Home Physical Sciences Characterization of ferrous-xylenol orange-polyvinyl alcohol gel for gamma dosimetry using spectroscopy
Article
Licensed
Unlicensed Requires Authentication

Characterization of ferrous-xylenol orange-polyvinyl alcohol gel for gamma dosimetry using spectroscopy

  • Mahsa Sedighi , Elham Edalatkhah EMAIL logo and Payvand Taherparvar
Published/Copyright: September 17, 2024

Abstract

Fricke gel dosimeters are appropriate candidates for gamma dosimetry. Polyvinyl alcohol Fricke gel dosimeters are the most recent introduced gel dosimeters which have low ion diffusion. In this work, samples of ferrous-xylenol orange-polyvinyl alcohol gel dosimeters were prepared and characterized using optical spectroscopy. Using win XCOM program and the elemental composition of the gel, the mass attenuation coefficients for photons were evaluated. The results exhibited that the prepared gel is the nearly radiological blood-, soft tissue- and water-equivalent. The 60Co gamma cell unit was used to irradiate the gel samples. A dose range response was found linear from 10 to 30 Gy and suitable for blood irradiation dosimetry. Additionally, the gel response good repeatability was confirmed by the coefficient of variation calculations. Furthermore, chemical yield of the gel was estimated to be 34.6. The good characteristics of the prepared gel make it appropriate for dosimetry of blood irradiators.


Corresponding author: Elham Edalatkhah, Radiation Applications Research School, Nuclear Science and Technology Research Institute, 14155-1339, North Karegar Ave., Tehran, Iran, E-mail:

  1. Research ethics: Not applicable.

  2. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors state no conflict of interest.

  4. Research funding: None declared.

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Lazzeri, L.; Marini, A.; Cascone, M. G.; d’Errico, F. Dosimetric and Chemical Characteristics of Fricke Gels Based on PVA Matrices Cross-Linked with Glutaraldehyde. Phys. Med. Bio. 2019, 64 (8), 085015; https://doi.org/10.1088/1361-6560/ab135c.Search in Google Scholar PubMed

2. Appelby, A. A.; Leghrouz, A. Imaging of Radiation Dose by Visible Color Development in Ferrous Agarose Xylenol Orange Gels. Med. Phys. 1991, 18, 309; https://doi.org/10.1118/1.596676.Search in Google Scholar PubMed

3. Bero, M. A.; Gilboy, W. B.; Glover, P. M.; El-masri, H. M. Tissue-Equivalent Gel for Non-Invasive Spatial Radiation Dose Measurements. Nucl. Instrum. Methods Phys. Res., Sect. B 2000, 166, 820; https://doi.org/10.1016/s0168-583x(99)00873-3.Search in Google Scholar

4. Gohary, M.; Shabban, Y.; Amin, E. A.; Gawad, M. A.; Desouky, O. Preparation and Characterization of Fricke Gel Dosimeter. Nat. Sci. 2015, 13, 139.Search in Google Scholar

5. Cavinato, C. C.; Campos, L. L. Study of Fricke Gel Dosimeter Response for Different Gel Quality. J. Phys. Conf. Ser. 2010, 249, 012064; https://doi.org/10.1088/1742-6596/249/1/012064.Search in Google Scholar

6. Araujo, B. C. R.; Ferreira, B. D. L; Virtuoso, L. S.; Meira-Belo, L. C.; Fonseca, T. C. F.; Santos, A. M. M.; Lula, I.; Sebastião, R. C. O A New Formulation for Polymer Fricke Dosimeter and an Innovative Application of Neural Network to Study Dose Profile from Spin-Echo NMR Data. Radiat. Phys. Chem. 2021, 148.10.1016/j.radphyschem.2021.109444Search in Google Scholar

7. Marrale, M.; d’Errico, F. Hydrogels for Three-Dimensional Ionizing-Radiation Dosimetry. Gels 2021, 7, 74; https://doi.org/10.3390/gels7020074.Search in Google Scholar PubMed PubMed Central

8. Collura, G.; Gallo, S.; Tranchina, L.; Marrale, M.; Bartolotta, A.; d’Errico, F. Analysis of the Response of PVA-GTA Fricke-Gel Dosimeters with Clinical Magnetic Resonance Imaging. Nucl. Instrum. Methods Phys. Res., Sect. B 2018, 414, 146; https://doi.org/10.1016/j.nimb.2017.06.012.Search in Google Scholar

9. Davies, J. B.; Baldock, C. Sensitivity and Stability of the Fricke-Gelation-Xylenol Orange Gel Dosimeter. Radiat. Phys. Chem. 2008, 77, 690–696; https://doi.org/10.1016/j.radphyschem.2008.01.007.Search in Google Scholar

