic nanocomposite polymer electrolyte membranes for fuel cells. In Organic-Inorganic Composite Polymer electrolyte Membranes: Preparation, Properties, and Fuel Cell Applications; Springer: Cham, 2017; pp. 311–325.10.1007/978-3-319-52739-0_11Search in Google Scholar
100. Liu, Y., Huang, Y., Liu, L. Thermal stability of POSS/methylsilicone nanocomposites. Compos. Sci. Technol. 2007, 67, 2864–2876; https://doi.org/10.1016/j.compscitech.2007.01.023.Search in Google Scholar
101. Swain, N., Saravanakumar, B., Kundu, M., Schmidt-Mende, L., Ramadoss, A. Recent trends in template assisted 3D porous materials for electrochemical supercapacitors. J. Mater. Chem. A 2021, 9, 25286–25324; https://doi.org/10.1039/d1ta06122d.Search in Google Scholar
102. Yang, J., Zhang, X.-M., Xu, F. Design of cellulose nanocrystals template-assisted composite hydrogels: insights from static to dynamic alignment. Macromolecules 2015, 48, 1231–1239; https://doi.org/10.1021/ma5026175.Search in Google Scholar
103. Shin, J.-H., Henderson, W. A., Passerini, S. Ionic liquids to the rescue? Overcoming the ionic conductivity limitations of polymer electrolytes. Electrochem. Commun. 2003, 5, 1016–1020; https://doi.org/10.1016/j.elecom.2003.09.017.Search in Google Scholar
104. Eh, A. L. S., Tan, A. W. M., Cheng, X., Magdassi, S., Lee, P. S. Recent advances in flexible electrochromic devices: prerequisites, challenges, and prospects. Energy Technol. 2018, 6, 33–45; https://doi.org/10.1002/ente.201700705.Search in Google Scholar
105. Liu, Q., Jiang, L., Zheng, P., Sun, J., Liu, C., Chai, J., Li, X., Zheng, Y., Liu, Z. Recent advances in stability issues of inorganic solid electrolytes and composite solid electrolytes for all‐solid‐state batteries. Chem. Record 2022, 22, e202200116; https://doi.org/10.1002/tcr.202200116.Search in Google Scholar PubMed
106. Liu, S., Liu, W., Ba, D., Zhao, Y., Ye, Y., Li, Y., Liu, J. Filler‐integrated composite polymer electrolyte for solid‐state lithium batteries. Adv. Mater. 2023, 35, 2110423; https://doi.org/10.1002/adma.202110423.Search in Google Scholar PubMed
107. Martinez, J. G., Otero, T. F., Jager, E. W. Effect of the electrolyte concentration and substrate on conducting polymer actuators. Langmuir 2014, 30, 3894–3904; https://doi.org/10.1021/la404353z.Search in Google Scholar PubMed
108. Liao, J., Hu, Q., Yu, Y., Wang, H., Tang, Z., Wen, Z., Chen, C. A potassium-rich iron hexacyanoferrate/dipotassium terephthalate@ carbon nanotube composite used for K-ion full-cells with an optimized electrolyte. J. Mater. Chem. A 2017, 5, 19017–19024; https://doi.org/10.1039/c7ta05460b.Search in Google Scholar
109. Feng, J., Wang, L., Chen, Y., Wang, P., Zhang, H., He, X. PEO based polymer-ceramic hybrid solid electrolytes: a review. Nano Convergence 2021, 8, 1–12; https://doi.org/10.1186/s40580-020-00252-5.Search in Google Scholar PubMed PubMed Central
110. Lim, C. S. Studies on the Effect of Nanosized Ceramic Filler in Poly(vinyl alcohol)-Lithium Perchlorate Based Polymer Electrolytes/Lim Chin Shen; University of Malaya: Kuala Lumpur, 2012.Search in Google Scholar
111. Zhang, M., Pan, P., Cheng, Z., Mao, J., Jiang, L., Park, S., Deng, K., Hu, Y., Fu, K. K. Flexible, mechanically robust, solid-state electrolyte membrane with conducting oxide-enhanced 3D nanofiber networks for lithium batteries. Nano Lett. 2021, 21, 7070–7078; https://doi.org/10.1021/acs.nanolett.1c01704.Search in Google Scholar PubMed
