Home Physical Sciences Variable heterotridentate ligands in Pt(ƞ3-X1C1X2)(PL) (X1,2 = N or S), Pt(ƞ3-X1N1Y1)(PL) (X, Y = O, C; C, S; or O, S) and Pt(ƞ3-S1B1S2)(PL), derivatives – structural aspects
Article
Licensed
Unlicensed Requires Authentication

Variable heterotridentate ligands in Pt(ƞ3-X1C1X2)(PL) (X1,2 = N or S), Pt(ƞ3-X1N1Y1)(PL) (X, Y = O, C; C, S; or O, S) and Pt(ƞ3-S1B1S2)(PL), derivatives – structural aspects

  • Milan Melník EMAIL logo , Dominika Žigrayová , Veronika Mikušová and Peter Mikuš EMAIL logo
Published/Copyright: January 19, 2024

Abstract

This review covers 17 Pt(II) complexes of the compositions: Pt(ƞ3-N1C1N2)(PL), Pt(ƞ3-S1C1S2)(PL), Pt(ƞ3-S1B1S2)(PL), Pt(ƞ3-S1S2O1)(PL), Pt(ƞ3-O1N1C1)(PL), Pt(ƞ3-O1N1S1)(PL) and Pt(ƞ3-C1N1S1)(PL). These complexes crystallized in three crystal classes: monoclinic (8 examples), triclinic (8 examples) and orthorhombic (1 example). The heterotridentate ligands creates 5 + 5-membered metallocyclic rings (most common) and 5 + 6-membered. The heterotridentate ligands with monodentate P ligands build up a distorted square-planar geometry about Pt(II) atoms. The Pt–L and L–Pt–L were analyzed. The τ4 parameter which indicate a degree of distortion growing in the sentence: 0.057 Pt(ƞ3-O1N1S1)(PL) < 0.066 Pt(ƞ3-S1C1S2)(PL) < 0.149 Pt(ƞ3-S1S2O1)(PL) < 0.158 Pt(ƞ3-O1N1C1)(PL) < 0.160 Pt(ƞ3-C1N1S1)(PL) < 0.162 Pt(ƞ3-S1B1S2)(PL) < 0.165 Pt(ƞ3-N1C1N2)(PL).


Corresponding authors: Milan Melník, Faculty of Pharmacy, Department of Pharmaceutical Analysis and Nuclear Pharmacy, Comenius University in Bratislava, Odbojárov 10, Bratislava, SK-832 32 Slovak Republic, E-mail: ; and Peter Mikuš, Faculty of Pharmacy, Department of Pharmaceutical Analysis and Nuclear Pharmacy, Comenius University in Bratislava, Odbojárov 10, Bratislava, SK-832 32 Slovak Republic; and Faculty of Pharmacy, Toxicological and Antidoping Centre, Comenius University in Bratislava, Odbojárov 10, Bratislava, SK-832 32 Slovak Republic, E-mail:

Funding source: The Faculty of Pharmacy, Comenius University Bratislava

Award Identifier / Grant number: VEGA 1/0514/22

  1. Research ethics: Not applicable.

  2. Author contributions: Conceptualization: M.M. and P.M.; methodology: M.M. and P.M.; writing – original draft preparation: M.M., P.M., V.M. and D.Ž.; data curation: M.M.; writing – review and editing: M.M., P.M., V.M. and D.Ž.; supervision: M.M. and P.M.; funding acquisition: P.M. The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: This work was supported by the Faculty of Pharmacy, Comenius University Bratislava. This work was supported by the project VEGA 1/0514/22.

  5. Data availability: Not applicable.

References

1. Holloway, C. E., Melník, M. Structural Aspects of Platinum Coordination Compounds: Part I. Monomeric Pt(0), Pt(I) and Pt(II)A4 Derivatives. Rev. Inorg. Chem. 2002, 22, 163–284; https://doi.org/10.1515/REVIC.2002.22.3-4.163.Search in Google Scholar

2. Melník, M., Mikušová, V., Mikuš, P. Organomonophosphines in Pt(η3-X1X2X3)(PL), (X = N1, N2, N3; S1, S2, S3; or Te1, Te2, Te3) Derivatives: Structural Aspects. Inorganics 2023, 11, 242; https://doi.org/10.3390/inorganics11060242.Search in Google Scholar

3. Melník, M., Mikušová, V., Mikuš, P. Structural Aspects of Pt(η3-X1N1X2)(PL) (X1,2 = O, C or Se), and Pt(η3-N1N2X1)(PL), (X1 = C, S or Se) Derivatives. Open Chem. Under review.Search in Google Scholar

4. Wieczorek, B., Snelders, D. J. M., Dijkstra, H. P., Versluis, K., Lutz, M., Spek, A. L., Egmond, M. R., Gebbink, R. J. M. K., van Koten, G. Coordination Chemistry in Water of a Free and a Lipase-Embedded Cationic NCN-Pincer Platinum Center With Neutral and Ionic Triarylphosphines. Organometallics 2012, 31, 2810–2820; https://doi.org/10.1021/om2010832.Search in Google Scholar