10. d’Errico, F.; Lazzeri, L.; Dondi, D.; Mariani, M.; Marrale, M.; Souza, S. O.; Gambarini, G. Novel GTA-PVA Fricke Gels for Three-Dimensional Dose Mapping in Radiotherapy. Radiat. Meas. 2017, 106, 612–617; https://doi.org/10.1016/j.radmeas.2017.07.003.Search in Google Scholar

11. Gambarini, G.; Veronese, I.; Bettinelli, L.; Felisi, M.; Gargano, M.; Ludwig, N.; Lenardi, C.; Carrara, M.; Collura, G.; Gallo, S.; Longo, A.; Marrale, M.; Tranchina, L.; d’Errico, F. Study of Optical Absorbance and MR Relaxation of Fricke Xylenol Orange Gel Dosimeters. Radiat. Meas. 2017, 106, 622–627; https://doi.org/10.1016/j.radmeas.2017.03.024.Search in Google Scholar

12. Sedighi, M.; Edalatkhah, E.; Taherparvar, P. Preparation of PVA Fricke Gel Dosimeters and Survey of Concentration and Maintenance Condition Effects on its Response. J. Nucl. Sci. Technol. 2024, 45 (3–108), 65–71.Search in Google Scholar

13. Chu, K. C.; Jordan, K. J.; Battista, J. J.; Van Dyk, J.; Rutt, B. K. Polyvinyl Alcohol Fricke Hydrogel and Cryogel: Two New Gel Dosimetry Systems with Low Fe+3 Diffusion. Phys. Med. Biol. 2000, 45, 955–996.10.1088/0031-9155/45/4/311Search in Google Scholar PubMed

14. Frangqi, C. A Study on Fricke-PVA-Xylenol Orange Hydrogel Dosimeter for E-Beam Radiotherapy. Nucl. Sci. Technol. 2009, 20, 152–156.Search in Google Scholar

15. Marrale, M.; Brai, M.; Gagliardo, C.; Gallo, S.; Longo, A.; Tranchina, L.; Abbate, B.; Collura, G.; Gallias, K.; Caputo, V.; Lo Casto, A.; Midiri, M.; D’Errico, F. Correlation Between Ferrous Ammonium Sulfate Concentration, Sensitivity and Stability of Fricke Gel Dosimeters Exposed to Clinical X-Ray Beams. Nucl. Instrum. Methods Phys. Res., Sect. B 2014, 335, 54; https://doi.org/10.1016/j.nimb.2014.05.012.Search in Google Scholar

16. Marini, A.; Lazzeri, L.; Cascone, M.; Ciolini, R.; Tana, L.; d’Errico, F. Fricke Gel Dosimeters With Low-Diffusion and High-Sensitivity Based on a Chemically Cross-Linked PVA Matrix. Radiat. Meas. 2017, 106, 618; https://doi.org/10.1016/j.radmeas.2017.02.012.Search in Google Scholar

17. Marrale, M.; Collura, G.; Gallo, S.; Nici, S.; Tranchina, L.; Abbate, B. F.; Marineo, S.; Caracappa, S.; d’Errico, F. Analysis of Spatial Diffusion of Ferric Ions in PVA-GTA Gel Dosimeters Through Magnetic Resonance Imaging. Nucl. Instrum. Methods Phys. Res., Sect. B 2017, 396, 50; https://doi.org/10.1016/j.nimb.2017.02.008.Search in Google Scholar

18. Gallo, S.; Gambarini, G.; Veronese, I.; Argentiere, S.; Gargano, M.; Ianni, L.; Lenardi, C.; Ludwig, N.; Pignoli, E.; d’Errico, F. Does the Gelation Temperature or the Sulfuric Acid Concentration Influence the Dosimetric Properties of Radiochromic PVA-GTA Xylenol Orange Fricke Gels? Radiat. Phys. Chem. 2019, 160, 35; https://doi.org/10.1016/j.radphyschem.2019.03.014.Search in Google Scholar

19. Gallo, S.; Artuso, E.; Brambilla, M. G.; Gambarini, G.; Lenardi, C.; Monti, A. F.; Torresin, A.; Pignoli, E.; Veronese, I. Characterization of Radiochromic Poly (Vinyl-alcohol)–Glutaraldehyde Fricke Gels for Dosimetry in External X-Ray Radiation Therapy. J. Phys. D: Appl. Phys. 2019, 52 (22), 225601; https://doi.org/10.1088/1361-6463/ab08d0.Search in Google Scholar

20. Gallo, S.; Locarno, S.; Brambilla, E.; Lenardi, C.; Pignoli, E.; Veronese, I. Dosimetric Characterization of Double Network Fricke Hydrogel Based on PVA-GTA and Phenylalanine Peptide Derivative. J. Phys. D: Appl. Phys. 2024, 57, 075303; https://doi.org/10.1088/1361-6463/ad0987.Search in Google Scholar