112. Zhang, L., Zhuang, Q., Zheng, R., Wang, Z., Sun, H., Arandiyan, H., Wang, Y., Liu, Y., Shao, Z. Recent advances of Li7La3Zr2O12-based solid-state lithium batteries towards high energy density. Energy Storage Mater. 2022, 49, 299–338; https://doi.org/10.1016/j.ensm.2022.04.026.Search in Google Scholar
113. Zhao, S., Wu, Q., Ma, W., Yang, L. Polyethylene oxide-based composites as solid-state polymer electrolytes for lithium metal batteries: a mini review. Front. Chem. 2020, 8, 640; https://doi.org/10.3389/fchem.2020.00640.Search in Google Scholar PubMed PubMed Central
114. Xia, Y., Wang, X., Xia, X., Xu, R., Zhang, S., Wu, J., Liang, Y., Gu, C., Tu, J. A newly designed composite gel polymer electrolyte based on poly(vinylidene fluoride‐hexafluoropropylene) (PVDF‐HFP) for enhanced solid‐state lithium‐sulfur batteries. Chem. Eur. J. 2017, 23, 15203–15209; https://doi.org/10.1002/chem.201703464.Search in Google Scholar PubMed
115. Stephan, A. M. Review on gel polymer electrolytes for lithium batteries. Eur. Polym. J. 2006, 42, 21–42; https://doi.org/10.1016/j.eurpolymj.2005.09.017.Search in Google Scholar
116. Sourani, F., Raeissi, K., Enayati, M., Kharaziha, M., Hakimizad, A., Blugan, G., Salimijazi, H. Corrosion and tribocorrosion behavior of ZrO2-Al2O3 composite coatings developed by plasma electrolytic oxidation for load-bearing implants. J. Alloys Comp. 2022, 920, 165856; https://doi.org/10.1016/j.jallcom.2022.165856.Search in Google Scholar
117. Tan, D. H., Meng, Y. S., Jang, J. Scaling up high-energy-density sulfidic solid-state batteries: a lab-to-pilot perspective. Joule 2022, 6, 1755–1769; https://doi.org/10.1016/j.joule.2022.07.002.Search in Google Scholar
118. Zhu, B. Next generation fuel cell R&D. Int. J. Energy Res. 2006, 30, 895–903; https://doi.org/10.1002/er.1195.Search in Google Scholar
119. Gul, Z., Muhammad, S., Khan, S., Shahzad, A., Ullah, H., Arshad, M., Muhammad, Z., Batool, S., Ahmad, M., Ali, A. A. Single Organic Ligands Act as a Bifunctional Sensor for Subsequent Detection of Metal and Cyanide Ions, a Statistical Approach toward Coordination and Sensitivity. Critical Reviews in Analytical Chemistry 2023, 53, 1–32.https://doi.org/10.1080/10408347.2023.2186165.Search in Google Scholar PubMed
120. Ye, T., Li, L., Zhang, Y. Recent progress in solid electrolytes for energy storage devices. Adv. Funct. Mater. 2020, 30, 2000077; https://doi.org/10.1002/adfm.202000077.Search in Google Scholar
121. Gong, M., Zhang, L., Wan, P. Polymer nanocomposite meshes for flexible electronic devices. Prog. Polym. Sci. 2020, 107, 101279; https://doi.org/10.1016/j.progpolymsci.2020.101279.Search in Google Scholar
122. Wu, Y., Ma, Y., Zheng, H., Ramakrishna, S. Piezoelectric materials for flexible and wearable electronics: a review. Mater. Des. 2021, 211, 110164; https://doi.org/10.1016/j.matdes.2021.110164.Search in Google Scholar
123. Ye, M., Wen, X., Wang, M., Iocozzia, J., Zhang, N., Lin, C., Lin, Z. Recent advances in dye-sensitized solar cells: from photoanodes, sensitizers and electrolytes to counter electrodes. Mater. Today 2015, 18, 155–162; https://doi.org/10.1016/j.mattod.2014.09.001.Search in Google Scholar
