Home Physical Sciences Separation studies of 60Co (II) and 134Cs (I) radionuclides from aqueous solution using starch-grafted citric acid-acrylamide/magnesia hydrogel
Article
Licensed
Unlicensed Requires Authentication

Separation studies of 60Co (II) and 134Cs (I) radionuclides from aqueous solution using starch-grafted citric acid-acrylamide/magnesia hydrogel

  • Maha Ali Youssef EMAIL logo , Gehan Abdel Rahman Sadek Dakroury and Hisham Soliman Hassan
Published/Copyright: June 25, 2024

Abstract

In this study, three starch hydrogels composite prepared using different ratios of starch, citric acid, acrylamide, and MgO nanoparticles (referred to as St1-g-(CA-AM), St2-g-(CA-AM), and St3-g-(CA-AM) MgO). These materials were assessed using FT-IR, SEM, and EDX. The adsorption of 134Cs(I) and 60Co (II) onto these materials studied using radiometric analysis. The investigation focused on how temperature, contact duration, initial metal ion concentration, and pH of the solution affected the sorption efficiency. It is found that a pH value of 7 optimized the adsorption reaction, reaching equilibrium after 40 minutes. The kinetics of the adsorption followed a pseudo-second order model. The Langmuir model adequately explained the sorption mechanism, supported by the analysis of isotherm models. The monolayer adsorption capacities for 60Co (II) and 134Cs (I) were 113.38 and 100.2 mg g−1, respectively. The thermodynamic study indicated that the sorption process is both endothermic and spontaneous.


Corresponding author: Maha Ali Youssef, Analytical Chemistry and Control Department, Hot Laboratories Centre, Egyptian Atomic Energy Authority, Cairo, P.O. 13759, Egypt, E-mail:

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission. Maha Ali Youssef, Gehan Abdel Rahman Sadek Dakroury, and Hisham Soliman Hassan were involved in initial conception and design of the study. Maha Ali Youssef, Gehan Abdel Rahman Sadek Dakroury and Hisham Soliman Hassan were involved in data collection. Gehan Abdel Rahman Sadek Dakroury and Hisham Soliman Hassan contributed to the methodology. Maha Ali Youssef, and Hisham Soliman Hassan performed the analysis. Maha Ali Youssef and Gehan Abdel Rahman Sadek Dakroury wrote the original draft. All authors have substantially contributed to the study and revision of the paper.

  3. Competing interests: The authors declare that they have no conflict of interest.

  4. Research funding: None declared.

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Park, Y.-C.; Lee, W. C.; Shin, S.-J.; Choi, S. Removal of Cobalt, Strontium and Cesium from Radioactive Laundry Wastewater by Ammonium Molybdophosphate–Polyacrylonitrile (AMP–PAN). Chem. Eng. J. 2010, 162, 685–695. https://doi.org/10.1016/j.cej.2010.06.026.Search in Google Scholar

2. Zhang, H.; Zhu, M.; Du, X.; Feng, S.; Miyamoto, N.; Kano, N. Removal of Cesium from Radioactive Waste Liquids Using Geomaterials. Appl. Sci. 2021, 11, 8407. https://doi.org/10.3390/app11188407.Search in Google Scholar

3. Strand, P.; Sundell-Bergman, S.; Brown, J. E.; Dowdall, M. On the Divergences in Assessment of Environmental Impacts from Ionizing Radiation Following the Fukushima Accident. J. Environ. Radioact. 2017, 169–170, 159–173. https://doi.org/10.1016/j.jenvrad.2016.12.005.Search in Google Scholar PubMed

4. Aliyu, A. S.; Nikolaos, E.; Timothy, A. M.; Wu, J.; Ramli, A. T. An Overview of Current Knowledge Concerning the Health and Environmental Consequences of the Fukushima Daiichi Nuclear Power Plant (FDNPP) Accident. Environ. Int. 2015, 7, 213–228. https://doi.org/10.1016/j.envint.2015.09.020.Search in Google Scholar PubMed

5. Youssef, M. A.; El-Naggar, M. R.; Ahmed, I. M.; Attallah, M. F. Batch Kinetics of 134Cs and 152+154Eu Radionuclides onto Poly-Condensed Feldspar and Perlite Based Sorbents. J. Hazard. Mater. 2021, 403, 123945. https://doi.org/10.1016/j.jhazmat.2020.123945.Search in Google Scholar PubMed