21. Scotti, M.; Arosio, P.; Brambilla, E.; Gallo, S.; Lenardi, C.; Locarno, S.; Orsini, F.; Pignoli, E.; Pedicone, L.; Veronese, I. How Xylenol Orange and Ferrous Ammonium Sulphate Influence the Dosimetric Properties of PVA–GTA Fricke Gel Dosimeters: A Spectrophotometric Study. Gels 2022, 8, 204; https://doi.org/10.3390/gels8040204.Search in Google Scholar PubMed PubMed Central

22. Locarno, S.; Arosio, P.; Curtoni, F.; Piazzoni, M.; Pignoli, E.; Gallo, S. Microscopic and Macroscopic Characterization of Hydrogels Based on Poly(vinyl-Alcohol)–Glutaraldehyde Mixtures for Fricke Gel Dosimetry. Gels 2024, 10, 172; https://doi.org/10.3390/gels10030172.Search in Google Scholar PubMed PubMed Central

23. Farajzadeh, E.; Sina, S. Developing a Radiochromic Dosimeter for Dosimetry in Blood Irradiation Chambers. Radiat. Phys. Chem. 2021, 188, 109637; https://doi.org/10.1016/j.radphyschem.2021.109637.Search in Google Scholar

24. Edalatkhah, E.; Sedighi, M.; Taherparvar, P. Stability of PVA Fricke Gel as a Radiochromic Indicator for Blood Irradiation. Radiat. Phys. Eng. 2024, 5 (1), 75.Search in Google Scholar

25. Treleaven, J.; Gennery, A.; Marsh, J.; Norfolk, D.; Page, L.; Parker, A.; Saran, F.; Thurston, J.; Webb, D. Guidelines on the Use of Irradiated Blood Components Prepared by the British Committee for Standards in Haematology Blood Transfusion Task. J. Haematol. 2011, 152, 35; https://doi.org/10.1111/j.1365-2141.2010.08444.x.Search in Google Scholar PubMed

26. ISO/ASTM 51939. Practice for Blood Irradiation Dosimetry; American Society for Testing and Materials: West Conshohocken, PA, 2017.Search in Google Scholar

27. Urban, T. Estimation of the Radiation Field Homogeneity in 60Co Blood Irradiator. Radiat. Phys. Chem. 2014, 104, 381; https://doi.org/10.1016/j.radphyschem.2014.05.001.Search in Google Scholar

28. Attix, F. H. Introduction to Radiological Physics and Radiation Dosimetry; John Wiley & Sons: Weinheim, 2008.Search in Google Scholar

29. Berger, M. J.; Hubbel, J. XCOM: Photon Cross Section Database (version 1.2), http://physics.nist.gov/xcom, [online]; National Institute of standards and Technology: Gaithersburg, MD, 1999.Search in Google Scholar

30. Hubbell, H.; Seltzer, S. M. Tables of X-Ray Mass Attenuation Coefficients and Mass Energy-Absorption Coefficients 1 keV to 20 MeV for Elements Z=1 to 92 and 48 Additional Substances of Dosimetric Interest. Tech. Rep. Natl. Inst. Stand. Technol. 1995. https://physics.nist.gov/PhysRefData/XrayMassCoef/tab2.html.10.6028/NIST.IR.5632Search in Google Scholar

31. ICRU Tissue Substitutes in Radiation Dosimetry and Measurement; Report 44 of the International Commission on Radiation Units and Measurements: Bethesda, MD, 1989.Search in Google Scholar

32. Leong, H.; Kandaiya, S.; Seng, N. B. Characterisation of a Ferrous Agarose Xylenol (FAX) Gel for Radiotherapy Dose Measurement. Austral. Phys. Eng. Sci. Med. 2007, 30, 135; https://doi.org/10.1007/bf03178418.Search in Google Scholar PubMed

33. Gupta, B. L.; Narayan, G. R. G(Fe3+) Values in the FBX Dosimeter. Phys. Med. Biol. 1985, 30 (4), 337; https://doi.org/10.1088/0031-9155/30/4/007.Search in Google Scholar

34. Hill, B.; Back, S. J.; Lepage, M.; Simpson, J.; Healy, B.; Baldock, C. Investigation and Analysis of Ferrous Sulfate Polyvinyl Alcohol (PVA) Gel Dosimeter. Phys. Med. Biol. 2002, 47, 4233; https://doi.org/10.1088/0031-9155/47/23/309.Search in Google Scholar PubMed

Received: 2024-02-13
Accepted: 2024-06-21
Published Online: 2024-09-17
Published in Print: 2024-11-26

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 9.1.2026 from https://www.degruyterbrill.com/document/doi/10.1515/ract-2024-0284/pdf
Scroll to top button