124. Yun, S., Qin, Y., Uhl, A. R., Vlachopoulos, N., Yin, M., Li, D., Han, X., Hagfeldt, A. New-generation integrated devices based on dye-sensitized and perovskite solar cells. Energy Environ. Sci. 2018, 11, 476–526; https://doi.org/10.1039/c7ee03165c.Search in Google Scholar
125. Barbosa, P., Rodrigues, L., Silva, M., Smith, M. Characterization of pTMCnLiPF6 solid polymer electrolytes. Solid State Ionics 2011, 193, 39–42; https://doi.org/10.1016/j.ssi.2011.03.005.Search in Google Scholar
126. Aravindan, V., Gnanaraj, J., Madhavi, S., Liu, H. Lithium‐ion conducting electrolyte salts for lithium batteries. Chem. Eur. J. 2011, 17, 14326–14346; https://doi.org/10.1002/chem.201101486.Search in Google Scholar PubMed
127. Perumal, P., Christopher Selvin, P., Selvasekarapandian, S., Sivaraj, P. Structural and electrical properties of bio-polymer pectin with LiClO4 solid electrolytes for lithium ion polymer batteries. Mater. Today Proc. 2019, 8, 196–202; https://doi.org/10.1016/j.matpr.2019.02.100.Search in Google Scholar
128. Chong, W., Osman, Z. The effect of carbonate-phthalate plasticizers on structural, morphological and electrical properties of polyacrylonitrile-based solid polymer electrolytes. J. Polym. Res. 2014, 21, 1–9; https://doi.org/10.1007/s10965-014-0381-z.Search in Google Scholar
129. Zhang, Z., Antonio, R. G., Choy, K. L. Boron nitride enhanced polymer/salt hybrid electrolytes for all-solid-state lithium ion batteries. J. Power Sources 2019, 435, 226736; https://doi.org/10.1016/j.jpowsour.2019.226736.Search in Google Scholar
130. Itoh, T., Nakamura, K., Uno, T., Kubo, M. Thermal and electrochemical properties of poly(2,2-dimethoxypropylene carbonate)-based solid polymer electrolyte for polymer battery. Solid State Ionics 2018, 317, 69–75; https://doi.org/10.1016/j.ssi.2017.12.030.Search in Google Scholar
131. Appetecchi, G., Zane, D., Scrosati, B. PEO-based electrolyte membranes based on LiBC4O8 salt. J. Electrochem. Soc. 2004, 151, A1369; https://doi.org/10.1149/1.1774488.Search in Google Scholar
132. Tao, S.-D., Li, J., Hu, R., Wang, L., Chi, Z. 3Li2S-2MoS2 filled composite polymer PVDF-HFP/LiODFB electrolyte with excellent interface performance for lithium metal batteries. Appl. Surf. Sci. 2021, 536, 147794; https://doi.org/10.1016/j.apsusc.2020.147794.Search in Google Scholar
133. Karabelli, D., Birke, K. P., Weeber, M. A performance and cost overview of selected solid-state electrolytes: race between polymer electrolytes and inorganic sulfide electrolytes. Batteries 2021, 7, 18; https://doi.org/10.3390/batteries7010018.Search in Google Scholar
134. He, S., Jiang, S. P. Electrode/electrolyte interface and interface reactions of solid oxide cells: recent development and advances. Prog. Nat. Sci. Mater. Int. 2021, 31, 341–372; https://doi.org/10.1016/j.pnsc.2021.03.002.Search in Google Scholar
135. Zhu, Z., Zhou, M., Tan, K., Fan, Z., Cao, D., Liu, Z., Chen, M., Chen, Y., Chen, M., Liu, J. High performance and stability enabled by tuning the component thermal expansion coefficients of a proton-conducting solid oxide cell operating at high steam concentration. ACS Appl. Mater. Interfaces 2023, 15, 14457–14469; https://doi.org/10.1021/acsami.3c00728.Search in Google Scholar