6. Cicek, E. Zeolite Used for Optimized Removal of Radioactive Cobalt with Response Surface Methodology. Düzce Univ. J. Sci. Tech. 2021, 9, 545–554. https://doi.org/10.29130/dubited.807860.Search in Google Scholar

7. Youssef, M. A.; Sami, N. M.; Hassan, H. S. Extraction and Separation Feasibility of Cerium (III) and Lanthanum (III) from Aqueous Solution Using Modified Graphite Adsorbent. Environ. Sci. Pollut. Res. 2022, 29, 79649–79666. https://doi.org/10.1007/s11356-022-20823-9.Search in Google Scholar PubMed PubMed Central

8. Tomar, R. S.; Gupta, I.; Singhal, R.; Nagpal, A. K. Synthesis of Poly(acrylamide-Co-Acrylic Acid)-Based Super-Absorbent Hydrogels by Gamma Radiation: Study of Swelling Behavior and Network Parameters. Des. Monomers Polym. 2007, 10, 49–66. https://doi.org/10.1163/156855507779763685.Search in Google Scholar

9. Zou, W.; Liu, X.; Yu, L.; Qiao, D.; Chen, L.; Liu, H.; Zhang, N. Synthesis and Characterization of Biodegradable Starch-Polyacrylamide Graft Copolymers Using Starches with Different Microstructures. J. Polym. Environ. 2013, 21, 359–365. https://doi.org/10.1007/s10924-012-0473-y.Search in Google Scholar

10. Comer, C. M.; Jessop, J. L. R. Evaluation of Novel Back-Flush Filtration for Removal of Homopolymer from Starch-g-PMMA. Starch-Stärke 2008, 60, 335. https://doi.org/10.1002/star.200700709.Search in Google Scholar

11. Zou, W.; Yu, L.; Liu, X.; Qiao, D. L.; Zhang, X.; Chen, L.; Zhang, R. Effects of Amylose/Amylopectin Ratio on Starch-Based Superabsorbent Polymers. Carbohydr. Polym. 2012, 87, 1583. https://doi.org/10.1016/j.carbpol.2011.09.060.Search in Google Scholar

12. Dakroury, G. A.; Maree, R. M.; El-Shazly, E. A. A.; Allan, K. F. Synthesize of Poly (Acrylamide-Co-itaconic/TiO2) Nanocomposite for Ce(III) Sorption from Monazite Leachate. J. Polym. Environ. 2022, 30, 1942–1958. https://doi.org/10.1007/s10924-021-02320-1.Search in Google Scholar

13. Ahmed, M. A.; Abou-Gamra, Z. M. Mesoporous MgO Nanoparticles as a Potential Sorbent for Removal of Fast Orange and Bromophenol Blue Dyes. Nanotechnol. Environ. Eng. 2016, 1, 10. https://doi.org/10.1007/s41204-016-0010-7.Search in Google Scholar

14. Samsonov, G.; Vlasova, M.; Kakazey, N.; Grigorjev, B.; Uskoković, D. P.; Ristic, M. M. Study of Elementary Mechanism during Sintering of MgO with Mn2O3, MnO2 and NiO Additives. J. de Phys. Collo. 1976, 37, 415–422.10.1051/jphyscol:1976795Search in Google Scholar

15. Beheshtian, J.; Peyghan, A. A.; Bagheri, Z.; Kamfiroozi, M. The Alkali Metal Interactions with MgO Nanotubes. Bull. Korean Chem. Soc. 2012, 33, 1925–1928. https://doi.org/10.5012/bkcs.2012.33.6.1925.Search in Google Scholar

16. Dakroury, G. A.; Abo-Zahra, Sh.F.; Hassan, H. S. Utilization of Olive Pomace in Nano MgO Modification for Sorption of Ni(II) and Cu(II) Metal Ions from Aqueous Solutions. Arab. J. Chem. 2020, 13, 6510–6522. https://doi.org/10.1016/j.arabjc.2020.06.008.Search in Google Scholar