5. Monot, J., Merceron-Saffon, N., Martin-Vaca, B., Bourissou, D. S93CS Indenediide Pincer Complexes: Zr to Pd and Pt Transmetallation. J. Organomet. Chem. 2017, 829, 37–41; https://doi.org/10.1016/j.jorganchem.2016.10.031.Search in Google Scholar

6. Zech, A., Haddow, M. F., Othman, H., Owen, G. R. Utilizing the 8-Methoxycyclooct-4-en-1-ide Unit as a Hydrogen Atom Acceptor en Route to “Metal–Borane Pincers”. Organometallics 2012, 31, 6753–6760; https://doi.org/10.1021/om300482m.Search in Google Scholar

7. Owen, G. R., Gould, P. H., Hamilton, A., Tsoureas, N. Unexpected Pincer-Type Coordination (κ3-SBS) Within a Zerovalent Platinum Metallaboratrane Complex. Dalton Trans. 2010, 39, 49–52, https://doi.org/10.1039/B917733G.Search in Google Scholar PubMed

8. Kano, N., Kusaka, S., Kawashima, T. Insertion of Platinum and Palladium into a Sulfur(IV)–Sulfur(II) Bond of a Sulfur-Substituted Sulfurane. Dalton Trans. 2010, 39, 456–460; https://doi.org/10.1039/B911566H.Search in Google Scholar

9. Biswas, A. N., Das, P. K., Bagchi, V., Choudhury, A., Bandyopadhyay, P. Regiospecific C(naphthyl)-H Bond Activation by Platinum(II)-Isolation, Characterization, Reactivity and TD-DFT Study of the Cycloplatinate Complexes. Eur. J. Inorg. Chem. 2011, 25, 3739–3748; https://doi.org/10.1002/ejic.201100468.Search in Google Scholar

10. Rao, A. R. B., Pal, S. Mono- and Dinuclear Platinum(II) Complexes via Single and Double Cycloplatinations of Nʹ-(arylidene)benzohydrazides. J. Organomet. Chem. 2015, 797, 96–100; https://doi.org/10.1016/j.jorganchem.2015.08.003.Search in Google Scholar

11. Lobana, T. S., Bawa, G., Hundal, G., Zeller, M. The Influence of Substituents at C2 Carbon Atom of Thiosemicarbazones {R(H)C2=N3-N2(H)-C1(=S)-N1H2} on Their Dentacy in PtII/PdII Complexes: Synthesis, Spectroscopy, and Crystal Structures. Z. Anorg. Allg. Chem. 2008, 634, 931–937; https://doi.org/10.1002/zaac.200700538.Search in Google Scholar

12. Halder, S., Butcher, R. J., Bhattacharya, S. Synthesis, Structure and Spectroscopic Properties of Some Thiosemicarbazone Complexes of Platinum. Polyhedron 2007, 26, 2741–2748; https://doi.org/10.1016/j.poly.2007.01.048.Search in Google Scholar

13. da Silva Maia, P. I., Fernandes, A. G. de A., Silva, J. J. N., Andricopulo, A. D., Lemos, S. S., Lang, E. S., Abram, U., Deflon, V. M. Dithiocarbazate Complexes With the [M(PPh3)]2+ (M=Pd or Pt) Moiety: Synthesis, Characterization and Anti-Tripanosoma Cruzi Activity. J. Inorg. Biochem. 2010, 104, 1276–1282; https://doi.org/10.1016/j.jinorgbio.2010.08.009.Search in Google Scholar PubMed

14. Halder, S., Paul, P., Peng, S.-M., Lee, G.-H., Mukherjee, A., Dutta, S., Sanyal, U., Bhattacharya, S. Benzaldehyde Thiosemicarbazone Complexes of Platinum: Syntheses, Structures and Cytotoxic Properties. Polyhedron 2012, 45, 177–184; https://doi.org/10.1016/j.poly.2012.07.037.Search in Google Scholar

15. Vázquez-Garcı́a, D., Fernández, A., Fernández, J. J., López-Torres, M., Suárez, A., Ortigueira, J. M., Vila, J. M., Adams, H. New Cyclometallated Platinum(II) Compounds With Thiosemicarbazones: Crystal and Molecular Structure of [Pt{4-MeC6H3C(Me)NNC(S)NH2}(PPh3)]. J. Organomet. Chem. 2000, 595, 199–207; https://doi.org/10.1016/S0022-328X(99)00624-5.Search in Google Scholar

16. Chellan, P., Land, K. M., Shokar, A., Au, A., An, S. H., Clavel, C. M., Dyson, P. J., de Kock, C., Smith, P. J., Chibale, K., Smith, G. S. Exploring the Versatility of Cycloplatinated Thiosemicarbazones as Antitumor and Antiparasitic Agents. Organometallics 2012, 31, 5791–5799; https://doi.org/10.1021/om300334z.Search in Google Scholar

17. Yang, L., Powell, D. R., Houser, R. P. Structural Variation in Copper(I) Complexes With Pyridylmethylamide Ligands: Structural Analysis With a New Four-Coordinate Geometry Index, τ4. Dalton Trans. 2007, 9, 955–964; https://doi.org/10.1039/B617136B.Search in Google Scholar PubMed

Received: 2023-10-30
Accepted: 2024-01-03
Published Online: 2024-01-19
Published in Print: 2024-09-25

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 29.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/revic-2023-0029/html
Scroll to top button