136. Wang, Y., Zhong, W. H. Development of electrolytes towards achieving safe and high‐performance energy‐storage devices: a review. ChemElectroChem 2015, 2, 22–36; https://doi.org/10.1002/celc.201402277.Search in Google Scholar
137. Sung, B.-J., Didwal, P. N., Verma, R., Nguyen, A. G., Chang, D. R., Park, C. J. Composite solid electrolyte comprising poly(propylene carbonate) and Li1.5Al0.5Ge1.5(PO4)3 for long-life all-solid-state Li-ion batteries. Electrochim. Acta 2021, 392, 139007; https://doi.org/10.1016/j.electacta.2021.139007.Search in Google Scholar
138. Li, S., Zhang, S., Shen, L., Liu, Q., Ma, J., Lv, W., He, Y., Yang, Q. Progress and perspective of ceramic/polymer composite solid electrolytes for lithium batteries. Adv. Sci. 2020, 7, 1903088; https://doi.org/10.1002/advs.201903088.Search in Google Scholar PubMed PubMed Central
139. Li, L., Liu, W., Dong, H., Gui, Q., Hu, Z., Li, Y., Liu, J. Surface and interface engineering of nanoarrays toward advanced electrodes and electrochemical energy storage devices. Adv. Mater. 2021, 33, 2004959; https://doi.org/10.1002/adma.202004959.Search in Google Scholar PubMed
140. Narayan, R., Laberty‐Robert, C., Pelta, J., Tarascon, J., Dominko, R. Self‐healing: an emerging technology for next‐generation smart batteries. Adv. Energy Mater. 2022, 12, 2102652; https://doi.org/10.1002/aenm.202102652.Search in Google Scholar
141. Lei, X., Zheng, Y., Zhang, F., Wang, Y., Tang, Y. Highly stable magnesium-ion-based dual-ion batteries based on insoluble small-molecule organic anode material. Energy Storage Mater. 2020, 30, 34–41; https://doi.org/10.1016/j.ensm.2020.04.025.Search in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Inorganic hydrogels: synthetic strategies, properties and applications
- A review on biogenic synthesized zinc oxide nanoparticles: synthesis, characterization, and its applications
- Photochemical synthesis in inorganic chemistry
- Variable heterotridentate ligands in Pt(ƞ3-X1C1X2)(PL) (X1,2 = N or S), Pt(ƞ3-X1N1Y1)(PL) (X, Y = O, C; C, S; or O, S) and Pt(ƞ3-S1B1S2)(PL), derivatives – structural aspects
- Inorganic-polymer composite electrolytes: basics, fabrications, challenges and future perspectives
- Applications of samarium complexes as cytotoxic, bioimaging and DNA interacting agents: a comprehensive review
- Graphene-based nanocomposites for gas sensors: challenges and opportunities
- The environmental impact of using gold nanoparticles and 3HFWC in cosmetics, as determined with LCA methodology
Articles in the same Issue
- Frontmatter
- Inorganic hydrogels: synthetic strategies, properties and applications
- A review on biogenic synthesized zinc oxide nanoparticles: synthesis, characterization, and its applications
- Photochemical synthesis in inorganic chemistry
- Variable heterotridentate ligands in Pt(ƞ3-X1C1X2)(PL) (X1,2 = N or S), Pt(ƞ3-X1N1Y1)(PL) (X, Y = O, C; C, S; or O, S) and Pt(ƞ3-S1B1S2)(PL), derivatives – structural aspects
- Inorganic-polymer composite electrolytes: basics, fabrications, challenges and future perspectives
- Applications of samarium complexes as cytotoxic, bioimaging and DNA interacting agents: a comprehensive review
- Graphene-based nanocomposites for gas sensors: challenges and opportunities
- The environmental impact of using gold nanoparticles and 3HFWC in cosmetics, as determined with LCA methodology