17. Czarnecka, E.; Nowaczyk, J. Semi-Natural Superabsorbents Based on Starch-G-Poly(acrylic Acid): Modification, Synthesis and Application. Polymers 2020, 12, 1794. https://doi.org/10.3390/polym12081794.Search in Google Scholar PubMed PubMed Central

18. Sujatha, S. Preparation and Evaluation of Starch Citrate: A New Modified Starch as Directly Compressible Vehicle in Tablet Formulations. Int. J. Chem. Sci. 2011, 9, 177–187.Search in Google Scholar

19. Shahmohammadi-Kalalagh, S.; Babazadeh, H. Isotherms for the Sorption of Zinc and Copper onto Kaolinite: Comparison of Various Error Functions. Int. J. Environ. Sci. Tech. 2014, 11, 111–118. https://doi.org/10.1007/s13762-013-0260-x.Search in Google Scholar

20. Batool, F.; Akbar, J.; Iqbal, S.; Noreen, S.; Bukhari, S. N. A. Study of Isothermal Kinetic, and Thermodynamic Parameters for Adsorption of Cadmium: An Overview of Linear and Nonlinear Approach and Error Analysis. J. Bioinorg. Chem. Appl. 2018, 1–11, https://doi.org/10.1155/2018/3463724.Search in Google Scholar PubMed PubMed Central

21. Renan, V.; Masini, J. C: Nonlinear Regression for Treating Adsorption Isotherm Data to Characterize New Sorbents: Advantages Over Linearization Demonstrated with Simulated and Experimental Data. Heliyon 2023, 9, e15128. https://doi.org/10.1016/j.heliyon.2023.e15128.Search in Google Scholar PubMed PubMed Central

22. Çelik, M. Preparation and Characterization of Starch-g-Polymethacrylamide Copolymers. J. Polym. Res. 2006, 13, 427–432. https://doi.org/10.1007/s10965-006-9063-9.Search in Google Scholar

23. Bdewi, S. F.; Abdullah, O. G.; Aziz, B. K.; Mutar, A. A. R. Synthesis, Structural and Optical Characterization of MgO Nanocrystalline Embedded in PVA Matrix. J. Inorg. Organomet. Polym. 2015, 26, 326–334. https://doi.org/10.1007/s10904-015-0321-3.Search in Google Scholar

24. Puigdomenech, I. Make Equilibrium Diagrams Using Sophisticated Algorithms (MEDUSA). Inorg. Chem.; Royal Institute of Technology: Stockholm, Sweden, 2013.Search in Google Scholar

25. Keirudin, A. A.; Zainuddin, N.; Yusof, N. A. Crosslinked Carboxymethyl Sago Starch/Citric Acid Hydrogel for Sorption of Pb2+, Cu2+, Ni2+ and Zn2+ from Aqueous Solution. Polymers 2020, 12, 2465. https://doi.org/10.3390/polym12112465.Search in Google Scholar PubMed PubMed Central

26. Ali, I. M.; Madbouly, H. A.; El-Shorbagy, M. M. 152/154Eu(III) Ions Sorption on Stannic Silicate Granules: A Radiotracer Study. Chem. Sci. Trans. 2019, 8, 180–194. https://doi.org/10.7598/cst2019.1565.Search in Google Scholar

27. Gad, H. M. H.; Youssef, M. A. Sorption Behavior of Eu(III) from an Aqueous Solution onto Modified Hydroxyapatite: Kinetics, Modeling and Thermodynamics. Environ. Tech. 2018, 39, 2583–2596. https://doi.org/10.1080/09593330.2017.1362036.Search in Google Scholar PubMed

28. Abdel Maksoud, M. I. A.; Murad, G. A.; Zaher, W. F.; Hassan, H. S. Adsorption and Separation of Cs(I) and Ba(II) from Aqueous Solution Using Zinc Ferrite-Humic Acid Nanocomposite. Sci. Rep. 2023, 13, 5856. https://doi.org/10.1038/s41598-023-32996-5.Search in Google Scholar PubMed PubMed Central

29. Chanda, D. K.; Mukherjee, D.; Das, P. S.; Ghosh, C. K.; Mukhopadhyay, A. K. Toxic Heavy Metal Ion Adsorption Kinetics of Mg(OH)2 Nanostructures with Superb Efficacies. Mater. Res. Express 2018, 5, 075027. https://doi.org/10.1088/2053-1591/aad0d3.Search in Google Scholar

