Variable heterotridentate ligands in Pt(ƞ3-X1C1X2)(PL) (X1,2 = N or S), Pt(ƞ3-X1N1Y1)(PL) (X, Y = O, C; C, S; or O, S) and Pt(ƞ3-S1B1S2)(PL), derivatives – structural aspects
Abstract
This review covers 17 Pt(II) complexes of the compositions: Pt(ƞ3-N1C1N2)(PL), Pt(ƞ3-S1C1S2)(PL), Pt(ƞ3-S1B1S2)(PL), Pt(ƞ3-S1S2O1)(PL), Pt(ƞ3-O1N1C1)(PL), Pt(ƞ3-O1N1S1)(PL) and Pt(ƞ3-C1N1S1)(PL). These complexes crystallized in three crystal classes: monoclinic (8 examples), triclinic (8 examples) and orthorhombic (1 example). The heterotridentate ligands creates 5 + 5-membered metallocyclic rings (most common) and 5 + 6-membered. The heterotridentate ligands with monodentate P ligands build up a distorted square-planar geometry about Pt(II) atoms. The Pt–L and L–Pt–L were analyzed. The τ4 parameter which indicate a degree of distortion growing in the sentence: 0.057 Pt(ƞ3-O1N1S1)(PL) < 0.066 Pt(ƞ3-S1C1S2)(PL) < 0.149 Pt(ƞ3-S1S2O1)(PL) < 0.158 Pt(ƞ3-O1N1C1)(PL) < 0.160 Pt(ƞ3-C1N1S1)(PL) < 0.162 Pt(ƞ3-S1B1S2)(PL) < 0.165 Pt(ƞ3-N1C1N2)(PL).
Funding source: The Faculty of Pharmacy, Comenius University Bratislava
Award Identifier / Grant number: VEGA 1/0514/22
-
Research ethics: Not applicable.
-
Author contributions: Conceptualization: M.M. and P.M.; methodology: M.M. and P.M.; writing – original draft preparation: M.M., P.M., V.M. and D.Ž.; data curation: M.M.; writing – review and editing: M.M., P.M., V.M. and D.Ž.; supervision: M.M. and P.M.; funding acquisition: P.M. The authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: The authors state no conflict of interest.
-
Research funding: This work was supported by the Faculty of Pharmacy, Comenius University Bratislava. This work was supported by the project VEGA 1/0514/22.
-
Data availability: Not applicable.
References
1. Holloway, C. E., Melník, M. Structural Aspects of Platinum Coordination Compounds: Part I. Monomeric Pt(0), Pt(I) and Pt(II)A4 Derivatives. Rev. Inorg. Chem. 2002, 22, 163–284; https://doi.org/10.1515/REVIC.2002.22.3-4.163.Search in Google Scholar
2. Melník, M., Mikušová, V., Mikuš, P. Organomonophosphines in Pt(η3-X1X2X3)(PL), (X = N1, N2, N3; S1, S2, S3; or Te1, Te2, Te3) Derivatives: Structural Aspects. Inorganics 2023, 11, 242; https://doi.org/10.3390/inorganics11060242.Search in Google Scholar
3. Melník, M., Mikušová, V., Mikuš, P. Structural Aspects of Pt(η3-X1N1X2)(PL) (X1,2 = O, C or Se), and Pt(η3-N1N2X1)(PL), (X1 = C, S or Se) Derivatives. Open Chem. Under review.Search in Google Scholar
4. Wieczorek, B., Snelders, D. J. M., Dijkstra, H. P., Versluis, K., Lutz, M., Spek, A. L., Egmond, M. R., Gebbink, R. J. M. K., van Koten, G. Coordination Chemistry in Water of a Free and a Lipase-Embedded Cationic NCN-Pincer Platinum Center With Neutral and Ionic Triarylphosphines. Organometallics 2012, 31, 2810–2820; https://doi.org/10.1021/om2010832.Search in Google Scholar
5. Monot, J., Merceron-Saffon, N., Martin-Vaca, B., Bourissou, D. S93CS Indenediide Pincer Complexes: Zr to Pd and Pt Transmetallation. J. Organomet. Chem. 2017, 829, 37–41; https://doi.org/10.1016/j.jorganchem.2016.10.031.Search in Google Scholar
6. Zech, A., Haddow, M. F., Othman, H., Owen, G. R. Utilizing the 8-Methoxycyclooct-4-en-1-ide Unit as a Hydrogen Atom Acceptor en Route to “Metal–Borane Pincers”. Organometallics 2012, 31, 6753–6760; https://doi.org/10.1021/om300482m.Search in Google Scholar
7. Owen, G. R., Gould, P. H., Hamilton, A., Tsoureas, N. Unexpected Pincer-Type Coordination (κ3-SBS) Within a Zerovalent Platinum Metallaboratrane Complex. Dalton Trans. 2010, 39, 49–52, https://doi.org/10.1039/B917733G.Search in Google Scholar PubMed
8. Kano, N., Kusaka, S., Kawashima, T. Insertion of Platinum and Palladium into a Sulfur(IV)–Sulfur(II) Bond of a Sulfur-Substituted Sulfurane. Dalton Trans. 2010, 39, 456–460; https://doi.org/10.1039/B911566H.Search in Google Scholar
9. Biswas, A. N., Das, P. K., Bagchi, V., Choudhury, A., Bandyopadhyay, P. Regiospecific C(naphthyl)-H Bond Activation by Platinum(II)-Isolation, Characterization, Reactivity and TD-DFT Study of the Cycloplatinate Complexes. Eur. J. Inorg. Chem. 2011, 25, 3739–3748; https://doi.org/10.1002/ejic.201100468.Search in Google Scholar