30. Swelam, A. A.; Salem, A. M. A.; Ayman, A. A.; Farghly, A. Kinetic and Thermodynamic Sorption Study of Coblt Removal from Water Solution with Magnetic Nano-Hydroxyapatite. Al Azhar Bull. Sci. 2018, 29, 45–58.10.21608/absb.2018.33749Search in Google Scholar

31. Moussa, S. I.; Mekawy, Z. A.; Dakroury, G. A.; Mousa, A. M.; Allan, K. F. Linear and Non Linear Recognition for the Sorption of 60Co and 152+154Eu Radionuclides onto Bio CuO Nanocomposite. J. Polym. Environ. 2023, 31, 2148–2165. https://doi.org/10.1007/s10924-022-02735-4.Search in Google Scholar

32. Cheung, C. W.; Porter, J. F.; McKay, G. Sorption Kinetics for the Removal of Copper and Zinc from Effluents Using Bone Char. Sep. Purif. Technol. 2000, 19, 55–64. https://doi.org/10.1016/S1383-5866(99)00073-8.Search in Google Scholar

33. Weber, W. J.; Morris, J. C. Kinetics of Adsorption on Carbon from Solutions. J. Sanit. Eng. Div. Am. Soc. Civ. Eng. 1963, 89, 31–60. https://doi.org/10.1061/JSEDAI.0000430.Search in Google Scholar

34. El-khalafawy, A.; Imam, D. M.; Youssef, M. A. Enhanced Biosorption of Europium and Cesium Ions from Aqueous Solution onto Phalaris Seed Peel as Environmental Friendly Biosorbent: Equilibrium and Kinetic Studies. Appl. Radiat. Isot. 2022, 190, 110498. https://doi.org/10.1016/j.apradiso.2022.110498.Search in Google Scholar PubMed

35. Ho, Y. S.; McKay, G. Application of Kinetic Models to the Sorption of Copper(II) on to Peat. Adsorp. Sci. Technol. 2002, 20, 797–815. https://doi.org/10.1260/026361702321104282.Search in Google Scholar

36. Imam, D. M.; Moussa, S. I.; Attallah, M. F. Sorption Behavior of Some Radionuclides Using Prepared Adsorbent of Hydroxyapatite from Biomass Waste Material. J. Radioanal. Nucl. Chem. 2019, 319, 997–1012. https://doi.org/10.1007/s10967-018-06403-7.Search in Google Scholar

37. Gokmen, G. V.; Serpen, A. Equilibrium and Kinetic Studies on the Adsorption of Dark Colored Compounds from Apple Juice Using Adsorbent Resin. J. Food Eng. 2002, 53, 221–227. https://doi.org/10.1016/S0260-8774(01)00160-1.Search in Google Scholar

38. Dakroury, G. A.; Ali, S. M.; Hassan, H. S. Assessment of Adsorption Performance of chitosan/ZrO2 Biosorbent Composite towards Cs (I) and Co (II) Metal Ions from Aqueous Solution. J. Polym. Res. 2021, 28, 385. https://doi.org/10.1007/s10965-021-02753-1.Search in Google Scholar

39. Sevim, F.; Laci, O.; Ediz, E. F.; Demir, F. Adsorption Capacity, Isotherm, Kinetic, and Thermodynamic Studies on Adsorption Behavior of Malachite Green onto Natural Red Clay. Environ. Prog. Sustain. Energy 2021, 40, e13471. https://doi.org/10.1002/ep.13471.Search in Google Scholar

40. Osinska, M. Removal of Lead(II), Copper(II), Cobalt(II) and Nickel(II) Ions from Aqueous Solutions Using Carbon Gels. J. Sol. Gel Sci. Technol. 2017, 81, 678–692. https://doi.org/10.1007/s10971-016-4256-0.Search in Google Scholar

41. IAEA. Management of Spent High Activity Radioactive Sources (SHARS); IAEA-TECDOC-1301, A-1400: Vienna, Austria, 2002.Search in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/ract-2024-0295).


Received: 2024-04-04
Accepted: 2024-06-06
Published Online: 2024-06-25
Published in Print: 2024-11-26

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 9.1.2026 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2024-0295/pdf
Scroll to top button