10. Rao, A. R. B., Pal, S. Mono- and Dinuclear Platinum(II) Complexes via Single and Double Cycloplatinations of Nʹ-(arylidene)benzohydrazides. J. Organomet. Chem. 2015, 797, 96–100; https://doi.org/10.1016/j.jorganchem.2015.08.003.Search in Google Scholar
11. Lobana, T. S., Bawa, G., Hundal, G., Zeller, M. The Influence of Substituents at C2 Carbon Atom of Thiosemicarbazones {R(H)C2=N3-N2(H)-C1(=S)-N1H2} on Their Dentacy in PtII/PdII Complexes: Synthesis, Spectroscopy, and Crystal Structures. Z. Anorg. Allg. Chem. 2008, 634, 931–937; https://doi.org/10.1002/zaac.200700538.Search in Google Scholar
12. Halder, S., Butcher, R. J., Bhattacharya, S. Synthesis, Structure and Spectroscopic Properties of Some Thiosemicarbazone Complexes of Platinum. Polyhedron 2007, 26, 2741–2748; https://doi.org/10.1016/j.poly.2007.01.048.Search in Google Scholar
13. da Silva Maia, P. I., Fernandes, A. G. de A., Silva, J. J. N., Andricopulo, A. D., Lemos, S. S., Lang, E. S., Abram, U., Deflon, V. M. Dithiocarbazate Complexes With the [M(PPh3)]2+ (M=Pd or Pt) Moiety: Synthesis, Characterization and Anti-Tripanosoma Cruzi Activity. J. Inorg. Biochem. 2010, 104, 1276–1282; https://doi.org/10.1016/j.jinorgbio.2010.08.009.Search in Google Scholar PubMed
14. Halder, S., Paul, P., Peng, S.-M., Lee, G.-H., Mukherjee, A., Dutta, S., Sanyal, U., Bhattacharya, S. Benzaldehyde Thiosemicarbazone Complexes of Platinum: Syntheses, Structures and Cytotoxic Properties. Polyhedron 2012, 45, 177–184; https://doi.org/10.1016/j.poly.2012.07.037.Search in Google Scholar
15. Vázquez-Garcı́a, D., Fernández, A., Fernández, J. J., López-Torres, M., Suárez, A., Ortigueira, J. M., Vila, J. M., Adams, H. New Cyclometallated Platinum(II) Compounds With Thiosemicarbazones: Crystal and Molecular Structure of [Pt{4-MeC6H3C(Me)NNC(S)NH2}(PPh3)]. J. Organomet. Chem. 2000, 595, 199–207; https://doi.org/10.1016/S0022-328X(99)00624-5.Search in Google Scholar
16. Chellan, P., Land, K. M., Shokar, A., Au, A., An, S. H., Clavel, C. M., Dyson, P. J., de Kock, C., Smith, P. J., Chibale, K., Smith, G. S. Exploring the Versatility of Cycloplatinated Thiosemicarbazones as Antitumor and Antiparasitic Agents. Organometallics 2012, 31, 5791–5799; https://doi.org/10.1021/om300334z.Search in Google Scholar
17. Yang, L., Powell, D. R., Houser, R. P. Structural Variation in Copper(I) Complexes With Pyridylmethylamide Ligands: Structural Analysis With a New Four-Coordinate Geometry Index, τ4. Dalton Trans. 2007, 9, 955–964; https://doi.org/10.1039/B617136B.Search in Google Scholar PubMed
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Inorganic hydrogels: synthetic strategies, properties and applications
- A review on biogenic synthesized zinc oxide nanoparticles: synthesis, characterization, and its applications
- Photochemical synthesis in inorganic chemistry
- Variable heterotridentate ligands in Pt(ƞ3-X1C1X2)(PL) (X1,2 = N or S), Pt(ƞ3-X1N1Y1)(PL) (X, Y = O, C; C, S; or O, S) and Pt(ƞ3-S1B1S2)(PL), derivatives – structural aspects
- Inorganic-polymer composite electrolytes: basics, fabrications, challenges and future perspectives
- Applications of samarium complexes as cytotoxic, bioimaging and DNA interacting agents: a comprehensive review
- Graphene-based nanocomposites for gas sensors: challenges and opportunities
- The environmental impact of using gold nanoparticles and 3HFWC in cosmetics, as determined with LCA methodology
Articles in the same Issue
- Frontmatter
- Inorganic hydrogels: synthetic strategies, properties and applications
- A review on biogenic synthesized zinc oxide nanoparticles: synthesis, characterization, and its applications
- Photochemical synthesis in inorganic chemistry
- Variable heterotridentate ligands in Pt(ƞ3-X1C1X2)(PL) (X1,2 = N or S), Pt(ƞ3-X1N1Y1)(PL) (X, Y = O, C; C, S; or O, S) and Pt(ƞ3-S1B1S2)(PL), derivatives – structural aspects
- Inorganic-polymer composite electrolytes: basics, fabrications, challenges and future perspectives
- Applications of samarium complexes as cytotoxic, bioimaging and DNA interacting agents: a comprehensive review
- Graphene-based nanocomposites for gas sensors: challenges and opportunities
- The environmental impact of using gold nanoparticles and 3HFWC in cosmetics, as determined with LCA methodology